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Seventy-five genetic loci influencing the
human red blood cell
A list of authors and their affiliations appears at the end of the paper

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired
physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide
association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75
independent genetic loci associated with one or more red blood cell phenotypes at P , 1028, which together explain 4–9%
of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121
candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially
in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster.
Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our
findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell
formation and function.

Haemoglobin, an iron-containing metalloprotein found in the red
blood cells of all vertebrates, provides the primary mechanism for
oxygen transport in the circulation. Haemoglobin levels and related
red blood cell phenotypes are tightly regulated, including an important
genetic component1–5. To refine our understanding of the genetic
factors influencing red blood cell formation and function, we carried
out a meta-analysis of genome-wide association studies (GWAS) and
staged follow-up genotyping of six red blood cell phenotypes: haemo-
globin, mean cell haemoglobin (MCH), mean cell haemoglobin con-
centration (MCHC), mean cell volume (MCV), packed cell volume
(PCV) and red blood cell count (RBC).

Our study design is summarized in Supplementary Fig. 1. In brief,
we combined genome-wide association data from 71,861 individuals
of European or South Asian ancestry, with up to 2,644,161 autosomal
single-nucleotide polymorphisms (SNPs) and 67,645 X-chromosome
SNPs. Characteristics of participants, genotyping arrays and imputa-
tion are summarized in Supplementary Tables 1–3. Meta-analysis was
carried out among Europeans and South Asians separately, followed
by a final combined analysis of results from the two populations. We
performed replication testing of 22 loci showing suggestive asso-
ciation (1028 , P , 1027) in a further 63,506 individuals using a
combination of in silico data and direct genotyping (Supplementary
Tables 1, 2 and Supplementary Note). Genome-wide significance was
set at P , 1 3 1028, allowing a Bonferroni correction both for the
,106 independent SNPs tested6, as well as for the six inter-related
red blood cell phenotypes (Supplementary Note)7.

Seventy-five independent genetic loci reached genome-wide sig-
nificance for association with one or more red blood cell phenotypes
(Table 1 and Supplementary Fig. 2), 43 of which are novel. For
descriptive and downstream purposes, we identified a single ‘sentinel’
SNP for each of the 75 loci, defined as the SNP with the lowest P value
against any phenotype at each locus; regional plots for the 75 loci are
shown in Supplementary Fig. 3. Full lists of the SNPs associated with
phenotype at P , 1026 and of the sentinel SNPs are provided
(Supplementary Tables 4 and 5). Of the 38 loci previously reported
to be associated with red blood cell traits1–5, we replicate 32 loci
(P , 1028) and find three to be nominally associated (P , 0.05;
Supplementary Table 6). The remaining three loci, initially reported
in an East Asian GWAS4, were not associated with red blood cell

phenotypes in our sample (Supplementary Fig. 4 and Supplemen-
tary Note).

Among the 75 genomic loci identified, we found that 31 were
associated with one red blood cell phenotype, and 44 with two or
more phenotypes, at P , 1028. The total number of locus–phenotype
associations identified at P , 1028 was 156, of which 92 are novel
(Supplementary Fig. 5 and Supplementary Table 7). In addition, at 8
of the 75 loci we found evidence for multiple SNPs independently
associated with red blood cell phenotype at P , 1028 in conditional
analyses8, suggesting the presence of possible secondary genetic
mechanisms at these loci (Supplementary Table 8).

Identification of candidate genes
There are .3,000 protein-coding genes within 1 megabase (Mb) of
the sentinel SNPs from the 75 genetic loci associated with red blood
cell phenotypes. We prioritized genes as probable candidates under-
lying the observed genetic associations using the following criteria: (1)
gene nearest to the sentinel SNP, and any other gene within 10 kilo-
bases (kb) (97 genes; Table 1); (2) gene containing a non-synonymous
SNP in high linkage disequilibrium (r2 . 0.8) with the sentinel SNP
(24 genes; Supplementary Table 9); (3) gene with expression quanti-
tative trait loci (eQTL) associated with sentinel SNP in peripheral
blood lymphocytes (27 genes; Supplementary Table 10); and (4) gene
relationships among implicated loci (GRAIL) literature analysis9

(9 genes; Supplementary Table 11). This strategy identified 121 can-
didate genes (Table 1 and Supplementary Fig. 6).

Pathway analysis revealed that the list of candidate genes is strongly
enriched for genes known to be involved in haematological develop-
ment and function (P 5 10263), as well as in cellular proliferation,
development and death, and immunological processes (Supplemen-
tary Tables 12 and 13). Current knowledge of gene function for all 121
candidates is summarized in Supplementary Table 14. Of note, some
of the genes within these regions are known to underlie the Mendelian
red blood cell disorders of elliptocytosis, ovalocytosis and sphero-
cytosis (ANK1, SLC4A1, SPTA1)10, haemolytic anaemia (HK1)11 and
iron deficiency or overload (TMPRSS6, HFE, TFR2)12. Furthermore,
somatic mutations of IKZF1, KIT, SH2B3, SH3GL1 and TAL1 (also
known as SCL) underlie several haematologic proliferative disorders
(Supplementary Table 14).
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Table 1 | Genomic loci associated with red blood cell phenotypes
Region Sentinel

SNP
Position
(B36)

Alleles
(EA/OA)

EAF Phenotype Effect (SE) P Candidate genes

1p36 rs1175550 3,681,388 G/A 0.22 MCHC 0.008 (0.013) 8.6 3 10215 CCDC27n, LRRC48n

1p34{ rs3916164 39,842,526 G/A 0.71 MCH 0.008 (0.004) 3.1 3 10210 HEYLn

1p32 rs741959 47,448,820 G/A 0.57 MCV 0.157 (0.025) 6.0 3 10210 TAL1n

1q23{ rs857684 156,842,353 C/T 0.74 MCHC 20.006 (0.011) 3.5 3 10216 OR6Y1c, OR10Z1nc, SPTA1ncg

1q32{ rs7529925 197,273,831 C/T 0.28 RBC 0.014 (0.002) 8.3 3 1029 MIR181A1n

1q32 rs7551442 201,921,744 A/G 0.09 MCHC 20.023 (0.017) 9.7 3 10212 ATP2B4ng

1q32 rs9660992 203,516,073 G/A 0.42 MCH 0.007 (0.004) 7.1 3 10210 TMCC2n

1q44{ rs3811444 246,106,074 T/C 0.35 RBC 0.018 (0.003) 4.5 3 10210 TRIM58nc

2p21{ rs4953318 46,208,555 A/C 0.62 PCV 0.152 (0.018) 3.1 3 10219 PRKCEn

2p16{ rs243070 60,473,790 T/A 0.72 MCV 20.181 (0.027) 4.4 3 10213 BCL11An

2q13 rs10207392 111,566,130 G/A 0.44 MCV 20.132 (0.025) 4.4 3 10211* ACOXLn

3p24{ rs9310736 24,325,815 A/G 0.35 MCV 20.210 (0.026) 6.1 3 10216 THRBn

3q22 rs6776003 142,749,183 A/G 0.44 MCV 20.138 (0.026) 3.7 3 10211* RASA2n

3q23 rs13061823 143,603,476 T/C 0.56 MCV 20.168 (0.025) 4.7 3 10213 XRN1n

3q29{ rs11717368 197,318,754 C/G 0.52 MCH 0.008 (0.004) 6.6 3 10219 TFRCng

4q11{ rs218238 55,089,781 A/T 0.78 RBC 0.033 (0.003) 2.8 3 10239 KITn

4q27 rs13152701 122,970,511 A/G 0.37 MCV 0.150 (0.026) 9.0 3 10210 BBS7n, CCNA2ne

6p23 rs6914805 16,389,166 C/T 0.75 MCH 0.012 (0.004) 1.2 3 10219 GMPRne

6p21{ rs1408272 25,950,930 G/T 0.07 MCH 0.033 (0.009) 4.8 3 10267 HFEcg, SLC17A3n

6p22 rs13219787 27,969,649 A/G 0.09 MCH 0.023 (0.007) 5.9 3 10217 HIST1H2AMn, HIST1H2BOn, HIST1H3Jn

6p22 rs2097775 30,462,282 A/T 0.15 HB 0.055 (0.008) 1.3 3 10210 TRIM39-RPP21n

6p21 rs9272219 32,710,247 G/T 0.72 RBC 0.015 (0.002) 4.3 3 10210 HLA-DQA1nce, HLA-DQA2e

6p21{ rs9349204 42,022,356 G/A 0.27 MCV 20.367 (0.028) 2.4 3 10240 CCND3n

6p12 rs9369427 43,919,408 A/C 0.68 HB 0.042 (0.006) 5.6 3 10212 VEGFAn

6q21{ rs1008084 109,733,658 G/A 0.56 MCH 20.010 (0.003) 6.4 3 10226 CCDC162Pn

6q23{ rs9389269 135,468,852 T/C 0.72 MCV 20.600 (0.028) 2.6 3 10219 HBS1Ln

6q24{ rs590856 139,886,122 G/A 0.43 MCV 0.313 (0.026) 5.0 3 10236 CITED2n

6q26 rs736661 164,402,826 A/G 0.62 MCH 0.007 (0.004) 1.6 3 10211 QKIn

7p13{ rs12718598 50,395,939 T/C 0.51 MCV 20.204 (0.030) 1.6 3 10213 IKZF1n

7q22{ rs2075672 100,078,232 A/G 0.39 RBC 0.022 (0.003) 1.9 3 10220 ACTL6Bn, TFR2ng

7q36{ rs10480300 151,036,938 C/T 0.72 HB 0.052 (0.007) 7.8 3 10215 PRKAG2ng

8p11 rs4737009 41,749,562 G/A 0.74 MCHC 20.014 (0.013) 4.9 3 10211 ANK1ng

8p11 rs6987853 42,576,607 C/T 0.62 MCHC 20.002 (0.010) 6.1 3 10211 C8orf40ne

9p24{ rs2236496 4,834,265 C/T 0.22 MCV 20.279 (0.031) 1.4 3 10219 RCL1n

9q34{ rs579459 135,143,989 T/C 0.8 RBC 0.021 (0.003) 9.3 3 10218 ABOn

10q11{ rs901683 45,286,428 A/G 0.08 MCV 0.364 (0.050) 1.5 3 10216 MARCH8nce

10q22{ rs10159477 70,769,894 A/G 0.16 HB 0.087 (0.010) 4.4 3 10220 HK1ng

10q24 rs11190134 101,272,190 G/A 0.6 MCH 20.011 (0.004) 1.3 3 10210* NKX2-3n

11p15 rs11042125 8,894,625 A/T 0.6 HB 0.032 (0.006) 1.5 3 1029 AKIP1ne, C11orf16ne, NRIP3e, ST5n

11p15 rs7936461 9,997,462 C/T 0.75 PCV 0.121 (0.021) 1.0 3 1029 SBF2n

11q13 rs2302264 66,964,002 G/A 0.58 MCV 0.140 (0.025) 1.3 3 10210 CORO1Bne, PTPRCAPne, RPS6KB2nce

11q13 rs7125949 72,686,732 A/G 0.11 HB 0.053 (0.010) 2.1 3 1029 ARHGEF17ce, P2RY6n

12p13 rs7312105 2,393,616 G/A 0.36 PCV 0.104 (0.019) 3.2 3 1029* CACNA1Cn

12p13{ rs10849023 4,202,739 C/T 0.79 MCH 20.008 (0.005) 7.5 3 10212 CCND2ng

12q22 rs11104870 87,353,425 C/T 0.3 RBC 0.013 (0.002) 6.2 3 10211 * KITLGn

12q24{ rs3184504 110,368,991 T/C 0.48 HB 0.051 (0.006) 4.3 3 10219 ATXN2n, SH2B3nc

12q24 rs3829290 119,610,821 C/T 0.44 MCV 20.153 (0.026) 2.1 3 1029 ACADSc, MLECn

14q23{ rs7155454 64,571,992 A/G 0.51 MCH 0.002 (0.004) 1.8 3 10212 FNTBn, MAXn

14q24 rs11627546 69,435,677 C/A 0.84 MCV 0.162 (0.032) 1.1 3 1029* SMOC1n

14q32{ rs17616316 102,892,515 G/C 0.07 MCH 0.014 (0.009) 8.2 3 10211* EIF5n

15q21{ rs1532085 56,470,658 G/A 0.59 HB 0.034 (0.006) 6.7 3 10211* LIPCn

15q22{ rs2572207 63,857,747 C/T 0.74 MCV 0.153 (0.029) 3.4 3 1029 DENND4An, PTPLAD1e

15q24 rs8028632 73,108,315 T/C 0.8 MCV 0.188 (0.032) 6.9 3 10210 PPCDCn, SCAMP5n

15q24 rs11072566 74,081,026 A/G 0.48 HB 0.028 (0.006) 3.0 3 10210* NRG4n

15q25 rs2867932 76,378,092 G/A 0.61 MCHC 20.021 (0.010) 3.3 3 1029 DNAJA4e, WDR61n

16p11{ rs11248850 103,598 G/A 0.5 MCH 0.007 (0.004) 6.3 3 10223 NPRL3n

16q22 rs2271294 66,459,827 T/A 0.15 RBC 0.017 (0.003) 1.1 3 1029 CTRLc, DUS2Le, EDC4n, NUTF2n, PSMB10c

16q24{ rs10445033 87,367,963 G/A 0.37 MCHC 0.020 (0.012) 1.5 3 10222 PIEZO1n

17p11 rs888424 19,926,019 A/G 0.43 MCH 0.006 (0.004) 5.4 3 10220 SPECC1n

17q11 rs2070265 24,099,550 T/C 0.2 MCH 0.013 (0.004) 5.1 3 10214 C17orf63n, ERAL1e, NEK8n, TRAF4ne

17q12 rs8182252 34,981,476 C/T 0.18 RBC 0.016 (0.003) 5.9 3 1029 CDK12e, NEUROD2n

17q21 rs2269906 39,649,863 C/A 0.36 MCHC 0.027 (0.010) 2.0 3 10211 SLC4A1g, UBTFn

17q21 rs12150672 41,182,408 A/G 0.23 RBC 0.017 (0.003) 4.7 3 10212 ARHGAP27e, ARL17Be, C17orf69ce,
CRHR1nc, SPPL2Cc, KANSL1c, MAPTc, STHc

17q25 rs4969184 73,905,008 G/A 0.53 HB 0.031 (0.006) 7.0 3 1029 PGS1ne

18q21 rs4890633 42,087,276 G/A 0.27 MCH 0.005 (0.004) 1.9 3 10223 C18orf25ne

19p13 rs2159213 2,087,102 C/T 0.5 HB 0.032 (0.006) 1.9 3 1029 AP3D1n

19p13 rs732716 4,317,219 A/G 0.71 MCV 0.201 (0.028) 1.5 3 10214 MPNDn, SH3GL1n, UBXN6c

19p13{ rs741702 12,885,250 A/C 0.35 MCH 0.006 (0.004) 8.2 3 10220 CALRe, FARSAne, SYCE2n

19q13 rs3892630 37,873,324 T/C 0.18 MCV 0.176 (0.034) 1.0 3 10210* NUDT19nc

20q13{ rs737092 55,423,811 C/T 0.49 MCV 0.216 (0.033) 4.0 3 10213 RBM38n

21q22{ rs2032314 34,276,393 T/C 0.08 PCV 0.154 (0.034) 7.5 3 10210* ATP5On

22q11{ rs5754217 20,269,675 G/T 0.83 MCV 0.194 (0.031) 8.6 3 10210 UBE2L3ne, YDJCc

22q12{ rs5749446 31,210,585 T/C 0.62 MCH 0.007 (0.004) 3.3 3 10213 FBXO7ncg

22q12{ rs855791 35,792,882 G/A 0.57 MCH 0.012 (0.004) 1.0 3 10269 KCTD17n, TMPRSS6nc

22q13{ rs140522 49,318,132 C/T 0.67 MCV 0.287 (0.030) 4.5 3 10223 TYMPne, NCAPH2n, ODF3Bn, SCO2n

Candidate gene superscripts indicate the method of identification. *Replication testing performed. {Previously reported. {Discovered from combined analysis of European and South Asian genome-wide
association data. c, coding variant; e, eQTL; EA, effect allele; EAF, effect allele frequency; g, GRAIL; HB, haemoglobin; n, nearby; OA, other allele; SE, standard error.
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Gene expression during haematopoiesis
We next explored expression of the 121 candidate genes using an atlas
of 38 different haematopoietic cell types (Supplementary Table 15)13.
Ninety-seven genes could be reliably assigned a probe on the
Affymetrix HG_U133AAofAv2 array (Fig. 1a); these transcripts were,
on average, expressed at higher levels in late erythroblasts (or the
precursors of red blood cells, EB3-EB5) compared to other transcripts
in the same cell type (P , 0.01 after Bonferroni correction; Fig. 1b).
Furthermore, expression was more likely to be upregulated in EB3-5
relative to other cell types (P 5 1.2 3 1026, rank-sum test).

To further investigate lineage-specific effects, we assessed tem-
poral patterns of gene expression during in vitro differentiation of
haematopoietic stem cells to erythroblasts14. On average, candidate
genes have increasing expression over time along the erythroid lin-
eage (P 5 0.006, rank-sum test; Fig. 1c). These data support the view
that the gene set identified here is enriched for genes relevant to red
blood cell biology, including a number of candidate genes differenti-
ally regulated to increase their expression in late erythropoiesis.

Coding and regulatory sequence variants
To better capture common sequence variation at the 75 loci, we
searched the 1000 Genomes Project data set (www.1000genomes.org)

and identified 39 non-synonymous SNPs that are in high linkage
disequilibrium (r2 . 0.8) with sentinel SNPs at the red blood cell loci
(Supplementary Table 9). This represents a ,sixfold enrichment
compared to the expectation under the null hypothesis (P 5 0.01;
Supplementary Note). Although re-sequencing will be needed to
obtain a complete assessment of variants at these loci, these non-
synonymous sites represent an initial set of candidates for genetic
variants underlying the observed associations with red blood cell pheno-
types, potentially mediated through changes in protein function.

We next searched for sequence variants at the red blood cell loci
that might influence gene regulation. We used formaldehyde-assisted
isolation of regulatory elements followed by next-generation sequencing
(FAIRE-seq) to identify nucleosome-depleted regions (NDRs) that may
represent active regulatory elements15. We studied three haematologic
cell types, and found 103,308 unique NDRs, of which 38,014 were
present in erythroblasts, 50,372 in megakaryocytes and 34,833 in
monocytes. We then searched the 1000 Genomes Project data set
and found 60 SNPs located within one of these NDRs that are either:
(1) one of the 75 sentinel SNPs from the red blood cell GWAS, or (2) in
high linkage disequilibrium (r2 . 0.8) and located within 1 Mb of a
sentinel SNP (Supplementary Table 16). The NDRs overlapping these
60 SNPs were more likely to be erythroblast specific than expected by
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Figure 1 | Gene-expression patterns for 121 putative candidate genes, and
tissue distribution of NDRs. a, Heat-map of candidate genes in the
Differentiation Map of Hematology13. Cell acronyms refer to original source
(summarized in Supplementary Table 15). Expression above a log2 signal
intensity (SI) of 6 is consistently above background. b, 2log10 P of the signed-
rank test for candidate genes being more highly expressed in each cell type than
non-candidate genes. c, Time-course of differentiation of cord-blood
haematopoietic stem cells cultured along the erythroid lineage. Putative
candidate genes are shown as upregulated (red), downregulated (blue) or with
the slope not being significantly different from zero (grey). d, Tissue distribution
of NDRs containing a potential causal variant. NDRs were ranked by peak score
(proportional to their peak height in FAIRE-seq). The rankings were then used

to divide the NDRs into cumulative tranches to explore the effect of calling-
thresholds on results (left bar, tranche containing the 5,000 top-ranked NDRs of
each cell type; penultimate bar, tranche containing the 50,000 top-ranked NDRs
of each cell type). The solid line indicates the number of SNPs overlapping the
tranche-specific NDRs that are potential causal variants (defined as a sentinel
SNP from the red blood cell GWAS, or a SNP in high linkage disequilibrium
(r2 . 0.8) and located within 1 Mb of a sentinel SNP; right-hand y axis); the bar
summarizes the tissue distribution of these SNPs (as a percentage of tranche-
specific total). The right-hand bar represents the expected tissue distribution for
the SNPs under the null hypothesis. Results show that the potential causal
variants are most commonly found in erythroblast-specific NDRs, and that this
is true across the spectrum of peak-calling thresholds.
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chance (1.8-fold enrichment compared to background distribution of
NDRs; P 5 0.007, Bonferroni-adjusted binomial test); by contrast,
there were fewer megakaryocyte-specific NDRs coinciding with red
blood cell SNPs (0.4-fold enrichment; P 5 0.007; Fig. 1d). This pattern
of erythroblast enrichment and megakaryocyte depletion was robust to
the stringency of NDR peak-calling (Supplementary Table 17). Our
results indicate that regulatory variation within the erythroid lineage
may underlie the associations observed at several of the loci iden-
tified in our red blood cell GWAS. The 19 genes closest to the 25
erythroblast-specific NDRs were more likely to be upregulated during
erythropoiesis compared to all other expressed transcripts (P 5 6.33 1026,
rank-sum test; Supplementary Table 18), lending further support to
the view that the NDRs identified have a role in the regulation of genes
involved in erythropoiesis16,17. Interestingly, the SNPs associated with
MCH at 16p11 overlap an erythroblast-specific NDR that coincides
with the NPRL3 regulatory element in the locus control region of the
downstream haemoglobin-a locus18,19.

Together our coding- and regulatory-variant analyses thus identify a
set of ,100 SNPs across 41 regions that are candidates for functional
genomic elements influencing red blood cell formation and function,
and which constitutes a priority set for future experimental evaluation.

Insights from mouse models
A systematic search of the Mouse Genome Informatics database
reveals haematologic phenotypes for 29 of the 100 candidate genes
that have mouse homologues (Supplementary Fig. 6 and Supplemen-
tary Tables 14, 19), including genes involved in cell cycle regulation:
CCNA2 (4q27), CCND2 (12p13) and CCND3 (6p21); genes coding for
transcription factors and their interacting proteins: BCL11A (2p16),
CITED2 (6q24), IKZF1 (7p13) and TAL1 (1p32); and genes involved
in growth factor or cytokine signalling: KIT (4q11), KITLG (12q22),
SH2B3 (12q24) and PTPRCAP (11q13). Among the gene products
encoded at the newly identified loci, KITLG, also known as stem cell
factor, is the cognate ligand for the KIT tyrosine kinase receptor20. KIT
signalling is involved in the perinatal transition from fetal to adult
haemoglobin, in addition to maintenance, proliferation and differen-
tiation of haematopoietic stem cells21. Kitlg2/2 and Kit2/2 mice have
low red blood cell concentrations, anaemia and other haematological
abnormalities. CCNA2, CCND2 and CCND3 are cyclin-dependent
kinases that contribute to initiation and progression of cell division22.
Knock-out models of these genes have a number of haematological
abnormalities, including reduced stem cell and red blood cell concen-
trations, and anaemia22. Of the 29 candidate genes with a blood
phenotype in mouse, 25 were identified as the genes nearest to the
sentinel SNP, and 15 through the eQTL (n 5 2), coding-variant
(n 5 6) or GRAIL (n 5 8) analyses (Supplementary Table 19).

RNAi silencing in D. melanogaster
We used haemocyte-specific RNA interference (RNAi) silencing in
D. melanogaster to further evaluate the candidate genes for their role
in blood cell formation. We first carried out permutation testing in a
genome-wide D. melanogaster RNAi silencer screen (Supplementary
Note). Results confirmed that the 121 candidates are enriched for
genes with a blood cell phenotype in D. melanogaster, supporting
the view that our GWAS identifies a set of genes conserved across
phyla and involved in blood cell formation or survival.

We next created haemocyte-specific RNAi knockdowns for 96
D. melanogaster genes that are orthologues for 74 of the 121 candidate
genes, and assessed blood cell formation (crystal cells and plasmato-
cytes) in early- and late-stage L3 larvae23. We found 19 out of the 74
candidate genes with orthologues in D. melanogaster to have a blood
cell phenotype, of which 5 also have a haematological phenotypes in
mouse models: KIT, HK1, CCNA2, AP3D1 and PSMB10 (Sup-
plementary Tables 19 and 20). Among the genes highlighted, RNAi
silencing of KIT and CCNA2 orthologues was associated with a pro-
found reduction in plasmocyte formation (Fig. 2), consistent with

their established role in cytokinesis20,22. AP3D1 is involved in vesi-
cular trafficking and dense granule formation in platelets24, whereas
PSMB10 is a component of a widely distributed proteasome linked to
inflammation and ubiquitin signalling25. UBE2L3 is also involved in
ubiquitin signalling and immune regulation26, and genetic variants in
UBE2L3 are strongly associated with several autoimmune diseases
known to influence blood cell counts27,28. EIF5 (14q32) is involved
in activation of the ribosomal initiation complex29, whereas RPS6KB2
(22q11) is a key component of growth factor and other signalling
cascades that regulate ribosomal function, cellular proliferation and
survival30. For most of the genes identified, the mechanisms under-
lying their potential relationship to red cell biology remain to be
elucidated; our gene set thus provides a rich resource for future experi-
mental evaluation and discovery.

Contribution to clinical phenotype
The 75 sentinel SNPs together account for between 3.9% (PCV) and
8.9% (MCV) of population variation in red blood cell phenotypes
(Supplementary Table 21). Individuals in the highest quartile of gen-
etic risk score (GRS; on the basis of weighted effect of the 75 sentinel
SNPs) are 3–5-fold more likely to be in the highest quartile for popu-
lation distribution of MCH, MCV and RBC (Fig. 3). GRS is associated
with haemoglobin concentrations across the physiological range,
including at haemoglobin levels that predict adverse outcomes in
pregnancy, cardiovascular and neurologic disease, in addition to
mortality in the elderly31–34.

We next investigated the association of the 75 sentinel SNPs with
red blood cell phenotypes in thalassaemia, a group of genetic disorders
characterized by defects in haemoglobin synthesis and anaemia. We
confirmed association of several of the sentinel SNPs with respective
blood cell trait, and found that GRS predicts phenotype similarly,
among 460 b-thalassaemia heterozygotes (Supplementary Table 22
and Supplementary Note). In separate experiments, GRS predicts time
to first blood transfusion among 495 patients with thalassaemia major
(P 5 6.9 3 1024); however, this effect was fully accounted for by the
MYB-HBS1L locus, which modifies the severity of thalassaemia major

WT
CRHR1 
106381 

WT

KIT 
13502 CCNA2 32421 

WT
ATP5O 
12794 

UBE2L3 
110767 

ATP2B4 
101743 

a b

Figure 2 | RNAi silencing in D. melanogaster. a, Plasmatocytes imaged by
green fluorescent protein expression (light green spots on posterior dorsal end
of L3 larvae) from wild-type (WT) cells and cells with RNAi silencing of
orthologues of the following human genes: CRHR1 (106381, increased cell
counts (CC)), KIT (13502, decreased CC) and CCNA2 (32421, increased CC).
Numbers represent the unique Flybase IDs corresponding to the
D. melanogaster orthologues. Scale bar, 0.5 mm. Bottom right, plasmatocyte
size is also increased in CCNA2 compared to wild type. Scale bars, 0.1 mm.
b, Crystal cells (black spots visualized by heating larvae to 60 uC) in wild-type
larvae, and in RNAi silencing of ATP5O (12794, increased CC), UBE2L3
(110767, decreased CC) or ATP2B4 (101743, aggregated). Scale bars, 0.5 mm.
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through its effect on fetal haemoglobin levels (Supplementary Note)35.
Together, our findings demonstrate that the common genetic variants
identified contribute to phenotypic variation in the general population,
and suggest that they may also act as genetic modifiers in clinically
relevant red blood cell abnormalities.

Conclusions
Our genome-wide association and replication study in 135,367
individuals identifies 75 genetic loci influencing red blood cell phe-
notypes, and 156 locus–phenotype associations; most of these dis-
coveries are novel. Through open-chromatin and coding-variant
studies, we identify a first set of SNPs as potential causal variants.
In parallel, our bioinformatic strategies identify a core set of genes,
differentially regulated in haematologic precursor cells, which are
candidates for mediating the effects onred blood cell phenotypes.
However, despite our extensive GWAS, bioinformatic and experi-
mental data, the precise identities of the causal variants, regulatory
regions and genes remain to be determined; definitive identification
will require further detailed experimental evaluation. Our results thus
provide new insights into the genes and gene variants that may influ-
ence haemoglobin levels and related red blood cell indices, and will
underpin a deeper knowledge of the biological mechanisms involved
in haematopoiesis and red blood cell function.

METHODS SUMMARY
Genome-wide association and replication. Genome-wide association was carried
out in 62,553 people of European ancestry and 9,308 people of South Asian
ancestry. Phenotypic associations were tested in each cohort separately, followed
by fixed-effect meta-analysis using Z-scores weighted by the square root of sample
size. Replication testing of 22 SNPs was done by in silico and direct genotyping
among 63,506 people, and results combined with genome-wide association data.
Genome-wide significance was inferred at P , 1 3 1028.
Gene-expression profiling. Gene expression was investigated in cord-blood-
derived CD341 haematopoietic stem cells in vitro, differentiated along the eryth-
roid lineage for 3, 5, 7, 9 or 10 days. Gene expression was assayed using Illumina
human WGv3.0 microarrays, and temporal patterns quantified by linear regression.
Open-chromatin studies. FAIRE-seq was done in erythroblasts, megakaryocytes
and peripheral blood monocytes. NDRs were identified as regions of sequencing

enrichment using F-Seq36. Candidate functional SNPs were selected as all biallelic
SNPs within 1 Mb of the sentinel SNP and in linkage disequilibrium at r2 . 0.8.
D. melanogaster studies. D. melanogaster orthologues of the human candi-
date genes were identified using Ensembl Compara. Haemocyte-specific RNAi
silencing of the orthologues identified was achieved using the blood-specific
hemolectin promoter driving the yeast transcriptional activator Gal4 (Hml-
Gal4) which, in turn, promotes upstream activation sequence–short hairpin
RNA expression. Early and late L3 larvae were analysed for plasmatocyte and
crystal cell numbers and morphology.
Contribution to population variation. Phenotypic contribution was investigated
in non-discovery samples. Estimates of population variance explained by the sen-
tinel SNPs were made in each study separately, and mean values calculated weighted
by sample size. We calculated the odds ratio for being in the highest versus the
lowest quartile of phenotype, associated with a SNP score defined as the sum of
number of effect (trait raising) alleles present, weighted according to effect size.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Genome-wide association. Genome-wide association was carried out in 62,553
people of European ancestry and 9,308 people of South Asian ancestry, using up
to 2,644,161 autosomal and 67,645 X-chromosome SNPs. Imputation was done
using haplotypes from HapMap Phase 2. Characteristics of participants, genotyping
arrays and imputation are summarized in Supplementary Tables 1 and 2.
Participants with extreme measurements (. 6 3 s.d. from mean) were excluded
on a per-phenotype basis. Each population cohort was approved by a research
ethics committee, and all participants gave informed consent.

SNP associations with each phenotype were tested by linear regression using an
additive genetic model. Associations were tested separately in men and women
in each cohort, with principal components and other study-specific factors as
covariates to account of population substructure as described in Supplementary
Table 2. Test statistics from each cohort were then corrected for their respective
genomic-control inflation factor to adjust for residual population sub-structure;
genomic-control inflation factors are summarized in Supplementary Table 3. We
then carried out a meta-analysis of results from the individual cohorts using
Z-scores weighted by the square root of sample size. The meta-analysis was varied
out among Europeans and South Asians separately. There were no South-Asian-
specific discoveries, but also little evidence for heterogeneity of effect at known or
new genetic loci (Supplementary Table 23); we therefore carried out a final
combined analysis of results for the two populations. SNPs with minor allele
frequency ,1% (weighted average across cohorts) were removed, as were SNPs
with weight ,50% of phenotype sample size. There was no evidence for inflation
of test statistics at SNPs not known to be associated with red blood cell pheno-
types (Supplementary Table 3), and genomic control was not applied to the final
meta-analysis results. We used the function ‘clump’ implemented in PLINK to
cluster the SNPs into genomic loci using a 2-Mb window; clustering was done
separately for each phenotype. Inverse variance meta-analysis was used to quan-
tify effect sizes for SNPs of interest.

Genome-wide significance was inferred at P , 1 3 1028. This choice of statis-
tical threshold was grounded on the guidelines derived from studies of the
ENCODE (encyclopedia of DNA elements) regions6, combined with results of
permutation testing to determine the additional adjustment needed for the six red
blood cell phenotypes studied (Supplementary Tables 24, 25 and Supplementary
Note). As an alternative strategy, a P-value threshold of P , 3.2 3 1029 would
provide correction for the number of SNP–phenotype combinations tested with-
out any adjustment for the correlations between the SNPs or phenotypes tested.
We note that 70 of the 75 loci identified would exceed such a highly stringent
threshold, including all four of the loci identified through the joint analysis of
European and South Asian data.
Replication testing. We carried out replication testing of 22 SNPs selected on the
basis of the following criteria: (1) the lead SNP from each of 17 loci showing
suggestive evidence for association with one or more red blood cell phenotypes in
Europeans (P . 1028 and P , 1027), and (2) the lead SNP from each of the loci
identified through combined analysis of genome-wide association data for
Europeans and South Asians. Replication testing was done using a combination
of in silico results and direct genotyping among 63,506 people from four popu-
lation cohorts.

In silico data were available for 34,843 people from Iceland participating in the
deCODE (diabetes epidemiology: collaborative analysis of diagnostic criteria in
Europe) study37 (Supplementary Table 1). SNPs were directly genotyped with the
Illumina HumanHap300 or CNV370 chips or imputed from one or more of four
sources: the HapMap2 CEU sample (60 triads), the 1000 Genomes Project data
(179 individuals) and Icelandic samples genotyped with the Illumina Human1
M-Duo (123 triads) or the HumanOmni1-Quad chips (505 individuals), as prev-
iously described in ref. 37. The 22 SNPs were tested for association against their
respective discovery phenotypes, under an additive genetic model; results were
combined with the genome-wide association data by weighted-Z-score meta-
analysis.

We found that for 7 of the 22 SNPs carried forward for replication, their associa-
tions with phenotype remained inconclusive after in silico testing (P . 1028 but
P , 1027). For these SNPs we carried out additional direct genotyping using
Sequenom assays, among up to 20,066 people from three population cohorts
(Supplementary Table 1). Associations were tested in each cohort separately, and
results combined across the replication cohorts, and then with the genome-wide
association data, by weighted-Z-score meta-analysis (Supplementary Table 26).
Conditional analysis. We performed conditional-association analysis using the
summary statistics from the meta-analysis to test for the association of each SNP
while conditioning on the top SNPs, with correlations between SNPs due to
linkage disequilibrium estimated from the imputed genotype data from the
atherosclerosis risk in communities (ARIC) cohort8,38. Secondary-association
signals were selected with conditional-association P , 1 3 1028.

Identification of candidate genes. We considered the nearest gene, and any
other gene located within 10 kb of the sentinel SNP, to be a candidate for medi-
ating the association with red blood cell phenotype. We also used coding variant,
eQTL and literature analyses to identify candidate genes. On the basis of analysis
of linkage-disequilibrium relations at the 75 genetic loci, we defined genomic
region as the 1-Mb interval either side of the sentinel SNP for our functional
genomic studies (Supplementary Fig. 7).
Coding variation. We identified all non-synonymous SNPs that were in linkage
disequilibrium with one or more of the sentinel SNPs at r2 . 0.8 in 1000 Genomes
Project data set (released in March 2012). We considered the gene to be a can-
didate when the non-synonymous and sentinel SNPs were in linkage disequilib-
rium at r2 . 0.8 and with no evidence for heterogeneity of effect on phenotype.
This strategy identified 39 non-synonymous SNPs distributed between 24 genes
(Supplementary Table 9), representing a ,sixfold enrichment compared to the
mean number expected under the null hypothesis generated by permutation
testing of SNP sets matched for allele frequency (6 0.05) and number of genes
in proximity (6 10 kb), but selected otherwise at random (P 5 0.01; Sup-
plementary Note).
Expression analyses. To identify the possible genes influencing red blood cell
phenotypes at the 75 loci, we examined the association of the sentinel SNPs with
eQTL data from two data sets: (1) peripheral blood lymphocytes from 206 fam-
ilies of European descent (830 parents and offspring)39 and (2) peripheral blood
lymphocytes from 1,469 unrelated individuals40.

SNPs were tested for association with expression of nearby (1 Mb) genes
(P , 0.05 after Bonferroni correction for number of SNP–transcript associations
tested). Where eQTLs were identified, we used the whole-genome SNP data
available in these data sets (imputed with HapMap Phase 2 genotypes), to identify
the SNP at the locus most closely associated with transcript level (the transcript
SNP). We then tested whether the sentinel SNP and the transcript SNP were
coincident, defined as r2 . 0.8 with no evidence for heterogeneity of effect on
phenotype or transcript level (P . 0.05). This strategy identified eQTLs involving
28 genes from 18 loci (Supplementary Table 10).
GRAIL analyses. We carried out a literature analysis using the GRAIL algo-
rithm9, a statistical tool that uses text mining of PubMed abstracts to annotate
candidate genes from loci associated with phenotypic traits. We carried out the
analysis using the 2006 data set to avoid confounding by subsequent GWAS
discoveries; results identified candidate genes at nine loci (P , 0.05; Supplemen-
tary Table 11). Results are also shown for a GRAIL analysis using the 2011
PubMed data set, although these were not used for the final analysis.
Gene expression in haematopoietic precursors. Cord-blood-derived CD341

haematopoietic stem cells were differentiated in vitro along the erythroid lineage
in the presence of 6 U ml21 erythropoietin (R&D Systems), 10 ng ml21 inter-
leukin (IL)-3 (Miltenyi Biotec) and 100 ng ml21 stem cell factor (R&D Systems).
Cells were collected at days 3, 5, 7, 9 and 10 in three biological replicates and gene
expression was assayed using Illumina human WGv3.0 microarrays41. For each
gene, we determined the relationship of gene expression with time using linear
regression, and calculated the t-statistic for the difference in b from zero. We then
classified gene-expression patterns as increasing, decreasing or unchanged on the
basis of the 2.5% and 97.5% quartiles of the t distribution with 4 degrees of freedom.
To test whether a gene set was enriched for differentially regulated genes, a
Wilcoxon signed-rank test of the t scores in the gene set relative to all others genes
that were expressed in at least one time point was calculated.
FAIRE-seq. We generated maps of chromatin accessibility (‘open chromatin’) in
primary human erythroblasts and megakaryocytes, and in peripheral blood mono-
cytes using FAIRE-seq. Cord-blood-derived CD341 haematopoietic progenitor
cells from two unrelated individuals were differentiated in vitro into either erythro-
blasts (in the presence of erythropoietin, IL-3 and stem cell factor) or megakaryo-
cytes (in the presence of thrombopoietin and IL-1b). Monocytes were purified
from leukocyte cones of apheresis collections from another two individuals.

FAIRE experiments were performed as previously described in ref. 42. FAIRE
DNA was processed following the Illumina paired-end library-generation pro-
tocol. Genomic libraries derived from erythroblast and megakaryocyte cultures
were sequenced with 54-bp paired-end reads on Illumina Genome Analyzer II.
Libraries derived from monocyte extractions were sequenced with 50-bp paired-
end reads on Illumina HiSeq. Raw sequence reads were aligned to the human
reference sequence (NCBI build 37) using the read mapper Stampy43. Reads were
realigned around known insertions and deletions, followed by base-quality reca-
libration using the Genome Analysis Toolkit (GATK)44. Duplicates were flagged
using the software Picard (http://picard.sourceforge.net/) and excluded from
subsequent analyses. For each cell type, we merged all read fragments into one
data set. NDRs were identified as regions of sequencing enrichment (peaks)
using the software F-Seq36. We applied a feature length of L 5 600 bp and a s.d.
threshold of T 5 8.0 over the mean across a local background. In order to reduce
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false-positive peak calls, we removed regions of collapsed repeats as recently
described, applying a threshold of 0.1%45. For each associated locus, candidate
functional SNPs were selected by identifying all biallelic SNPs with an r2 . 0.8
and within 1 Mb of the sentinel SNP in the European samples of the 1000
Genomes Project (data released June 2011).
D. melanogaster gene-silencing models. We used haemocyte-specific RNAi
silencing to investigate whether the 121 candidate genes identified in the red
blood cell GWAS influenced blood cell formation in D. melanogaster. We iden-
tified D. melanogaster genes predicted to be orthologues of human genes using the
Ensembl v65 Compara pipeline, an established phylogenetic-tree-based approach
for orthology prediction46; this revealed 96 D. melanogaster orthologues for 74 of
the 121 human candidate genes (Supplementary Table 27). We evaluated each of
the 96 orthologues for a blood cell phenotype in D. melanogaster. We obtained all
225 available D. melanogaster lines carrying inducible siRNA constructs from the
Vienna Drosophila RNAi Center (VDRC)23. To achieve haemocyte-specific
knockdowns, flies were crossed to the blood-specific Hml-Gal4 line driving
Gal4 expression under the control of a hemolectin promoter47. Flies were crossed
at 29 uC, and early and late L3 larvae analysed 7 days after mating. Upstream
activating sequence–green fluorescent protein enabled microscopic visualization
of plasmatocytes and evaluation of cell size and cell number (L3 larvae only).
Early- and late-stage larvae were incubated at 60 uC for 15 min, a process that
turns the crystal cells black and allows quantification of crystal cells micro-
scopically. For each orthologue, all available RNAi silencer constructs were inves-
tigated, and in addition, each construct was assayed in duplicate, blind to initial
result. Cell counts were quantified visually (0–3, decreased or increased) and the
mean of the duplicate measurements calculated.

We separately carried out permutation testing in a genome-wide screen of
5,658 D. melanogaster genes to simulate expectations under the null hypothesis
(Supplementary Fig. 8 and Supplementary Note); results confirmed that the 121
candidate genes were enriched for blood cell phenotype in D. melanogaster
orthologues (P , 0.05), and showed that this was robust to threshold for calling.
Contribution of the genetic loci identified to population variation in red
blood cell phenotypes. This was investigated in participants from the Estonian
Genome Center of University of Tartu (EGCUT), LIFELINES, Ludwigshafen
Risk and Cardiovascular Health Study (LURIC) and Young Finns cohorts using
samples that were not included in the discovery experiment (Supplementary
Table 1). The contribution of the SNPs to population variation in red blood cell
phenotypes was quantified using two models: model 1, limited to SNPs associated

with respective phenotype at P , 1 3 1028; and model 2, comprising all of the
75 sentinel SNPs identified. Estimates of population variance explained were
made in each study separately, and average values calculated weighted by sample
size (Supplementary Table 21).

We then investigated whether the 75 sentinel SNPs influenced the probability
of being in the highest versus the lowest quartile for population distribution of
phenotype. Two SNP scores were calculated for each phenotype: score 1, limited
to SNPs associated with respective phenotype at P , 1 3 1028, and score 2, con-
taining all 75 sentinel SNPs identified. For both, SNP score was calculated as the
sum of number of effect (trait raising) alleles present, weighted according to effect
size. We then calculated the odds ratio for being in the highest versus the lowest
quartile of phenotype, associated with SNP scores in the second, third and fourth
quartiles, compared to first quartile of SNP score. Odds ratios were calculated in
each study separately, and then combined by inverse variance meta-analysis
(Fig. 3).
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