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Abstract Investigating genotype by environment inter-

actions (GxE) is generally considered challenging due to

the scale dependency of the interaction effect. The present

paper illustrates the problems associated with testing for

GxEs on summed item scores within the well-known ACE

model. That is, it is shown how genuine GxEs may be

masked and how spurious interactions can arise from

scaling issues in the data. A solution is proposed which

explicitly distinguishes between a measurement model for

the ordinal item responses and a biometric model in which

the GxE effects are investigated. The new approach is

studied in a simulation study using both a scenario in which

the measurement instrument suffers from mild scaling

problems and a scenario in which the measurement

instrument suffers from severe scaling problems. Results

indicate that the severity of the scale problems affects the

power to detect GxE, but it rarely results in false positives.

We illustrate the new approach on a real dataset concerning

affect.

Keywords Genotype by environment interaction � Poor

scaling � Item response theory � ACE-model

Introduction

The existence of (…) genotype-environmental inter-

actions of a systematic variety may alert the psy-

chometrician to areas in which further test

development may take place. Marked directional

non-additivity, for example, may indicate a threshold

in the scale beyond which measurement is difficult, or

simply has not been attempted (Eaves et al. 1977).

Systematic genotype by environment interaction (GxE)

concerns the situation in which the strength of genetic

influences on a given phenotypic construct differs across

environments. A well-known instance of GxE is the finding

of Turkheimer et al. (2003), who showed that the herita-

bility of cognitive ability increases for increasing levels of

socioeconomic status. Other instances of GxE include the

genotype by parental closeness interaction on alcoholism

(Miles et al. 2005), the genotype by income interaction on

physical health (Johnson and Krueger 2005), and the

genotype by negative life events interaction on depressive

symptoms (Lau and Eley 2008).

Given the popularity of GxE as a research topic, it is

interesting that investigating GxE remains associated with

major challenges. The main problem is that GxE effects

can be conflated with artificial effects due to (1) genotype-

environment correlation (see e.g., Turkheimer et al. 2009;

Purcell 2002); and (2) due to poor measurement scaling

(Eaves et al. 1977, 2002; Eaves 2006; Kamin 1974; Mather

and Jinks 1971; Purcell 2002; van der Sluis et al. 2006).

With respect to the former, solutions to test for GxE while

correcting for possible genotype by environment correla-

tion have been proposed by Rathouz et al. (2008), Purcell

(2002), and van der Sluis et al. (2012), although this issue

still remains a topic of investigation. With respect to the
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problem of measurement scale, few solutions have been

proposed. The present paper focuses on this problem of

measurement in the detection of GxE.

As pointed out with respect to interactions in general

(e.g., Loftus 1978; Wagenmakers et al. 2012; Zand

Scholten 2011, chapter 5), and with respect to GxEs in

particular (e.g., Eaves et al. 1977; Eaves 2006; Jinks and

Fulker 1970; van der Sluis et al. 2006, 2012; Molenaar

et al. 2012), statistical interaction effects are generally

scale dependent, which means that (1) interaction effects

can be removed or indeed created by monotonic non-linear

transformation of the data; and (2) interactions may spu-

riously arise due to non-normality in the observed data as a

result of arbitrary properties of the measurement scale.

Within the field of behavior genetics, the problem of

measurement scale dependency is clearly illustrated in a

recent study by Molenaar et al. (2013), in which IQ mea-

sures from 14 different twin studies were tested for GxE.

They found that interaction effects fluctuated greatly across

studies while controlling for age and gender. As the test

batteries used to obtain the IQ measures differed consid-

erably across the different studies, they concluded that the

GxE effects observed were likely attributable to measure-

ment problems.

The most important measurement problems in the

detection of GxE are floor and ceiling effects (van der Sluis

et al. 2006), and poor scaling of the measurement (Eaves

2006; Eaves et al. 1977). These problems all boil down to

the same principle, i.e., the amount of information about

the phenotypic construct varies across the scale used to

measure the construct. In case of floor and ceiling effects

this is due to the fact that a disproportionate number of

subjects receive the lowest or highest possible score. This

censoring causes individual differences to be smaller at the

lower end of the scale (floor effect) or at the upper end of

the scale (ceiling effect). In the case of poor scaling of

measurement, the amount of information concerning the

phenotypic construct varies across the scale because the

resolution of the scale varies across its range. For instance,

depression questionnaires commonly discriminate rela-

tively well at the upper range, but less well over the lower

end of the scale. Note that poor scaling of the measurement

does not necessarily imply a floor or ceiling effect, but it

does imply non-normality. Poor scaling commonly arises

by summing individual items and treating the resulting

variable as a continuous variable in the analysis. As

pointed out and illustrated by Tucker-Drob (2009), these

composite scores are highly likely to be poorly scaled if

items are disproportionally hard or disproportionally easy

or when the items do not follow a one-parameter model

(Molenaar and Borsboom 2013). That is, sum scores will

be non-normally distributed despite the underlying nor-

mally distributed construct.

A possible approach to account for the measurement

issues above is to explicitly take the measurement prop-

erties of the scale into account. This can be done by using

an appropriate measurement model for the items that are

used to measure the phenotypic construct. Popular mea-

surement models include the 1 and 2 parameter models for

dichotomous items (Rasch 1960; Birnbaum 1968) and the

graded response model for Likert scale items (Samejima

1969). With respect to heritability analyses, van den Berg

et al. (2007) demonstrated that neglecting measurement

properties of dichotomous items generally results in

underestimated heritability coefficients. They showed that

the use of a measurement model produced unbiased

estimates.

With respect to GxE research, Tucker-Drob et al. (2009)

and Molenaar et al. (2012) also advocated the use of

measurement models. Specifically, a model was proposed

in which the phenotypic variables were first linked, as

indicators, to the underlying phenotypic construct using a

factor model as measurement model. Next, in the biometric

part of the model, the phenotypic variance was decom-

posed into parts due to additive genetic (A), common

environment (C), and unique environment (E) influences.

In Tucker-Drob et al. (2009), measurement problems were

accounted for by introducing non-linear effects in the

measurement model. Next, GxE was introduced in the

biometric model by using the moderation approach of

Purcell (2002).

Molenaar et al. (2012) introduced GxE using the

classical conceptualization of systematic GxE of Jinks and

Fulker (1970; Eaves et al. 1977), in which GxE is oper-

ationalized as heteroscedastic latent environmental vari-

ance, which varies systematically with the environment

(see also van der Sluis et al. 2006; see Molenaar and

Boomsma 1987, for an alternative approach in case of

GxE with unmeasured environment). Using this method,

within the ACE model, both AxE and AxC interactions

can be detected as heteroscedastic E or C variance,

respectively. To account for possible measurement prob-

lems at the level of the observed variables, heterosced-

astic residual variances were incorporated in the

measurement model. In this way, possible floor/ceiling or

poor scaling effects (i.e., effects uncorrelated across

variables) are absorbed in the residuals, while the effects

of GxE—if any—are detected in the latent biometrical

part of the model (as a genuine GxE effect should be

common to all indicators of the common latent pheno-

type). Note that this approach is thus suitable to test for

GxE in sum score variables that are poorly scaled (as

discussed above), as the scale problems will be captured

as heteroscedastic residuals. However, if the majority of

the observed variables are subject to floor/ceiling or poor

scaling effects, these effects may still arise as artificial
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AxE or AxC (see Molenaar et al. 2012). In addition, as

the measurement model is a linear factor model, this

approach is limited to continuous data. In the cases of

polytomous items (e.g., 3 or 5 point self-report scales,

common in the assessment of personality) and dichoto-

mous items (e.g., correct/false scores, common in ability

tests items), this approach is inappropriate (see Dolan

1994; van den Berg et al. 2007).

Therefore, a generalization of the methodology of

Molenaar et al. (2012) is needed for categorical item

scores. This is challenging as due to the categorical nature

of the data, the marginal maximum likelihood framework

is numerically demanding (although we note that it is

possible, see below). As demonstrated by Eaves and Erk-

anli (2003), the Bayesian framework is computationally

more tractable in case of complex likelihood functions.

Inspired by Eaves and Erkanli (2003), van den Berg et al.

(2007) employed the Bayesian approach to the genetic

analyses of dichotomous items using a 1 parameter mea-

surement model, applying a Bayesian hierarchical param-

eterization of the ACE decomposition in the latent part of

the model (Eaves and Erkanli 2003; van den Berg et al.

2006). This model was recently extended by Schwabe and

van den Berg (2014) to include an AxE effect in the bio-

metric model.1

The aims of this paper are twofold: (1) we demonstrate

that minor scale problems readily give rise to spurious GxE

effects in sum scores; and (2) we present a general

approach to test for GxE in categorical twin data that does

not suffer from spurious GxE, even in the presence of

severe scale problems. We focus on dichotomous and

Likert scale items as these are common in personality and

cognitive ability research. The main advantages of the

approach outlined in this paper over that of Schwabe and

van den Berg (2014) are that: (1) we do not restrict our-

selves to dichotomous data, but also consider Likert scale

data; (2) we model violations of local independence

(residual correlations between the scores of the twins in the

same twin pair) which are common in twin data; (3) we

also consider AxC interactions as Molenaar et al. (2012)

show that this could benefit the power to detect AxE; and

(4) we present a full estimation approach, that is, we esti-

mate all model parameters from the data. Schwabe and van

den Berg (2014) assume that the parameters from the

measurement model are known constants, which could be

the case in—for instance—large scale assessments, but

which could be problematic in smaller datasets. An

advantage of the approach by Schwabe and van den Berg

(2014) is that it is mathematically more elegant and less

computationally demanding.

The outline of this paper is as follows: First we present

suitable measurement models for Likert data and dichoto-

mous data, and we discuss how we account for violations

of local independence. Next, in the biometric model, we

introduce an alternative to the Bayesian parameterization

of the ACE decomposition used by Eaves and Erkanli

(2003) and van den Berg et al. (2006) in which we intro-

duce GxE in terms of heteroscedastic environment influ-

ences (as in Jinks and Fulker 1970; van der Sluis et al.

2006; Molenaar et al. 2012). Then we present a simulation

study to (1) demonstrate the problems associated with

neglecting the measurement properties of the individual

items in GxE analyses; and (2) to show that our approach

provides a feasible solution to this problem. Finally, we

apply the model to a real dataset on affect, and end with a

discussion.

Model derivation

In the traditional univariate twin ACE model (Jinks and

Fulker 1970; Eaves et al. 1977; Eaves 1977; Neale and

Cardon 1992), the scores on a phenotypic variable as

observed in the twin pairs, Y1 and Y2, are assumed to be an

additive function of the A, C, and E components, where by

definition, the environmental twin correlations are

cor(C1,C2) = 1 and cor(E1,E2) = 0. Assuming assortative

mating, the additive genetic twin correlations are cor(A1,

A2) = 1 in MZ twins, and cor(A1,A2) = .5 in DZ twins.

Under the assumption that the A, C, and E factors are

mutually uncorrelated, the variance of Yj is decomposed as

var Yj

� �
¼ r2

A þ r2
C þ r2

E; j ¼ 1; 2: ð1Þ

In operationalizing GxE, one could make the effect of A

to depend on E and C, or one could make the effect of C

and E to depend on A. As Jinks and Fulker (1970) defined

systematic GxE as heteroscedastic environmental variance

across genotypes, van der Sluis et al. (2006) and Molenaar

et al. (2012) used the latter operationalization (the effect of

E and C depends on A) and formalized AxC and AxE

interactions as follows

var YjjAj

� �
¼ r2

CjAj þ r2
EjAj

¼ exp c0 þ c1Aj

� �
þ exp b0 þ b1Aj

� �
ð2Þ

That is, the variance of C and E conditional on A is

modelled as a function of A. We denote this systematic

GxE as the conditional environmental variance varies

systematically with A. The choice of the exponential

function is purely pragmatic: it ensures that the variance is

strictly positive (see also Bauer and Hussong 2009; Hessen

and Dolan 2009). In Eq. 2, parameters c0 and b0 are

1 The work by Schwabe and van den Berg (2014) was conducted

parallel to—but independent from—the present undertaking. Only at

a late stage did we learn about each others work on this topic.
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baseline parameters for the variance of C and E, respec-

tively, and parameters c1 and b1 account for the AxC and

AxE interaction in terms of heteroscedasticity. Note that

the operationalization of AxC in Eq. 2 implies a scalar

effect of Aj on the variance of C which places the effect of

C on different scales for two members of a DZ twin pair.

As shown by Molenaar et al. (2012), the parameters (b0, b1,

c0, c1, and rA
2 ) can be estimated using marginal maximum

likelihood (Bock and Aitkin 1981) in the Mx software

package (Neale et al. 2006). Relevant Mx input files are

available at http://www.dylanmolenaar.nl.

The presence of AxE or AxC complicates the calcula-

tion of heritability. To standardize rA
2 , one needs:

h2 ¼ r2
A

r2
A þ exp b0 þ 1

2
b2

1

� �
þ exp c0 þ 1

2
c2

1

� � ð3Þ

where the two terms in the denominator denote the mar-

ginal variance of E and C, respectively (see Hessen and

Dolan 2009). The standardized marginal contributions of C

and E to the phenotype variance can be calculated in the

same way.

The statistical properties of the univariate model in

Eq. 2 were studied by van der Sluis et al. (2006) and

Molenaar et al. (2012). Generally, parameter recovery is

satisfactory, AxE and AxC interactions are well separable,

and power to detect AxE is good in terms of required

sample size. On the other hand, large sample sizes are

needed to detect AxC. It was also shown that, if A is the

predominant source of variation, presence of an unmod-

elled CxE interaction will not result in spurious AxE.

Below we develop a methodology based on the idea

above, but for the case in which we do not have a single

phenotype variable, but multiple ordinal item responses

that measure an underlying phenotypic construct, h. First,

we introduce the measurement model in which the

responses to the items are linked to h. Next, in the bio-

metric model, we present a Bayesian formulation of the

multi-item ACE model that is suitable to apply the model

in Eq. 2 to h.

Measurement model

In the measurement model, the responses of twin j in twin

pair p on item i, Xpij, are linked to the underlying pheno-

typic construct or latent variable hpj. As j = 1, 2 we have

two latent variables, hp1 and hp2 that are expected to be

dependent due to common genetic and environmental

influences underlying the phenotypic construct. This

dependency can be accommodated by the application of

standard twin modeling (e.g., specification of an ACE

model), as mentioned above. Standard measurement mod-

els, however, assume local independence. In the present

case, this means that that the item responses of the twins

are independent conditional on the latent variables hp1 and

hp2. This assumption will generally not hold in twin data,

as responses of twins of the same twin pair, conditional on

hp1 and hp2, are still likely to be correlated due to shared

item-specific genetic and environmental influences. These

residual correlations should be taken into account to avoid

bias in the other parameter estimates. In a factor analytic

framework, this is straightforward, as the residual covari-

ances are explicitly model parameters, which can be freely

estimated. In an item response theory framework, however,

this is less straightforward as the item responses are treated

as realizations of a Bernoulli distribution (dichotomous

responses) or multinomial distribution (ordinal responses),

which precludes incorporation of a residual covariance

matrix. It could be argued that we should resort to the item

factor model (Wirth and Edwards 2007), in which residual

correlations can be incorporated straightforwardly. How-

ever, this cannot easily be combined with the decomposi-

tion that we wish to carry out for the latent phenotypes. We

therefore propose to model possible violations of condi-

tional independence by introducing additional latent vari-

ables that account for the covariance unique to a given item

within a twin pair. Specifically, in case of ordinal responses

(e.g., personality tests where items are Likert scales) the

model is given by

Xpij� cat ppij0; . . .; ppij c�1ð Þ
� �

; ð4Þ

with, for c = 0, …, Ci - 1,

ppijc ¼ P Xpij ¼ cjhpj

� �

¼ U
aihpj þ ridpi � bicffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
i

p

 !

� U
aihpj þ ridpi � bi cþ1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
i

p

 !

ð5Þ

In Eq. 5, u(.) denotes the cumulative normal distribu-

tion function, ai is the discrimination parameter of item i,

bic is the category difficulty parameter of category c in item

i with bi0 = -? and biC = ?, hpj is the position of twin

j of twin pair p on the latent variable, Ci denotes the

number of response categories of item i, and dpi is the

additional latent variable to model the conditional associ-

ations among the scores within twin pair p on item i with

item specific slope parameter ri. Figure 1 shows a sche-

matic representation of the measurement model. As can be

seen from the figure, ri can be interpreted as the factor

loading of item i on the additional latent dpi variables. This

factor loading is equal across twin 1 and twin 2 item scores.

By assuming that dpi has a standard normal distribution

(see also below), the residual polychoric correlation

between the item scores of twin 1 and twin 2 is given by ri
2.
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The term
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

i

p
(Eq. 5) is not standard in item response

models, but it is necessary here to retain the original

scaling of the item parameters and to ensure that ri
2 can be

interpreted as a correlation.2

In the case of dichotomous data (e.g., in ability tests

where item responses are commonly scored correct/false),

Ci can be set to 2 and the model above simplifies to

Xpij� bern ppij

� �
ð6Þ

ppij ¼ P Xpij ¼ 1jhpj

� �
¼ U

aihpj þ ridpi � biffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

i

p

 !

ð7Þ

All item parameter in Eqs. 5 and 7 are equal across MZ

and DZ twin members except ri, which varies over

zygosity. That is, we estimate separate rDZ,i and rMZ,i as the

shared genetic and environment item specific influences are

expected to be different across MZ and DZ twins.

Biometric model

In the biometric model, the correlations between hp1 and hp2

are modeled as a function of the A, C, and E factors in the MZ

and DZ twins. In this decomposition, we introduce AxE and

AxC interactions according to Eq. 2. Eaves and Erkanli

(2003) implemented a Bayesian parameterization of the

univariate ACE model in Eq. 1 (see also van den Berg et al.

2006). This parameterization consists of a hierarchical

structure, in which at each level of the hierarchy, all variables

are combined from the previous level. An alternative to the

hierarchical parameterization might be to specify a multi-

variate normal distribution for hp1|A and hp2|A, and make the

diagonal elements of the conditional covariance matrix a

function of A. However, in our experience this approach

worked poorly as for the traditional ACE model, sampling

from the posterior distribution was extremely slow, and not

all chains displayed random intermixing.

Below, we propose an alternative parameterization of

the ACE model that only uses univariate distributions as in

Eaves and Erkanli (2003) and van den Berg et al. (2006).

Within this parameterization, we include the AxC and AxE

interactions, following Eq. 2. We present the model details

for the MZ and DZ twins separately.

MZ twins

As in MZ twins, cor(A1,A2) = 1, we use A1 = A2 = A

with

A�N 0; r2
A

� �
ð8Þ

where rA
2 can be used to determine heritability given

appropriate standardization (see Eq. 3). We now impose an

ACE decomposition on the latent variable hpj. First,

conditioning on A yields the following conditional

distribution for hpj in the MZ twin sample:

hpjjA�NðljjA; r2
j jAÞ ð9Þ

where

l1jA ¼ A ð10Þ

and

l2 A ¼ Aþ qj jA� hp1jA� A
� �

ð11Þ

The expression for l2|A in Eq. 11 follows from standard

results of the bivariate normal distribution, i.e.,

E(X|Y) = lX ? rXq (Y - lY)/rY where in this case,

X = hp2|A and Y = hp1|A. In addition, q|A is the

correlation between hp1|A and hp2|A which is given by

qjA ¼ r2
CjA

r2
CjAþ r2

EjA
ð12Þ

Now rj
2 |A in the conditional distribution of hpj|A above is

given by

r2
1jA ¼ r2

CjAþ r2
EjA ð13Þ

for j = 1 and

Fig. 1 Schematic representation of the measurement model in Eq. 5.

Note the straight arrows represent probit regressions. The category

difficulty parameters, bic are not depicted. The blank circles represent

the polychoric variance of the item scores conditional on the latent

variables

2 The cumulative standard normal distribution function, U(.), in Eq. 5

assumes unit polychoric variances of the item scores conditional on

hp1 and hp2. Due to the presence of dpi, the conditional polychoric

variance will depart from 1 if ri = 0. Therefore, to prevent parameter

bias, the scaling term is added to ensure that the conditional

polychoric variance will be equal to 1.
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r2
2jA ¼ r2

1jA� ð1� q2jAÞ ð14Þ

for j = 2. At this point, the model above is a standard ACE

model. We introduce GxE by making rC
2 |A and rE

2|A a

function of A, as in Eq. 2, i.e.,

r2
CjA ¼ exp c0 þ c1

A

rA

� �
ð15Þ

r2
EjA ¼ exp b0 þ b1

A

rA

� �
ð16Þ

Note that here we divide A by rA to standardize the c1 and

b1 parameters.

DZ twins

For DZ twins, the model is slightly more complicated as it

does not hold that A1 = A2. However, A2 can be modelled as a

function of A1. If we introduce a new random variable A02 with

A02�Nð0; r2
AÞ ð17Þ

which is uncorrelated to A1, we can transform A02 in such a

way that its transformation is correlated 0.5 with A1. If we

denote the transformed variable by A2, we obtain

A2 ¼
1

2
A1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

2

� �2
s

A02 ð18Þ

Note that the above follows from the Cholesky

decomposition of a bivariate correlation matrix with a 0.5

correlation. Now if we assume that

A1�N 0; r2
A

� �
ð19Þ

A2 is also normally distributed with zero mean and

variance rA
2 . To obtain the ACE decomposition for hpj

we condition on A1 in the twin 1 sample, and on both A1

and A02 in the twin 2 sample (due to Eq. 18). This results in

hp1jA1�N l1jA1; r2
1jA1

� �
for j ¼ 1 ð20Þ

and

hp2jA1;A
0
2�N l2jA1;A

0
2; r2

2jA1;A
0
2

� �
for j ¼ 2 ð21Þ

where

l1jA1 ¼ A1 ð22Þ

and

l2jA1;A
0
2 ¼ A2 þ qjA1;A

0
2 � hp1jA1 � A2

� �
: ð23Þ

where A2 is given by Eq. 18. Note that Eq. 23 is based on

the same idea as Eq. 11 in case of the MZ twins. In Eq. 23,

the conditional correlation between the latent variable in

the twin 1 sample, hp1|A1, and in the twin 2 sample,

hp2|A1,A02, is given by

qjA1;A
0
2 ¼

rC1jA1 � rC2jA1;A
0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
C1jA1 þ r2

E1jA1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

C2jA1;A
0
2 þ r2

E2jA1;A
0
2

p

ð24Þ

again this follows the idea put forward in Eq. 12 for the

MZ twins. Now r1
2|A1 in the conditional distribution of

hp1|A1 in Eq. 20 is given by

r2
1jA1 ¼ r2

CjA1 þ r2
EjA1 ð25Þ

and r2
2|A1, A02 in Eq. 21 is given by

r2
2jA1;A

0
2 ¼ r2

CjA1;A
0
2 þ r2

EjA1;A
0
2

� �
� 1� q2jA1;A

0
2

� �

ð26Þ

Following the MZ case in Eqs. 15 and 16, GxE can be

introduced similarly by making rC
2 |A1 and rE

2 |A1 from

Eq. 25 and rC
2 |A1, A02 and rE

2 |A1, A02 from Eq. 26

exponential functions of A1 and A2, i.e.,

r2
CjA1 ¼ exp c0 þ c1A1ð Þ ð27Þ

r2
C A1;A

0
2 ¼ r2

C

�� ��A2 ¼ exp c0 þ c1A2ð Þ ð28Þ

and

r2
EjA1 ¼ expðb0 þ b1A1Þ ð29Þ

r2
E A1;A

0
2 ¼ r2

E

�� ��A2 ¼ exp b0 þ b1A2ð Þ; ð30Þ

where A2 is a function of A1 and A02 given by Eq. 18.

Prior distributions

As we use a Bayesian approach to model fitting, prior

distributions need to be specified on the parameters in the

model. Distributions for the person parameters, A1, A02,

and dpi have already been specified above. The remaining

parameters in the measurement model are ai, bi, and ri. For

these parameters we use

bic * unif(bi(c-1); bi(c?1)

with bi0 = -? and biC = ? as noted above. This prior

ensures that the biC parameters are strictly increasing for

increasing c. An alternative way to evoke this order

constraint is to use the ‘ranked’ function in BUGS (see

Curtis 2010). In addition we use

ai * unif(-5,5)

and

dpi * normal(0,1),

rMZ,i * unif(0,1),

rDZ,i * unif(0,1).
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Note that parameter range of rMZ,I and rDZ,i is in the

interval -1, 1 as ri
2 is a correlation (as discussed above).

We restrict rMZ,I and rDZ,i to be positive to avoid sign

switching (i.e., to avoid that the scale of the dpi reverts

during the sampling). This restriction implies that the

residual correlation could not be negative. In present case,

this is what we expect for twin data, i.e., the correlation ri
2

between the responses to a given item of twin 1 and twin 2

conditional on the latent variables, hp1 and hp2 is due to

shared environmental and genetic influences specific to that

item. However, this restriction of positive residual corre-

lation can be relaxed in principle (but this will require a

minor reparameterization of the ri parameter in Eq. 5). In

specifying the priors for rMZ,i and rDZ,I we did not impose

the restriction that rMZ,I [ rDZ,I as we prefer uninformative

priors to ensure that the results obtained using the present

approach will be similar to those results that would have

been obtained using a frequentist framework (in a frequ-

entist framework this restriction, although plausible, is

commonly not specified). However, we note that incorpo-

rating this restriction on the prior of rMZ,I and rDZ,I is

straightforward.

The remaining parameters in the biometric model are b0,

b1, c0, c1, and rA
2 . We estimate x = ln rA

2 instead of rA
2 ,

so that all these parameters can be submitted to the same

prior distribution, i.e.,

b0, b1, c0, c1, x * unif(-5,5).

Note that these priors are quite uninformative.

Bayesian estimation and convergence

Bayesian model estimation revolves around the posterior

distribution of the parameters given the data. If s denotes

the vector of free model parameters and X denotes the

matrix of item scores, then the posterior distribution of the

model parameters is proportional to

p sjXð Þ / l Xjsð Þg sð Þ

where l(.) is the likelihood of the data given the model

parameters and g(.) is the prior distribution of the param-

eters. For relatively simple models, p(s|X) is analytically

tractable, and parameters could be calculated directly. For

relatively complex models, parameter estimates are

obtained by drawing samples from p(s|X) and determining

the mean for each parameter in s across these samples.

There are many sampling schemes that differ in the

exact way in which samples from the posterior are

obtained. In Gibbs sampling (Geman and Geman 1984),

samples are not drawn from p(s|X) directly but from the

conditional distributions of a (set of) parameter(s) given the

data and the remaining parameters. Samples from this

procedure have been shown to converge to p(s|X).

However, the procedure requires enough samples to ensure

convergence. Therefore, an important aspect of this sam-

pling based approach is that enough samples from the

posterior distribution are considered to enable reliable

inferences about the parameters in the model. As samples

are only from the posterior after the procedure converged,

the first samples are commonly omitted from the analysis

(which is the so called burn-in). For the samples that fol-

low, convergence can be checked. In this paper we use the

Gelman and Rubin (1992) diagnostic to investigate con-

vergence. For this diagnostic multiple sampling sequences

need to be run using different starting values. Then, the

within and between sequence variance is compared simi-

larly to an ANOVA. If the sequences have converged, the

ratio of the variances is close to one. We apply this diag-

nostic in the illustration section.

Another issue associated with the reliability of the

sampling results concerns the correlations of a given

parameter across subsequent draws from the posterior.

These so-called autocorrelations should ideally be small as

this indicates that the samples cover the whole range of the

posterior density and not only a sub part. In the illustration

section we show how autocorrelation can be used to asses

reliability of the sampling results.

We implemented the model above in the freely available

OpenBUGS software (Lunn et al. 2009). See Appendix A

and B for the syntax given dichotomous and Likert items,

respectively. In the syntax, we include references to the

formula above. This implementation is based on the classic

BUGS (Bayesian inference Using Gibbs Sampling) lan-

guage, thus, with minor adaptation, it can also be used in

the free software packages WinBUGS (Lunn et al. 2000)

and JAGS (Plummer 2003). Although here we focused on a

Bayesian implementation of the model, we note that

present undertaking is equally amenable in a frequentist

framework. That is, the model above could be fitted by

maximum likelihood using software packages like SAS

(SAS Institute 2011), OpenMX (Boker et al. 2010), and Mx

(Neale et al. 2006). An Mx script to fit the model is

available from www.dylanmolenaar.nl.

Simulation study

Design

We consider 4 settings: settings 1–3 involve 15, 25, and 35

dichotomously scored items, respectively, and setting 4

involves 15 Likert scale items with 5 response categories.

In the measurement model, all discrimination parameters ai

are set to 1, rMZ,i
2 is set to 0.6 and rDZ,i

2 is set to 0.3.

In each setting, we create poor scaling according to a

mild and a severe scenario. In case of dichotomous items,
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the mild scenario involved the introduction of a slightly

disproportional number of easy items. That is, the item

difficulties are slightly disproportionally distributed across

the h range such that the sum score of these items will be

poorly scaled to a minor extent. Specifically, we divided

the h range into three intervals, i.e., [-2.5,-1), [-1,1), and

[1,3]. Within each interval we chose equally spaced bi

values for a given number of items. See Table 1 for the

exact number of items with within each interval in case of

15, 25, and 35 dichotomous items. As a result of this setup,

scaling of h within each interval is good, however, over the

whole h range, scaling is slightly uneven due to the

somewhat smaller range of the first interval and due to the

difference in the number of items in case of 25 and 35

items (see Table 1). In case of the Likert items, item cat-

egory parameters, bi1 to bi4 were fixed to -1, 0, 1, and 2,

which results in a disproportionate number of responses in

the first category.

In the severe scenario, we specified all dichotomous

item difficulties to be equally spaced within the interval

[-2.5,-1.5], see Table 1. In case of Likert items, we

fixed the item category parameters, bi1 to bi4, to 0, 1, 3,

and 4, which results in a severe floor effect. See Fig. 2 for

examples of the resulting sum (dichotomous items) and

item (Likert items) score distribution in the two scenarios.

Note that in both scenarios, for dichotomous items, the

sum score is poorly scaled as it contains more information

about h at the lower h range, because of the dispropor-

tional number of items with a low item difficulty in the

mild scenario, and no intermediate or hard items at all in

case of the severe scenario. In addition, all Likert items

display a floor effect due to the majority of responses

being in the lower answer categories. In the mild scenario

the effects are just visible (but detectable, as we show

below). The severe scenario is quite extreme but by no

means uncommon. For instance, intelligence tests are

commonly characterized by relatively more easy items

while depression questionnaires commonly suffer from

floor effects in normal populations.

In the biometric model, parameters for x, b0, and c0 were

chosen to equal log(0.5), log(0.25), and log(0.25), respec-

tively, so that heritability equaled 0.5 in de absence of GxE.

For each setting we simulated 50 datasets without GxE, i.e.,

b1 = 0 and c1 = 0, and 50 datasets with GxE, using

b1 = 0.25 and c1 = 0.25. Note that this effect size corre-

sponds to a ‘moderate’ effect in the Molenaar et al. (2012)

study. For each replication, we simulated data for 1,000 MZ

and 1,000 DZ twins. To each dataset we fitted the model as

described above to investigate (1) parameters recovery, (2) the

rate with which true AxE and AxC are detected (‘hit rate’), and

(3) to investigate the rate with which spurious GxE arises

(‘false positives rate’). In case of dichotomous items (setting

1–3), we used a 1 parameter measurement model (i.e., ai in

Eq. 7 is fixed to equal 1 for all i). In case of the Likert items, we

used the 2-parameter model in Eq. 7, in which we fixed the

discrimination parameter of the first item to equal 1 for

identification purposes (a1 = 1) and estimated the remaining

discrimination parameters.

Table 1 Number of item with a difficulty parameter bi located within

different intervals of the h scale for the mild and severe scenario’s in

the simulation study

Scenario Setting Interval of h

[-2.5,-1) [-1,1) [1,3]

Mild 15 dichotmous items 5 5 5

25 dichotmous items 9 8 8

35 dichotmous items 13 11 11

[-2.5,-1.5] (-1.5,1) [1,3]

Severe 15 dichotmous items 15 0 0

25 dichotmous items 25 0 0

35 dichotmous items 35 0 0

Fig. 2 Example of resulting (sum) score distributions in case of 15,

25, and 35 dichotomous items, and the resulting item score

distribution in case of a single Likert item. Plots are generated using

the parameters as chosen for the simulation study. Left hand column

concerns the mild scenario and the right hand column concerns the

severe scenario

Behav Genet (2014) 44:212–231 219

123



In addition to applying the methodology above, we also

fitted the univariate model to the sum scores of the items

using the marginal maximum likelihood routine from

Molenaar et al. (2012). By doing so, we aimed to illustrate

(1) that spurious GxE can arise at sum score level (i.e.,

increased false positive rate), and (2) true GxE effects can

be masked at sum score level (i.e., decreased hit rate). In

case of the full Bayesian GxE model, hit rates and false

positives rates were determined by assessing the percentage

of the replications in the 95 % highest posterior density

(HPD) regions of the GxE parameters b1 and c1 included the

value 0. For instance, when AxE is present in the data, and

the 95 % HPD of b1 does not include 0, the hit rate increases

as the AxE is correctly detected. Similarly, if AxE is not in

the data, but the 95 % HPD of b1 does not include 0, this is a

false positive. In case of the application of the univariate

GxE model to the sum scores, hit rates and false positive

rates were determined using the power of the likelihood

ratio test to detect AxE and AxC effects (see Satorra and

Saris 1985; Saris and Satorra 1993; Dolan and van den Berg

2008). Specifically, power to detect AxE was assessed by

determining the power of the likelihood ratio test to reject a

model with only AxC in favor of a model with both AxE

and AxC. Similarly, power to detect AxC was calculated by

determining the power to reject a model with only AxE in

favor of a model with both AxE and AxC. If GxE is truly

present, the power coefficient is an estimate of the hit rate; if

GxE is truely absent, the power coefficient is an estimate of

the false positive rate. For the power analyses in the case of

the sum scores, we used a 0.05 level of significance.

For each full model application, we drew 2,000 samples

from the posterior distribution as burn-in. Next, we drew an

additional 2,000 samples from which we determined the

mean of all parameters in the model. From experiences

with fitting the model to simulated data, we knew that this

number of draws is sufficient to ensure that the chains are

converged to their stationary distributions. However, we

note that this does not imply that in practice this scheme

(4,000 samples; 2,000 burn-in) will ensure reliable sam-

pling results. Therefore, in practical applications, we rec-

ommend that convergence criteria are carefully considered

as we will discuss more fully in the illustration section.

For the full model we used the OpenBUGS code in the

Appendices. For the univariate model applications on the

sum scores, we used the Mx software program (Neale et al.

2006) using the scripts from Molenaar et al. (2012).

Results

Scenario 1: mild scale problems

Parameter recovery

The true parameter values and the mean and standard

deviation of the posterior parameter distributions, averaged

Table 2 Mild scenario: posterior means (standard deviation) of the parameters in the measurement model part of the full model

Items GxE a1 a2 a3 a4 a5 MZ DZ

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

True

values

1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.30 0.30 0.30 0.30 0.30

15 dicho No – – – – – 0.54 0.55 0.55 0.58 0.58 0.22 0.23 0.25 0.27 0.24

– – – – – (0.13) (0.11) (0.08) (0.07) (0.06) (0.13) (0.13) (0.14) (0.11) (0.11)

Yes – – – – – 0.52 0.55 0.57 0.58 0.58 0.25 0.22 0.26 0.30 0.29

– – – – – (0.13) (0.11) (0.09) (0.07) (0.06) (0.16) (0.11) (0.12) (0.12) (0.09)

25 dicho No – – – – – 0.57 0.50 0.56 0.57 0.56 0.23 0.23 0.27 0.24 0.28

– – – – – (0.12) (0.13) (0.10) (0.11) (0.10) (0.14) (0.15) (0.13) (0.13) (0.12)

Yes – – – – – 0.54 0.55 0.55 0.56 0.56 0.21 0.23 0.25 0.25 0.24

– – – – – (0.14) (0.12) (0.11) (0.11) (0.08) (0.13) (0.12) (0.15) (0.12) (0.12)

35 dicho No – – – – – 0.53 0.54 0.55 0.57 0.56 0.20 0.23 0.24 0.26 0.26

– – – – – (0.16) (0.15) (0.11) (0.11) (0.09) (0.14) (0.15) (0.12) (0.14) (0.14)

Yes – – – – – 0.50 0.54 0.56 0.56 0.57 0.24 0.24 0.25 0.26 0.22

– – – – – (0.14) (0.13) (0.10) (0.12) (0.10) (0.16) (0.13) (0.15) (0.15) (0.11)

Likert No 1a 1.00 1.01 1.01 1.00 0.60 0.60 0.60 0.60 0.60 0.29 0.29 0.30 0.30 0.29

– (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04)

Yes 1a 1.02 1.01 1.01 1.01 0.59 0.60 0.60 0.59 0.59 0.29 0.29 0.29 0.29 0.30

– (0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03)

a The discrimination parameter of the first item, a1, is fixed to equal 1
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over the 50 replications within each cell, are depicted in

Table 2 (measurement model) and in Table 3 (biometric

model). We did not tabulate the bic parameters to save

space. However, results indicated that these parameters are

well recovered in all settings.

As can be seen from Table 2, the residual correlations,

rMZ,i
2 and rDZ,i

2 are well recovered in case of the Likert items,

but slightly underestimated in case of dichotomous items. In

addition, in the Likert case, the discrimination parameters, ai,

are recovered well. In Table 3, it can be seen that parameter

recovery in the biometric model is generally acceptable.

Most importantly, GxE parameters b1 and c1 appear to be

recovered well. Specifically, in the absence of AxE and AxC,

the posterior means of b1 and c1 are nearly 0, and in the

presence of AxE and AxC, the posterior means of b1 and c1

are close to their true value 0.25. From the table, it also

appears that ln rA
2 tends to be slightly overestimated while c0

tends to be slightly underestimated. We think this is not a

great problem as it is well established in ACE twin modeling

that it is relatively more difficulty to resolve C and A than A

and E (Martin et al. 1978).

Generally, we conclude that parameter recovery of the

full model is good in the case of Likert items, and

acceptable for the dichotomous items. In the latter case,

residual correlations are somewhat underestimated, but

given the size of the model and the relative little infor-

mation available concerning individual differences (i.e.,

only the 0’s and 1’s of the binary items), we think that

these results are tolerable.

False positive rate and hit rate

Table 4 contains results concerning the hit rates and the

false positive rates. As can be seen, in the case of dichot-

omous items, hit rates in the sum score analyses are close

to the level of significance, 0.05, meaning that the true GxE

effects in the data are rarely detected. This can also be seen

in Table 5, where parameter estimates for the sum score

Table 3 Mild scenario:

posterior means (standard

deviation) averaged over

replications for the parameters

in the biometrical part of the full

model

GxE Items ln rA
2 b0 b1 c0 c1

Yes True values -0.73 -1.39 0.25 -1.39 0.25

15 dichotomous -0.69 (0.20) -1.41 (0.08) 0.25 (0.10) -1.65 (0.59) 0.29 (0.17)

25 dichotomous -0.67 (0.14) -1.40 (0.06) 0.27 (0.08) -1.52 (0.34) 0.27 (0.14)

35 dichotomous -0.68 (0.14) -1.40 (0.05) 0.27 (0.07) -1.56 (0.42) 0.27 (0.16)

15 Likert -0.71 (0.13) -1.41 (0.08) 0.25 (0.07) -1.53 (0.29) 0.29 (0.13)

No True values -0.73 -1.39 0.00 -1.39 0.00

15 dichotomous -0.67 (0.19) -1.40 (0.07) 0.02 (0.11) -1.72 (0.72) -0.01 (0.16)

25 dichotomous -0.66 (0.13) -1.41 (0.06) -0.01 (0.09) -1.60 (0.42) 0.02 (0.12)

35 dichotomous -0.67 (0.13) -1.40 (0.06) -0.01 (0.06) -1.60 (0.45) 0.00 (0.13)

15 Likert -0.66 (0.16) -1.40 (0.06) -0.01 (0.06) -1.98 (1.22) 0.00 (0.11)

Table 4 Mild scenario: hit rate (rate with which AxE or AxC are correctly detected) and false positive rate (rate with which AxE and AxC are

falsely detected) with 95 % confidence intervals

Items Hit rate False positive rate

Sum score Full model Sum score Full model

AxE AxC AxE AxC AxE AxC AxE AxC

15 dicho 0.13

(0.04; 0.22)

0.05

(0.00a; 0.11)

0.70

(0.57; 0.83)

0.44

(0.30; 0.58)

0.77

(0.65; 0.89)

0.13

(0.04; 0.22)

0.12

(0.03; 0.21)

0.04

(0.00; 0.09)

25 dicho 0.08

(0.00; 0.16)

0.05

(0.00a; 0.11)

0.96

(0.91; 1.00a)

0.56

(0.42; 0.70)

0.89

(0.80; 0.98)

0.19

(0.08; 0.30)

0.08

(0.00; 0.16)

0.02

(0.00; 0.06)

35 dicho 0.05

(9.01; 0.11)

0.05

(0.00a; 0.11)

1.00

–

0.60

(0.46; 0.74)

0.90

(0.82; 0.98)

0.23

(0.11; 0.35)

0.02

(0.00; 0.06)

0.04

(0.00; 0.09)

15 likert 1.00

–

0.99

(0.96; 1.02)

0.94

(0.87; 1.00a)

0.70

(0.57; 0.83)

1.00

–

0.88

(0.79; 0.97)

0.04

(0.00; 0.09)

0.02

(0.00; 0.06)

a These bounds are fixed to 0 or 1, because the actual bound exceeded the theoretical [0,1] interval. All other occurrences of lower bounds equal

to 0 are due to rounding. Note that in the case of a 1.00 false positive or hit rate, the confidence interval is not calculated as the standard error

equals 0. In the case of the sum score analysis, hit rates and false positive rates are based on the power of the likelihood ratio test to detect the

corresponding effect
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analyses are given. It can be seen that in case of dichoto-

mous items, when the GxE effect is present, b1 and c1

estimates are close to 0. Thus, the skewness and change in

twin correlations due to the GxE effect in the data are

masked by the poor scaling of the sum score. For the full

model, hit rates of the AxE effect are acceptable in the case

of 15 dichotomous items (i.e., .70) and good in the other

cases (at least .94). Hit rates of the AxC effect are poor for

all the cases with dichotomous items (0.60 at most). This is

in line with the results by Molenaar et al. (2012) who

showed that power to detect AxC is generally low. How-

ever, in present approach, for the Likert items, hit rates are

acceptable (0.70), which is much better than in the uni-

variate results of the Molenaar et al. paper. This is because

here we use at least 30 Likert variables (15 for each twin),

while in the univariate model of Molenaar et al. only 2

continuous variables are used.

The false positive rates in Table 4 should ideally all be

close to the 0.05 level (reflecting either the level of sig-

nificance or the probability of the HPD region). The results

in Table 4 show that this is not the case for tests of AxE

based on the sum score. False positive rates ranged

between .77 and 1.00 (see also Eaves 2006). The mean

parameter estimates of b1 and c1 (see Table 5)—in the

absence of GxE—clearly depart from 0. That is, both are

smaller than 0 in the case of dichotomous items, and larger

than 0 for the Likert items. With respect to AxC, the false

positive rate of the sum score is not too bad in the case of

dichotomous items (.23 at most). In addition, in the case of

the Likert items the test of AxC is also associated with a

large false positive rate (.88). In case of the full model, all

false positive rates are reasonably close to the 0.05 rate.

Scenario 2: severe scale problems

Parameter recovery

The true parameter values and the mean and standard

deviation of the posterior parameter distributions, averaged

over the 50 replications within each cell, are shown in

Table 6 (measurement model) and in Table 7 (biometric

model) for the severe scenario. Again, we did not tabulate

the bic parameters, but results indicated that these param-

eters are well recovered in all settings.

The pattern of results concerning the measurement

model parameter recovery in Table 6 is generally the same

as in the mild scenario discussed above. That is, the

residual correlations, rMZ,i
2 and rDZ,i

2 are well recovered in

case of the Likert items, but slightly underestimated in case

of dichotomous items. In the Likert case, where we intro-

duced discrimination parameters, ai, these parameters are

recovered well.

Results concerning the biometric model parameters in

Table 7 indicate that in the severe scenario, variance of

A is overestimated and the variance of C is underesti-

mated for both dichotomous and Likert items. This was

also evident in the mild scenario. However in the

present scenario, the bias is greater. Parameter recovery

of the AxE parameter, b1, was good in both the GxE

condition (true value 0.25) and the no-GxE condition

(true value 0). On the contrary, AxC parameter c1 is

somewhat overestimated both when GxE is present and

when GxE is not present in case of dichotomous items.

As judged by the standard deviations of the mean

parameter estimates of c1, parameter variability is larger

as compared to the mild scenario in Table 3. Judged by

the large standard deviation, this overestimation is still

within a reasonable range. This is also evident in the

false positive rate, as discussed below. In addition, the

overestimation decreases when using more dichotomous

items. In case of Likert items, parameter c1 is recovered

well.

Taken together, parameter recovery is not as accurate

as in the mild scenario. Most notably, the A and C

components are somewhat less well resolved. In addition,

c1 is somewhat overestimated in the case of dichotomous

items. However, the AxE parameter b1 is still well

recovered.

Table 5 Mild scenario: mean

marginal maximum likelihood

parameter estimates (standard

deviation) of the parameters in

the univariate sum score

analysis

GxE Items ln rA
2 b0 b1 c0 c1

Yes True values -0.73 -1.39 0.25 -1.39 0.25

15 dichotomous -0.71 (0.09) -1.11 (0.06) -0.08 (0.06) -1.82 (0.59) -0.02 (0.09)

25 dichotomous -0.73 (0.09) -1.20 (0.05) -0.07 (0.06) -1.57 (0.28) -0.03 (0.07)

35 dichotomous -0.71 (0.07) -1.24 (0.05) -0.05 (0.05) -1.53 (0.25) -0.05 (0.08)

15 Likert -0.69 (0.04) -1.40 (0.06) 0.48 (0.04) -1.58 (0.13) 0.39 (0.04)

No True values -0.73 -1.39 0.00 -1.39 0.00

15 dichotomous -0.73 (0.07) -1.13 (0.04) -0.19 (0.05) -1.71 (0.25) -0.14 (0.09)

25 dichotomous -0.71 (0.09) -1.22 (0.06) -0.22 (0.05) -1.63 (0.30) -0.16 (0.07)

35 dichotomous -0.71 (0.06) -1.27 (0.05) -0.24 (0.04) -1.55 (0.17) -0.16 (0.08)

15 Likert -0.69 (0.06) -1.35 (0.05) 0.35 (0.04) -1.58 (0.17) 0.29 (0.04)
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False positive rate and hit rate

Table 8 contains results concerning the hit rates and the

false positive rate. In the table, only results for the full

model are presented as it was computationally not possible

to conduct univariate analyses on the sum scores due to the

severe floor and ceiling effects in the data (in the majority

of the cases, the estimation did not converge).

As can be seen in Table 8, for dichotomous items, hit

rates are moderate with rates roughly around 0.40. False

positive rates are acceptable for AxE with rates close to the

0.05 rate. For AxC, the false positive rates tend to be

inflated in case of 15 and 25 dichotmous items, with rates

of 0.20. However, this is only a minor deviance of the 0.05

level as judged by the confidence interval. In case Likert

scale items, the hit rate is good for AxE (0.84) and

moderate for AxC (0.64). In addition, false positives are

close to 0.05.

Illustration

We analyzed responses of 308 MZ twin pairs and 447 DZ

twin pairs (mean age 45.50; min. 25; max. 74) to an affect

questionnaire (Mroczek and Kolarz 1998), which was

administered in the National Survey of Midlife Develop-

ment in the United States (MIDUS) in 1995–1996 under

the auspices of the Inter-university Consortium for Political

and Social Research (ICPSR; Brim et al. 2010).3 The

Table 6 Severe scenario: posterior means (standard deviation) of the parameters in the measurement model part of the full model

Items GxE a1 a2 a3 a4 a5 MZ DZ

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

True values 1.00 1.00 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.30 0.30 0.30 0.30 0.30

15 dicho No – – – – – 0.53 0.55 0.52 0.55 0.55 0.23 0.23 0.24 0.25 0.25

– – – – – (0.13) (0.12) (0.14) (0.13) (0.12) (0.13) (0.14) (0.14) (0.18) (0.14)

Yes – – – – – 0.56 0.54 0.52 0.53 0.55 0.21 0.23 0.23 0.22 0.28

– – – – – (0.13) (0.12) (0.13) (0.12) (0.08) (0.12) (0.13) (0.15) (0.13) (0.13)

25 dicho No – – – – – 0.52 0.55 0.52 0.55 0.57 0.23 0.21 0.22 0.23 0.20

– – – – – (0.14) (0.12) (0.14) (0.11) (0.11) (0.14) (0.12) (0.15) (0.14) (0.12)

Yes – – – – – 0.54 0.52 0.53 0.54 0.53 0.28 0.20 0.23 0.26 0.24

– – – – – (0.14) (0.15) (0.15) (0.12) (0.15) (0.18) (0.14) (0.13) (0.12) (0.13)

35 dicho No – – – – – 0.55 0.55 0.53 0.53 0.58 0.21 0.22 0.27 0.24 0.25

– – – – – (0.11) (0.14) (0.12) (0.13) (0.12) (0.12) (0.13) (0.15) (0.12) (0.14)

Yes – – – – – 0.58 0.55 0.57 0.53 0.56 0.24 0.20 0.22 0.24 0.24

– – – – – (0.12) (0.13) (0.12) (0.15) (0.13) (0.14) (0.14) (0.11) (0.14) (0.14)

Likert No 1a 1.01 1.01 1.01 1.01 0.60 0.60 0.59 0.59 0.59 0.30 0.29 0.30 0.29 0.28

– (0.04) (0.04) (0.05) (0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) (0.05)

Yes 1a 1.01 1.01 1.01 1.00 0.60 0.60 0.60 0.59 0.59 0.29 0.29 0.28 0.28 0.30

– (0.04) (0.04) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.05) (0.04) (0.05)

Table 7 Severe scenario:

posterior means (standard

deviation) averaged over

replications for the parameters

in the biometrical part of the full

model

GxE Items ln rA
2 b0 b1 c0 c1

Yes True values -0.73 -1.39 0.25 -1.39 0.25

15 dichotomous -0.63 (0.24) -1.39 (0.14) 0.31 (0.15) -1.73 (0.66) 0.48 (0.32)

25 dichotomous -0.62 (0.21) -1.39 (0.12) 0.27 (0.16) -1.73 (0.65) 0.43 (0.27)

35 dichotomous -0.68 (0.18) -1.41 (0.11) 0.24 (0.14) -1.55 (0.45) 0.42 (0.27)

15 Likert -0.67 (0.12) -1.41 (0.10) 0.24 (0.08) -1.54 (0.41) 0.30 (0.13)

No True values -0.73 -1.39 0.00 -1.39 0.00

15 dichotomous -0.56 (0.30) -1.38 (0.18) 0.05 (0.21) -1.79 (0.79) 0.47 (0.53)

25 dichotomous -0.61 (0.30) -1.41 (0.14) 0.00 (0.15) -1.77 (0.63) 0.27 (0.49)

35 dichotomous -0.63 (0.22) -1.41 (0.12) 0.01 (0.13) -1.76 (0.66) 0.10 (0.31)

15 Likert -0.65 (0.17) -1.42 (0.09) 0.01 (0.09) -1.77 (0.96) 0.00 (0.19)

3 The opinions expressed in this article are those of the authors and

do not necessarily reflect the views of the ICPSR.
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questionnaire consists of 12 items. Each item describes a

particular affect. Respondents had to indicate on a 5 point

Likert scale to what degree they had experienced that affect

in the last 30 days. Items 1–6 concerned positive affect and

items 7–12 concerned negative affect.

Convergence diagnostics

Similar to the simulation study, we used 4,000 draws from

the posterior distribution omitting the first 2,000 as burn-in.

To ensure that this scheme is sufficient for convergence, we

considered (1) trace plots of the draws from the posterior

distribution; (2) autocorrelations between the parameters

across subsequent subsets (‘lags’) of draws; and (3) the

Gelman and Rubin statistic (Gelman and Rubin (1992)

discussed above. All of these diagnostics are available in

the R package ‘coda’ (Plummer et al. 2005). As we have

many parameters, we focus on the two GxE parameters, b1

and c1, that are of main interest to present application. As

the Gelman and Rubin statistic needs multiple sequences of

draws from the posterior, we used three such chains using

different starting values.

First, see Fig. 3 for the trace plots of the samples for one

of the chains. As can be seen, these seem to vary randomly

around a stable average for both parameters. In case of

non-convergence, the samples would have been drifting

away from the running average. Next, the autocorrelations

are plotted for the GxE parameters in Fig. 4 for 100 lags.

As can be seen, for increasing lags, these correlations

approach zero for both parameters. Finally, the Gelman and

Rubin diagnostic equaled 1.02 and 1.07 for b1 and c1

respectively which is judged to be sufficiently close to 1

(commonly, thresholds of 1.1 or 1.2 are used). From the

above, we conclude that our scheme (4,000 samples, 2,000

burn-in) is sufficient for present purposes. Below, we

present results from a new sequence of samples from the

posterior using this scheme.

Table 8 Severe scenario: hit rate (rate with which AxE or AxC are

correctly detected) and false positive rate (rate with which AxE and

AxC are spuriously detected) with 95 % confidence bounds for the

full model

Items Hit rate False positive

AxE AxC AxE AxC

15 dichotomous 0.42

(0.28; 0.56)

0.34

(0.21; 0.47)

0.06

(0.00a; 0.13)

0.20

(0.09; 0.31)

25 dichotomous 0.40

(0.26; 0.54)

0.28

(0.16; 0.40)

0.10

(0.02; 0.18)

0.20

(0.09; 0.31)

35 dichotomous 0.38

(0.25; 0.51)

0.46

(0.32; 0.60)

0.02

(0.00a; 0.06)

0.12

(0.03; 0.21)

15 likert 0.84

(0.74; 0.94)

0.64

(0.51; 0.77)

0.06

(0.00a; 0.13)

0.06

(0.00a; 0.13)

a For these cases the lower bound of the confidence interval is fixed to 0 as

the actual lower bound is smaller than 0
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Fig. 3 Trace plots of the draws from the posterior distribution for b1 and c1
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Results

The means, standard deviations, and 95 % HPD regions

for the posterior distributions of the parameters ai and ri
2

of the measurement model are depicted in Table 9. To

save space, we did not tabulate the bic parameter (as these

are 48 parameters), but to illustrate: for item 1 the pos-

terior means (sd) were -3.83 (0.21), -2.96 (0.13), -1.88

(0.08), and -0.75 (0.06) for b11 to b14, respectively. As

can be seen in Table 9, in the measurement model, DZ

residual correlations, ri
2 are small. For all but item 6, the

HPD contains 0 (note that 0 is also the lower boundary of

the parameter, the lower bound of the HPD can thus not

be smaller than 0). In the MZ twins, the HPD of ri
2 does

not include 0 for 7 of the 12 items. As can also be seen

from the table, the posterior mean of ai is negative for

items 7–12, which is to be expected as these items con-

cern negative affect.

In Table 10, the mean, standard deviation, and 95 %

HPD region for the posterior parameter values of the bio-

metric model are depicted. From these estimates, marginal

heritability was calculated to be 0.08 [using Eq. 3, but

replacing rA
2 with exp(x)], standardized marginal vari-

ances of C and E were respectively 0.28 and 0.63. As can

be seen, both AxE and AxC interactions are detected in the

data, as indicated by the HPD of b1 and c1. Posterior means

of both b1 and c1 are negative, indicating that the variance

of E and C is decreasing for increasing levels of A. See

Fig. 5 for a graphical representation of how rE
2|A and rE

2|A

vary across the additive genetic factor A.
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Fig. 4 Autocorrelations for b1

and c1 across 100 lags

Table 9 Means, standard deviations, and 95 % HPD regions of the posterior parameters in the measurement model

i Discrimination, ai DZ residual cor, ri
2 MZ residual cor, ri

2

Posterior 95 % HPD Posterior 95 % HPD Posterior 95 % HPD

Mean SD Lower Upper Mean SD Lower Upper Mean SD Lower Upper

1 1 – – – 0.09 0.07 0.00 0.24 0.11 0.09 0.00 0.31

2 0.82 0.06 0.70 0.94 0.10 0.06 0.00 0.23 0.39 0.07 0.23 0.51

3 0.78 0.06 0.67 0.91 0.11 0.06 0.00 0.22 0.19 0.09 0.01 0.37

4 1.47 0.10 1.27 1.67 0.21 0.13 0.00 0.49 0.25 0.15 0.01 0.55

5 0.95 0.08 0.82 1.12 0.05 0.05 0.00 0.16 0.10 0.08 0.00 0.27

6 1.17 0.09 1.00 1.36 0.22 0.11 0.01 0.43 0.36 0.15 0.03 0.62

7 -1.64 0.13 -1.94 -1.42 0.07 0.06 0.00 0.22 0.32 0.10 0.13 0.50

8 -2.03 0.18 -2.43 -1.73 0.06 0.06 0.00 0.23 0.08 0.08 0.00 0.28

9 -1.37 0.11 -1.59 -1.19 0.15 0.08 0.00 0.29 0.32 0.08 0.16 0.46

10 -1.44 0.11 -1.67 -1.26 0.02 0.02 0.00 0.08 0.28 0.09 0.11 0.45

11 -1.49 0.12 -1.74 -1.30 0.02 0.02 0.00 0.08 0.09 0.07 0.00 0.26

12 -1.61 0.12 -1.86 -1.42 0.08 0.07 0.00 0.23 0.10 0.08 0.00 0.27

a1 is fixed to equal 1 for identification reasons
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Discussion

We illustrated the well-know finding (Eaves 2006; Eaves

et al. 1977; Purcell 2002) that spurious GxE can arise in

sum score analyses due to poor scaling. As a solution, we

proposed a model which takes the measurement properties

of the individual items into account. Based on the results of

simulation study, we consider the method to be viable.

Using this method we showed that poor scaling lowers the

power to detect GxE, but does not affect the false positive

rate, except for a small effect concerning AxC. That is,

present approach does not result in spurious GxE. In that

sense, we illustrated that—by specifying an appropriate

measurement model for the data—the problem of poor

scaling in GxE research can be overcome. However, the

price that one has to pay is that, as scaling problems

increase, larger sample sizes and more items are necessary

to ensure an acceptable power to detect GxE, especially in

the case of dichotomous items.

From the simulation study, we draw four main conclu-

sions: First, AxC is most sensitive to scaling problems.

That is, with increasing scaling problems, the hit rates of

AxC declines substantially, and false positives rate increase

slightly. AxE is only affected in terms of a decreased hit

rate, i.e., the effect is adequately detected. Second, for

greater scaling problems, the A and C factor are more

difficult to resolve, with the A factor being somewhat

overestimated and the C factor being somewhat underes-

timated. Third, Likert scale items are more robust to

scaling problems than dichotomous items, with moderate to

good hit rates, and no excessive false positives. Fourth, in

case of severe scale problems in the dichotomous case,

increasing the number of items facilitates the accurate

detection of GxE.

The severity of the problem of poor scaling of the sum

score depends upon the item characteristics of the indi-

vidual items. We showed that even a slight increase in the

number of disproportionally easy items can result in spu-

rious GxE, or mask genuine GxE. Thus, when focusing

solely on sum scores without consideration of the item

characteristics, it is not clear whether skewness is due to

GxE or due to poor scaling. Thus, one should be cautious in

applying the univariate GxE methodology (Molenaar et al.

2012; van der Sluis et al. 2006; Purcell 2002) to sum

scores. If one can ensure that a given sum score is well

scaled, results of the univariate method could in principle

be interpreted in terms of genuine GxE effects. To inves-

tigate scaling of the sum score, an item-level analysis can

serve to check the item properties. If the scaling is con-

sidered poor, the model proposed in this paper can be used

to take the item characteristics explicitly into account.

However, we stress that proper scaling of the measurement

is still an important goal to pursue, as the results of present

paper clearly illustrate that—even with an appropriate

measurement model—poor scaling of the measurement can

severely affect power to detect GxE.

We think that another interesting result from present

paper is that it offers a solution to the problem of the

univariate approach where power to detect AxC was found

to be low (Molenaar et al. 2012). As here we used the same

parameters as in the Molenaar et al. study, we are able to

compare results. Due to the use of multiple items in present

approach, power to detect AxC was appreciably larger, and

even acceptable in case of 15 Likert items and mild scaling

problems.4 This suggests that researchers interested in

detection of AxC should analyze item level data to ensure

acceptable power.

In this paper we did not consider the possibility of

curvilinear interactions. As discussed in van der Sluis et al.

(2012), additional interaction parameters can be included

(in addition to b1 and c1) to make the variance of C and E a

Table 10 Means, standard deviations, and 95 % HPD regions of the

posterior parameters in the biometric model

Par Posterior 95 % HPD

Mean SD Lower Upper

x -2.53 0.29 -3.04 -1.92

b0 -0.89 0.16 -1.19 -0.60

b1 -0.88 0.12 -1.11 -0.66

c0 -1.77 0.35 -2.62 -1.26

c1 -0.97 0.35 -1.75 -0.41

Fig. 5 GxE in the affect data: environmental variances E and C as a

function of additive genetic effects, A

4 Because we used a Bayesian model fit approach, we omitted the

term ‘power’ in discussion of the results and spoke of ‘hit rate’

instead. However, to be able to compare results of the frequentist

results we take the ‘hit rate’ as found in present study as an indication

for what the ‘power’ would have been when we would have

implemented present model in a frequentist framework.

226 Behav Genet (2014) 44:212–231

123



polynomial function of A. Here we did not consider this an

option as the additional multinomial parameters are likely

to require larger sample sizes than the ones considered

here. However, when large datasets are available, the script

in the Appendix can be easily extended to incorporate

quadratic terms.

We think problems identified with the sum score pertain

to both tests of genotype by unmeasured environment as

discussed in this paper (see Jinks and Fulker 1970), and to

the moderation approach (Purcell 2002). See Tucker-Drob

et al. (2009) for an illustration of how the measured

moderation approach could be confounded by measure-

ment problems. Fortunately, the moderation approach has

been extended to accommodate ordinal and binary data

(see Medland et al. 2009). However, this extension con-

cerns a univariate model, i.e., one item at the time. In case

of multiple items, moderation of the parameters in a bio-

metric model with an appropriate measurement model for

the items can be considered following the procedure as

outlined in this paper.

Some problems associated with the detection of GxE

remain in present approach. That is, as GxE implies non-

normality of the phenotypic scores, other sources of non-

normality could produce artificial GxE (see Eaves 2006;

van der Sluis et al. 2012). For instance, non-normality on

the level of the latent variable can arise due to ability

differentiation, the phenomenon that highly intelligent

subjects display smaller individual differences than do

less intelligent ones (Spearman 1927), which may cause

spurious GxE as is illustrated in Tucker-Drob et al.

(2009). In addition, non-normality in the phenotypic

scores could arise due to unrepresentative sampling. For

instance, if high intelligent subjects are overrepresented

in a given sample, it is likely that spurious GxE results

arise because of skewness in the latent variable due to

sampling bias. However, as this problem is not explicitly

investigated in present paper, it remains a topic for fur-

ther investigation.

Finally, as models get more complex, the sample sizes

needed to obtain reliable results also increase. Whereas the

univariate GxE model may require as few as 50 MZ and 50

DZ twin pairs (see Molenaar et al. 2013), the present

approach requires far larger samples.

Another drawback of present approach is that the method is

computationally intensive. Particularly in case of Likert items,

application of the model can take several hours to complete.

For samples larger than studied here, this can be problematic.

In a Molenaar et al. (2013), we have therefore used a two-stage

procedure. In this procedure, an appropriate factor model is

fitted to the data of the twin 1 and twin 2 members separately

and factor scores are calculated. These factor scores are then

submitted to the univariate approach by Molenaar et al.

(2012). This method appeared to work well despite the data

being highly skewed. Specifically, we found the same pattern

of results using the model as outlined in present paper, and the

two-stage procedure described above. However, as in the two-

stage procedure the standard errors of the factor score esti-

mates are neglected; it is unclear how this affects the results in

a new application. We therefore strongly recommend to val-

idate the results of the two-stage procedure in (a subset of) the

data using the full model as described in present paper.
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Appendix A: OpenBUGS code to fit the model in case

of dichotomous item scores
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Appendix B: OpenBUGS code to fit the model in case

of Likert item scores
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