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We consider estimation and testing of linkage equilibrium from geno-
typic data on a random sample of sibs, such as monozygotic and
dizygotic twins. We compute the maximum likelihood estimator with
an EM-algorithm and a likelihood ratio statistic that takes the family
structure into account. As we are interested in applying this to twin
data we also allow observations on single children, so that mono-
zygotic twins can be included. We allow non-zero recombination frac-
tion between the loci of interest, so that linkage disequilibrium between
both linked and unlinked loci can be tested.The EM-algorithm for com-
puting the maximum likelihood estimator of the haplotype frequencies
and the likelihood ratio test-statistic, are described in detail. It is shown
that the usual estimators of haplotype frequencies based on ignoring
that the sibs are related are inefficient, and the likelihood ratio test for
testing that the loci are in linkage disequilibrium.
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ratio test, haplotype, phase ambiguity.

1 Introduction

Interest in gene-gene interactions that underlie human phenotypic variation is grow-
ing (Phillips, 2008; Cordell, 2009) and novel approaches to detect them have been
proposed (Ritchie et al., 2001; Zhang and Liu, 2007). Although these methods
have been aimed at circumventing the need for an exhaustive search based on all
possible gene pairs, nonetheless genome-wide screens of epistasis are still lacking
due to the need for extensive multiple testing correction and the subsequent loss of
power.
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A possible alternative approach would be a two-stage design based on an easily
detectable signature of epistatic interactions. Only pairs of loci that exhibit the de-
sired property would be formally tested for joint association with a phenotype in the
second stage. This approach would greatly reduce the number of tests performed and
hence would increase the statistical power to detect gene-gene interactions.

When specific combinations of alleles at two different loci jointly affect a certain
(disease) phenotype (by epistatic interactions) than these specific combinations of
alleles will be overrepresented in a sample enriched for the phenotype (cases) and
underrepresented in a sample depleted from the phenotype (controls). Consequently,
the two loci involved will be in linkage disequilibrium (LD). This holds for both
physically linked and unlinked loci. The mathematical details of this genomic ‘signa-
ture’ of gene-gene interaction are firmly established in population genetic literature
(Pollak, 1979). LD between two loci can be detected in genotype data and used
as a predictor of gene-gene interactions. Pre-screening for a deviation from LD may
therefore reveal gene-gene interactions.

Measures of linkage disequilibrium between two loci are defined in terms of hap-
lotype frequencies in the population (e.g. Balding, 2006). The standard method for
inference on linkage disequilibrium is to measure the genotypes in a random sam-
ple of individuals from the population, and estimate the haplotype frequencies by
maximum likelihood or compute a likelihood ratio for testing LD. The computa-
tion of the maximum likelihood estimator based on the genotypes at the two loci
without phase information can be carried out by the EM-algorithm, as explained in
Excoffier and Slatkin (1995) and Slatkin and Excoffier (1996). In this note we
consider the alternate situation that we observe the genotypes of a random sam-
ple of n sib pairs. In view of the dependence between the sibs, viewing them as
2n individuals from the population and applying the standard approach would give
incorrect significance levels. Also it turns out that even for estimating the marginal
(single-locus) frequencies the empirical estimators (the fractions of alleles among the
2n sibs) are inefficient relative to the maximum likelihood estimator, even though
unbiased.

Standard, multi-purpose packages for genetic inference, such as GENEHUNTER,
can also produce estimates of haplotype frequencies, but make the assumption that
the loci are in linkage equilibrium, at least in the founders of the pedigrees. For our
present purpose and small pedigrees, this would lead to large biases, as explained
in Schaid et al. (2002), or even be useless to test for disequilibrium. Becker and
Knapp (2002, 2004) consider the estimation of haplotype frequencies in a parents’
population from genotypic information on parents and their children, and their soft-
ware package FAMHAP can deal with missing data. Putter, Meulenbelt and van
Houwelingen (2007) focus on the relative efficiency of haplotype frequency esti-
mation in sibships compared to unrelated individuals, and describe an algorithm
to estimate the haplotype frequencies in the parents’ (and sib) population based on
sib data only. However, all three papers assume that the recombination fraction be-
tween the loci is equal to zero. In the present note we consider the problem with a
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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general recombination fraction, which obviously complicates the algorithm. In the
application to finding epistatic interactions it is desired to test linkage equilibrium
for unlinked loci.

In this article the recombination fraction between the two loci is assumed known.
In practice it is set equal to 0.5 for loci on different chromosomes, or is determined
from a genetic map or approximated from a physical map. The robustness of the
estimation and testing methods against deviations of the estimated recombination
fraction from the true value was evaluated by means of a simulation study. The
results show that the effect of small to medium misspecifications of the fraction
hardly effects the estimates of the haplotype frequencies and the level of the like-
lihood ratio test for testing linkage equilibrium (LE) between the loci, but assuming
a zero-recombination fraction (as in the algorithms presented by Becker and Knapp
(2002, 2004) and Putter et al. (2007)) while the loci are actually unlinked may yield
biased estimates of haplotype frequencies and an invalid test.

Besides on computation of estimates of LD, we focus in this article on the like-
lihood ratio statistic for testing for linkage disequilibrium, again based on unphased
genotype data of siblings only. This requires the computation of the maximum like-
lihood estimators for the haplotype frequencies under the general model and under
the null hypothesis of LE, for which we derive the EM-algorithm. Furthermore, it
requires a conditioning argument for the likelihood of the observed data (on the
sibs) versus the likelihood for the (imaginary) data consisting of parents and sibs.

Our research was motivated by the work of Bochdanovits et al. (2008). In their
research it is shown that pre-screening for a deviation from LD may reveal gene-
gene interactions. Specific mouse data (mouse recombinant inbred lines (RILs)) is
used. LD has been quantified between all pairs of physically unlinked loci for which
genotype is publicly available. Given the specific nature of the mouse data (RILs) it
was possible to estimate LD with a simple Pearson correlation coefficient and highly
significant deviations from equilibrium were found. The gene pairs that showed
excess LD were tested for association against a set of publicly available phenotype
data and a significant interaction effect was found between genes involved in de-
toxification and voluntary ethanol consumption in mice. This biologically plausible
result demonstrated the validity of the concept that ascertainment of unlinked gene
pairs that are in significant LD can be expected to non-additively affect quantitative
phenotypic variation, as predicted by population genetic theory (Pollak, 1979).

The description of the EM-algorithm and the computation of the likelihood ratio
statistic are the subject of sections 2 and 5. In addition we show in section 3 how to
include also a random sample of single children in the analysis, which is important
for instance in applications to twin studies. In section 4 we briefly compare (for esti-
mating the marginal frequencies) the efficiency of the estimates based on sibs with
the estimate based on a random sample of an equal number of unrelated individ-
uals. In section 6 the results of a simulation study are presented. This simulation
study was performed to evaluate the reliability of the proposed estimation and test-
ing methods and to show the effect of using a (slightly) misspecified recombination
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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fraction. In this section, also the results of the application of the EM-algorithm and
LD-testing on data from a study on childhood depression are presented.

Code for an implementation in the R package is available from the authors.

2 EM-algorithm

Consider a nuclear family as in Figure 1, where we denote by (Y1, Y2) and (Y3, Y4)
the ordered haplotypes of the father and the mother, and by (X1, X2) and (X3, X4)
the ordered haplotypes of the two children, ordered by paternal and maternal ori-
gins. All haplotypes refer to two loci, which we assume to be biallelic, with alleles
denoted by 0 and 1. Thus all variables Yi and Xj take their values in the set

Y :=X :=
{(

0
0

)
,
(

0
1

)
,
(

1
0

)
,
(

1
1

)}
.

We assume that the parents’ haplotypes Y1, Y2, Y3, Y4 are i.i.d. random vectors
with relative frequencies h00, h01, h10, h11. (For notational convenience we write hkl

for hy with y =
(

k
l

)
.) The independence can be justified by assuming random mat-

ing in the populations of the parents and the parents’ parents.
The haplotype frequencies in the children’s population can be computed from the

haplotype frequencies in the parents’ population and the recombination fraction, by
conditioning on the event a recombination had or had not taken place. The (k, l)-
haplotype frequency in the children’s population is given by

(1−�)hkl +�hk.h.l , k, l ∈{0, 1},

for � the recombination fraction between the loci. Here hk. =hk0 +hk1 and h.l =
h0l +h1l are the marginal frequencies for the two loci, which are the same in the par-
ents’ and children’s populations. The haplotype frequencies in the children’s popula-
tion can be seen to factorize over the loci if and only if the hkl factorize (hkl =hk.h.l),
i.e. the parents’ population is in linkage equilibrium (LE) if and only if the children’s
population is. Write, for j =1, 2, 3, 4,

Xj =
(

Xj1

Xj2

)
, Yj =

(
Yj1

Yj2

)
.

Fig. 1. Notation. The variables Y1, Y3 and X1, X3 are the paternal haplotypes of the parents and
the sibs, respectively. The remaining variables are the maternal haplotypes.

© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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Then the unordered genotypes of the two children at locus 1 can be written as
{X11, X21} and {X31, X41}; and the unordered genotypes at locus 2 as {X12, X22} and
{X32, X42}.

As mentioned the assumption that Y1, Y2, Y3, Y4 are i.i.d. is satisfied under ran-
dom mating in the parents’ and the parents’ parents generations, assuming that gen-
erations can indeed be separated. In addition we assume that given Y1, Y2, Y3, Y4

the distribution of X1, X2, X3, X4 is determined by the usual segregation model in
genetics. Specifically X1, X2, X3, X4 are conditionally independent (expressing that
the four meioses involved are independent); the first coordinates of X1 and X3 are
randomly chosen from the first coordinates of the parents Y1 and Y2, and the second
coordinate is chosen from the same parent with probability 1−� and otherwise from
the other parent; finally X2, X4 derive from Y3, Y4 in the same manner. The recom-
bination fraction � is assumed given. The total set of observations are the unor-
dered genotypes derived from a random sample of size n from the distribution of
(X1, X2, X3, X4). We want to estimate the haplotype frequencies h00, h01, h10, h11 in the
parents’ population or test that they factorize over the two loci. We do not observe
the parents’ genotypes.

The maximum likelihood estimator of the haplotype frequencies can be computed
using the EM-algorithm, with (the sample of) variables Y1, Y2, Y3, Y4, X1, X2, X3, X4

as the full data and the unordered genotypes

{X11, X21}, {X31, X41}, {X12, X22}, {X32, X42}
as the observed data. This requires two conditioning or reconstruction steps.

1. From the observed data to the ordered pairs of haplotypes (X1, X2) and (X3,
X4) of the children.

2. From (X1, X2), (X3, X4) to the full data Y1, Y2, Y3, Y4, X1, X2, X3, X4.

Because of the dependency between the children both steps have to be performed
on the set of all four individuals, although of course intermediate formulas factorize
due to the random mating assumption and the assumption of independent meioses
and segregation.

This allows to compute for each of the 16 possible values of (Y1, Y2) the four
conditional probabilities

q(x1 |y1, y2) :=P(X1 =x1 |Y1 =y1, Y2 =y2), x1, y1, y2 ∈Y.

These 64 numbers (many of which are zero) are simple functions of the recombina-
tion fraction and, given the numerical value of the latter, can be stored at the begin-
ning of the algorithm. The conditional distribution of X3 given (Y1, Y2) is identical
to the conditional distribution in the display, and X1 and X3 are independent given
(Y1, Y2). Furthermore, the vectors (Y1, Y2, X1, X3) and (Y3, Y4, X2, X4) are i.i.d., un-
der the assumed symmetry between the sexes. (If we want to make a difference be-
tween paternal and maternal origins, then the distributions of the two vectors still
have the same form, but the 64 probabilities can be different.)
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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The joint distribution of the two paternal haplotypes of the children can now be
computed as

ph(x1, x3) :=Ph(X1 =x1, X3 =x3)

=
∑
y1∈Y

∑
y2∈Y

P(X1 =x1 |Y1 =y1, Y2 =y2)P(X3 =x3 |Y1 =y1, Y2 =y2)hy1 hy2

=
∑
y1∈Y

∑
y2∈Y

q(x1 |y1, y2)q(x3 |y1, y2)hy1 hy2 .

This sum has 16 terms, in principle.
The data on a single child (two unordered genotypes) can be summarized as a

count in a (3×3)-table (see Table 1), with the three possible genotypes {0, 0}, {0, 1},
{1, 1} for the two loci on the two dimensions. For 8 of the 9 cells in the table,
the genotype of at least one locus is homozygous, and it is possible to recover the
unordered pair of haplotypes with certainty from the pair of genotypes. E.g. if {0, 1}
and {0, 0} are the genotypes of an individual at locus 1 and locus 2, then

{0, 1}×{0, 0} →
{(

0
0

)
,
(

1
0

)}
.

The remaining (middle) cell in the (3×3)-table is the combination {0, 1}×{0, 1},
which corresponds to two possible pairs of unordered haplotypes:

{0, 1}×{0, 1} →
{(

0
1

)
,
(

1
0

)}
or

{(
0
0

)
,
(

1
1

)}
. (1)

To take account of the family structure we need to map back further into the ordered
pairs of haplotypes (X1, X2) and (X3, X4). This should be done jointly for the two
children, since the other child may be informative about the parents, who are infor-
mative on the haplotypes of the first child.

This step entails ordering of the unordered pairs of haplotypes for children in the
8 boundary cells and resolution and ordering of haplotypes for the doubly hetero-
zygous children. Say that a child is double heterozygous (DHZ) if it is heterozygous
at both loci and not DHZ (NHZ) otherwise. There are four cases:

Table 1. Lay-out of the data on one
sib

{0,0} {0,1} {1,1}
{0,0}
{0,1} DHZ
{1,1}
Notes: The two borders refer to the
three possible (unordered) genotypes
{0, 0}, {0, 1}, {1, 1} at the two loci. A
sib belongs to one of the nine en-
tries in the table. Doubly heterozy-
gous (DHZ) sibs are counted in the
middle cell, marked DHZ.

© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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1. Both children NHZ. We have two unordered pairs of haplotypes {X1, X2} and
{X3, X4}, which can be ordered in four different ways, with probabilities given
in Table 2.

2. First child NHZ, second child DHZ. We have an unordered pair of haplo-
types {X1, X2} and an ambiguous set of unordered haplotypes{(

X31

X32

)
,
(

X41

X42

)}
, or

{(
X31

X42

)
,
(

X41

X32

)}
.

There are eight ways to form these in two ordered pairs of haplotypes, given
in Table 3 with their relative probabilities.

3. First child DHZ, second child NHZ. There are eight possibilities.
4. Both children DHZ. There are 16 possibilities.

Thus we have described the conditional distribution of (X1, X2), (X3, X4) given the
data. (The mentioned numbers of possibilities are maxima; for concrete observations
many of them may coincide.)

Finally we describe the steps of the EM-algorithm. The conditional distribution
of (Y1, Y2), (Y3, Y4) given (X1, X2), (X3, X4) can be factorized as the product of the

Table 2. Ordering of {X1, X2}, {X3, X4} in the situ-
ation that both pairs are NHZ

{z1, z2}, {z3, z4} Probability proportional to

(z1, z2), (z3, z4) ph(z1, z3)ph(z2, z4)
(z1, z2), (z4, z3) ph(z1, z4)ph(z2, z3)
(z2, z1), (z3, z4) ph(z2, z3)ph(z1, z4)
(z2, z1), (z4, z3) ph(z2, z4)ph(z1, z3)

Notes: If the observed values are {z1, z2}, {z3, z4},
then there are four possible orderings, given in the
left column. These have conditional probabilities pro-
portional to the expression in the right column.

Table 3. Ordering and resolution of {X1, X2}, {X3, X4} in case
the first pair is NHZ, the second DHZ

{z1, z2}, {z31, z41}, {z32, z42} Probability proportional to

(z1, z2), (z3, z4) ph(z1, z3)ph(z2, z4)

(z1, z2),
((

z31
z42

)
,
(

z41
z32

))
ph

(
z1,

(
z31
z42

))
ph

(
z2,

(
z41
z32

))

(z1, z2), (z4, z3) ph(z1, z4)ph(z2, z3)

(z1, z2),
((

z41
z32

)
,
(

z31
z42

))
ph

(
z1,

(
z41
z32

))
ph

(
z2,

(
z31
z42

))

(z2, z1), (z3, z4) ph(z2, z3)ph(z1, z4)

(z2, z1),
((

z31
z42

)
,
(

z41
z32

))
ph

(
z2,

(
z31
z42

))
ph

(
z1,

(
z41
z32

))

(z2, z1), (z4, z3) ph(z2, z4)ph(z1, z3)

(z2, z1),
((

z41
z32

)
,
(

z31
z42

))
ph

(
z2,

(
z41
z32

))
ph

(
z1,

(
z31
z42

))

Notes: If the observed values are {z1, z2}, {z31, z41}, {z32, z42},
then there are eight possible orderings, given in the left column.
These have conditional probabilities proportional to the expression
in the right column.
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conditional distribution of (Y1, Y2) given (X1, X3) and the conditional distribution of
(Y3, Y4) given (X2, X4), which have the same form. These conditional distributions
can be determined using Bayes rule:

Ph(Y1 =y1, Y2 =y2 |X1 =x1, X3 =x3)

= P(X1 =x1 |Y1 =y1, Y2 =y2)P(X3 =x3 |Y1 =y1, Y2 =y2)hy1 hy2

ph(x1, x3)

= q(x1 |y1, y2)q(x3 |y1, y2)hy1 hy2

ph(x1, x3)
.

The conditional probabilities q(xi |y1, y2) and the probabilities ph(x1, x3) were
obtained before.

The likelihood for observing a sample of observations of the full data Y i
1, Y i

2, Y i
3,

Y i
4, X i

1, X i
2, X i

3, X i
4 (for i =1, . . ., n) takes the form

n∏
i =1

hY i
1
hY i

2
hY i

3
hY i

4
p(X i

1, X i
2, X i

3, X i
4 |Y i

1, Y i
2, Y i

3, Y i
4). (2)

Here the second term, the conditional density of X i
1, X i

2, X i
3, X i

4 given Y i
1, Y i

2, Y i
3, Y i

4
is free of the parameter (the haplotype frequencies), and hence can be dropped. The
logarithm of the remaining part can be written

L(h)=
∑
k,l

Nkl log hkl ,

where Nkl is the total number of haplotypes
(

k
l

)
carried by the parents.

In the E-step of the EM-algorithm we compute the conditional expectation

E0(L(h) |DATA)=
∑
k,l

log hklE0(Nkl |DATA).

The subscript 0 indicates that we compute the expectation using the current iterate
of the haplotype frequencies. In the M-step we find the haplotype frequencies h that
maximize this expression. Since the preceding display precisely gives a multinomial
likelihood with ‘observed values’ E0(Nkl |DATA), the M-step is seen to be

ĥkl = 1
4n

E0(Nkl |DATA). (3)

The difficulty is to compute the conditional expectation in this display.
The variable Nkl can be written as a sum Nkl =

∑n
i =1 Ni

kl over the n families.
Because the families are independent, the conditional expectation of this sum given
the DATA can be written as a sum over the families as well, conditioning the ith
variable Ni

kl on the observed values {X i
11, X i

21}, {X i
31, X i

41}, {X i
12, X i

22}, {X i
32, X i

42} for
that family. Here we may condition first on the ordered genotypes (X i

1, X i
2), (X i

3, X i
4),

where we can use that the vectors (Y i
1, Y i

2, X i
1, X i

3) and (Y i
3, Y i

4, X i
2, X i

4) are
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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independent. For a typical family i, we have, with superscript i omitted from the
alleles from the second line onwards,

E0[Ni
kl | {X i

11, X i
21}, {X i

31, X i
41}, {X i

12, X i
22}, {X i

32, X i
42}]

=E0

[
E0(1

Y1 =
(

k
l

) +1
Y2 =

(
k
l

) |X1, X3)+E0(1
Y3 =

(
k
l

) +1
Y4 =

(
k
l

) |X2, X4)

| {X11, X21}, {X31, X41}, {X12, X22}, {X32, X42}
]
.

Here the inner conditional expectations can be written

E0(1
Y1 =

(
k
l

) +1
Y2 =

(
k
l

) |X1, X3)=2P0

(
Y1 =

(
k
l

)
|X1, X3

)

=2h0,kl

∑
y2∈Y q(X1 |

(
k
l

)
, y2)q(X3 |

(
k
l

)
, y2)h0,y2

p0(X1, X3)
=: 2h0,kl

�0,kl

p0
(X1, X3).

Here h0,kl are the current iterates of the haplotype frequencies hkl . The second inner
conditional expectation has the same form, but with (X1,X3) replaced by (X2,X4),
whence

ĥkl =h0,kl
1

2n

n∑
i =1

E0[
�0,kl

p0
(X i

1, X i
3)+ �0,kl

p0
(X i

2, X i
4)

| {X i
11, X i

21}, {X i
31, X i

41}, {X i
12, X i

22}, {X i
32, X i

42}].

The remaining conditional expectation consists of averaging over the resolutions
of the observed data into the ordered haplotypes of the sibs, which involves the
four different combinations {NHZ, DHZ}2 with their 4, 8, 8, 16 subcases, considered
previously.

As written above, every iteration of the algorithm requires recomputation of a
sum over all families, which will make the algorithm slow with large samples.
Because there are only 9=32 possible realizations of the data on one sib (such as
{x11, x21}, {x12, x22} for the first sib), there are only 81 possible realizations of the
data on one family. Furthermore, identification of observations that are equal after
permuting the sibs leaves only 45= (1/2)9(9+1) different realizations. Thus the for-
mulas can actually be condensed in no more than 45 different cases, for any sample
size. The symmetrization in the last conditioning step can also be simplified with
this reduction in mind. Still the algorithm will be slower than the EM-algorithm
for the case of observing a random sample from a population, as there iterations
involve only the resolution of the DHZ sibs, as in Equation 1.
© 2011 The Authors. Statistica Neerlandica © 2011 VVS.
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3 Single children

Suppose that next to the sib data as in Figure 1 we also have observations on
single children. This situation arises for instance in twin studies, where dizygotic
twins contribute sibs, but monozygotic twins should be considered single children.

The easiest method to include single children is to consider them as sibs with the
second (imaginary) sib missing. The EM-algorithm then needs an additional con-
ditioning step for the single children. The EM-algorithm in the preceding section
ended with conditioning the variable (�0/p0)(X1, X3)+ (�0/p0)(X2, X4) on {X11, X21},
{X31, X41}, {X12, X22}, {X32, X42}. We now condition this variable on {X11, X21},
{X12, X22} instead. We may first condition on the ordered pair (X1, X2). Given this
pair the variables X3 and X4 possess densities proportional to u �→ ph(X1, u) and
u �→ph(X2, u), respectively. Hence,

E0

(
�0,kl

p0
(X1, X3)+ �0,kl

p0
(X2, X4) | (X1, X2)

)

=
∑
u∈X

(
�0,kl

p0
(X1, u)

p0(X1, u)∑
u∈X p0(X1, u)

+ �0,kl

p0
(X2, u)

p0(X2, u)∑
u∈X p0(X2, u)

)

=

⎡
⎢⎢⎣
∑

y2∈Y q
(

X1 |
(

k
l

)
, y2

)
h0,y2

p0(X1)
+
∑

y2∈Y q
(

X2 |
(

k
l

)
, y2

)
h0,y2

p0(X2)

⎤
⎥⎥⎦.

Here p0 is the current estimate of the marginal density ph(x1)=∑u∈X ph(x1, u) of
X1 (with some abuse of notation denoted by the same symbol as the joint density
of (X1, X3), but with one argument). In the case that the child is NHZ, the unor-
dered pair {X1, X2} is observed, and no further conditioning is necessary, as the
expression in the display is already a function of this unordered pair. In the case
that the child is DHZ, there are two possible unordered pairs given the data (which
is {0, 1}, {0, 1}), given in Equation 1, with conditional probabilities proportional to

p0

((
0
1

))
p0

((
1
0

))
and p0

((
0
0

))
p0

((
1
1

))
.

The expression in the preceding display, with X1, X2 the pair
(

0
1

)
,
(

1
0

)
or the pair(

0
0

)
,
(

1
1

)
, must be averaged over these two possibilities.

4 Single locus frequencies

To test the hypothesis of linkage equilibrium we must also compute the maximum
likelihood estimator under the null hypothesis that the haplotype frequencies factor-
ize over the loci. In this case the full likelihood Equation 2 can be factorized in two
parts referring to parameters and observations of the two loci, and the observations
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for the two loci are stochastically independent. (Indeed hYj
=hYj1.h.Yj2 for every j =

1, . . ., 4, where hk. and h.l are the marginal frequencies and Yj1 and Yj2 the alleles of
parent j at loci 1 and 2.) It follows that the null maximum likelihood estimators of
the marginal frequencies hk. and h.l are the maximum likelihood estimators based
on the data concerning the two loci separately.

The empirical estimators

1
4n

n∑
i =1

(X i
11 +X i

21 +X i
31 +X i

41) and
1

4n

n∑
i =1

(X i
12 +X i

22 +X i
32 +X i

42)

are unbiased estimators for the marginal frequencies h1. and h.1. However, these are
not the maximum likelihood estimators under our assumptions. In fact, the variance
of the empirical estimators suffers from the dependence between the sib-information
X i

11 +X i
21 and X i

31 +X i
41, which renders them much less efficient than the maximum

likelihood estimators, as shown in Figure 2. This picture also shows that a random
sample of 2n unrelated children allows better estimates than a sample of n sib pairs,
but the loss in efficiency is not big.

The maximum likelihood estimators of the marginal frequencies can be computed
through the EM-algorithm by similar, but simpler, arguments as before. We keep the
notation as given in Figure 1, but now let the variables (Y1, Y2), (Y3, Y4), (X1, X2),
(X3, X4) refer to the ordered genotypes of parents and children at a single locus.

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

Fig. 2. Variance of the empirical estimator, the maximum likelihood estimator, and the empirical
estimator based on a random sample of 2n unrelated children of a marginal frequency (top
to bottom) as a function of the marginal frequency on the horizontal axis, per observation.
The middle curve gives the inverse Fisher information, whereas the other two curves are the
exact variances.
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Thus these variables take their values in the set {0, 1}, with Y1, Y2, Y2, Y4 i.i.d. with
unknown probability h=P(Yj =1), and the conditional distribution of X1, X2, X3, X4

given Y1, Y2, Y3, Y4 completely determined by the segregation process. We observe
the unordered genotypes {X1, X2} and {X3, X4} of the two sibs, in a random sample
of n families.

The variables (X1, X3) and (X2, X4) are i.i.d. with density given in Table 4. The dis-
tribution of {X1, X2}, {X3, X4} can be obtained from this by listing the map from
the pairs (X1, X2), (X3, X4) into the pairs {X1, X2}, {X3, X4}. This correspondence
is given in Table 5, with {0, 0}, {0, 1}, {1, 1} denoting the three possible values of
{X1, X2}.

The full likelihood takes the form

n∏
i =1

⎛
⎝ 4∏

j =1

(1−h)1−Y i
j hY i

j

⎞
⎠p(X i

1, X i
3 |Y i

1, Y i
2)p(X i

2, X i
4 |Y i

3, Y i
4)∝ (1−h)4n−N hN ,

for N =∑n
i =1

∑4
j =1 Y i

j the total number of Y i
j that are equal to 1. An iteration of

the EM-algorithm becomes

ĥ= 1
4n

E0(N |DATA)

= 2
4n

n∑
i =1

E0[E0(Y i
1 |X i

1, X i
3)+E0(Y i

3 |X i
2, X i

4) | {X i
1, X i

2}, {X i
3, X i

4}]

= 1
2n

n∑
i =1

E0

[
�0

p0
(X i

1, X i
3)+ �0

p0
(X i

2, X i
4) | {X i

1, X i
2}, {X i

3, X i
4}
]

,

Table 4. Density of (X1, X3)

x1x3 ph(x1, x3)

0,0 (1−h)2 +h(1−h)/2
0,1 h(1−h)/2
1,0 h(1−h)/2
1,1 h(1−h)/2+h2

Table 5. Origin of observed data on a single locus from ordered genotypes
of the two children

{x1, x2} {x3, x4} (x1, x2), (x3, x4)

{0,0} {0,0} (0,0),(0,0)
{0,0} {0,1} (0,0),(0,1) or (0,0),(1,0)
{0,0} {1,1} (0,0),(1,1)
{0,1} {0,0} (0,1),(0,0) or (1,0),(0,0)
{0,1} {0,1} (0,1),(0,1) or (1,0),(0,1) or (0,1),(1,0) or (1,0),(1,0)
{0,1} {1,1} (0,1),(1,1) or (1,0),(1,1)
{1,1} {0,0} (1,1),(0,0)
{1,1} {0,1} (1,1),(0,1) or (1,1),(1,0)
{1,1} {1,1} (1,1),(1,1)

Note: The 16 ordered genotypes on the right give rise to the nine unordered
genotypes on the left.
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Table 6. Values of Eh(Y1 |X1,
X3)ph(X1, X3)

x1, x3 �h(x1, x3)

0,0 h(1−h)/4
0,1 h(1−h)/4
1,0 h(1−h)/4
1,1 h(1−h)/4+h2

where �0 is the value at the current iterate of the function �h defined by the equation
Eh(Y1 |X1, X3)=�h(X1, X3)/ph(X1, X3), and given in Table 6. By arguments similar as
before the right side can be reexpressed as

ĥ= 1
n

n∑
i =1

�0(X i
1, X i

3)p0(X i
2, X i

4)+�0(X i
1, X i

4)p0(X i
2, X i

3)+�0(X i
2, X i

4)p0(X i
1, X i

3)+�0(X i
2, X i

3)p0(X i
1, X i

4)

p0(X i
1, X i

3)p0(X i
2, X i

4)+p0(X i
1, X i

4)p0(X i
2, X i

3)+p0(X i
2, X i

4)p0(X i
1, X i

3)+p0(X i
2, X i

3)p0(X i
1, X i

4)
.

The four terms of the sums in the numerator and denominator are different only
in the case that both sibs are heterozygous. As shown in Table 5 in the other cases
these sums can be reduced to two terms or one term.

Observations on single children can again be included by considering these as
sibs with one child missing. Instead of E0[Y i

1 +Y i
3 | {X i

1, X i
2}, {X i

3, X i
4}] a single child

contributes a term to the sum of the form

E0

[
�0

p0
(X i

1, X i
3)+ �0

p0
(X i

2, X i
4) | {X i

1, X i
2}
]

=
∑

u �0(X i
1, u)

p0(X i
1)

+
∑

u �0(X i
2, u)

p0(X i
2)

,

where p0 is the marginal density of X1 under the current iterate.

5 Likelihood ratio test

The existence of linkage equilibrium can be tested by the likelihood ratio test, which
compares the likelihood of the observed data at the maximum likelihood estimators
of the haplotype frequencies under the general model and under the null hypothesis
of LE between the loci under the assumption that hkl =hk.h.l for k, l ∈{0, 1}). In our
situation, where the parents are missing, the ratio of the likelihoods of the observed
data under two parameters can be computed from the corresponding ratio of like-
lihoods of the ‘full’ data by the general formula

p�(W )
p�0 (W )

=E�0

(
r�(Z)
r�0 (Z)

|W
)

.

Here Z is a ‘full’ observation with density r� and W a transformation of Z, with
density p�. We apply this formula with � and �0 equal to the maximum likelihood
estimators ĥ and h̃ of the haplotype frequencies in the parents’ population under full
and null hypotheses, with Z the sample of variables Y i

1, Y i
2, Y i

3, Y i
4, X i

1, X i
2, X i

3, X i
4,

and with W the sample of observed unordered genotypes {X i
11, X i

21}, {X i
31, X i

41},
{X i

12, X i
22}, {X i

32, X i
42} (for i =1, . . ., n). The ratio of the likelihoods can then be

written in the form (cf. Equation 2)
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Eh̃

[
n∏

i =1

ĥY i
1
ĥY i

2
ĥY i

3
ĥY i

4

h̃Y i
1
h̃Y i

2
h̃Y i

3
h̃Y i

4

|DATA

]
.

As before the term p(X i
1, X i

2, X i
3, X i

4 |Y i
1, Y i

2, Y i
3, Y i

4), which according to Equation 2
appears in both numerator and denominator of the ratio has cancelled out,
because it is independent of the haplotype frequencies. By independence of the differ-
ent nuclear families the above expression can be rewritten as

n∏
i =1

Eh̃

[
ĥY i

1
ĥY i

2
ĥY i

3
ĥY i

4

h̃Y i
1
h̃Y i

2
h̃Y i

3
h̃Y i

4

| {X i
11, X i

21}, {X i
31, X i

41}, {X i
12, X i

22}, {X i
32, X i

42}
]
.

We first condition on the ordered genotypes (X i
1, X i

2), (X i
3, X i

4), which yields

n∏
i =1

Eh̃

[
Eh̃

(
ĥY i

1
ĥY i

2
ĥY i

3
ĥY i

4

h̃Y i
1
h̃Y i

2
h̃Y i

3
h̃Y i

4

| (X i
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2), (X i
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)

| {X i
11, X i

21}, {X i
31, X i

41}, {X i
12, X i

22}, {X i
32, X i

42}
]
.

After some algebra and using the fact that the probability p(X1, X2, X3, X4 |Y1,
Y2, Y3, Y4) does not depend on the haplotype frequencies, we can reduce the inner
expectation in the previous display to

pĥ(X i
1, X i

3)pĥ(X i
2, X i

4)
ph̃(X i

1, X i
3)ph̃(X i

2, X i
4)

.

This shows that the ratio of the likelihoods is equal to
n∏

i =1

Eh̃

[
pĥ(X i

1, X i
3)pĥ(X i

2, X i
4)

ph̃(X i
1, X i

3)ph̃(X i
2, X i

4)
| {X i

11, X i
21}, {X i

31, X i
41}, {X i

12, X i
22}, {X i

32, X i
42}
]
.

The latter expression also follows without algebra from the general formula with
the full data Z taken equal to the pairs (X i

1, X i
3), (X i

2, X i
4). The computation of the

expectation in the last expression consists of averaging over the resolutions of the
observed data into the ordered haplotypes of the sibs, with the appropriate weights.
The details for this step are already given in section 2.

Under the null hypothesis of LE two times the log likelihood ratio statistic is
asymptotically chi-squared distributed with 1 degree of freedom. The null hypothesis
is rejected for values of this statistic larger than the � upper quantile of the χ2

1-dis-
tribution.

6 Simulation studies and application to depression data

We evaluated the reliability of the estimation and testing methods in two simula-
tion studies. We were particularly interested in the effect of misspecifiying the
recombination fraction �.
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6.1. First simulation study, estimation

In the first simulation study we focussed on estimating the haplotype frequencies in
the parents’ and children’s populations. Estimation of the haplotype frequency in
the parents’ population is of interest, because the likelihood ratio test statistic for
testing LE (in the parents’ population) is based on these estimates.

The genotype data of 1000 sibling pairs in the children’s population were simu-
lated by gene-dropping: first the haplotypes in the parents’ population were simu-
lated and thereafter the haplotypes of the children were found by ‘dropping down’
these haplotypes according to Mendel’s laws and using a prespecified value of the
recombination fraction. For each child the unordered genotypes at the two loci were
inferred from their haplotypes, and estimates were computed solely based on these
genotypes and family structure.

Data simulation and haplotype estimation was repeated 1000 times. The accu-
racy of the estimates was summarized by the weighted (sample) mean square error
(MSE):

MSE= 1
1000

1000∑
m=1

1∑
i =0

1∑
j =0

(
ĥm

ij −hij

hij

)2

for ĥm
ij the maximum likelihood estimator of the true haplotype frequency hij in the

mth simulation. The MSE can be written as a sum of squared weighted sample
biases of the four haplotype estimators,

1∑
i =0

1∑
j =0

( ĥij −hij

hij

)2
,

with ĥij the mean of all 1000 estimates ĥm
ij , m=1, . . ., 1000 and a sum of weighted

(sample) variances of the four estimates:

1∑
i =0

1∑
j =0

1
1000

1000∑
m=1

(
ĥm

ij − ĥij

hij

)2

.

The MSE and the squared bias for estimators of haplotype frequencies in chil-
dren’s and parents’ populations computed in 30 different settings are reported in
Table 7. The sum of variances equals the difference between the MSE and the sum of
squared biases and can therefore be computed from the values given in the
table. The five columns of the table correspond to five different simulation scenarios,
each determined by a vector of haplotype frequencies and a recombination fraction
in the parents’ population. In the five scenarios the vector (h00, h01, h10, h11) and the
recombination fraction were equal to (0.17, 0.13, 0.25, 0.45) and �=0.5; (0.01, 0.09,
0.09, 0.81) with �=0.5 and �=0.3; and (0.4, 0.1, 0.1, 0.4) with �=0.5 and �=0.3,
respectively. The rows of the table correspond to different values of the recombina-
tion fraction used to compute the estimates; the odd rows give the MSE and the
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Table 7. Weighted means square errors and the summed squared weighted biases for the different
simulation studies

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
� MSE bias2 MSE bias2 MSE bias2 MSE bias2 MSE bias2

0.0 0.875 0.868 0.082 0.028 0.072 0.021 0.033 0.028 0.023 0.018
1.477 1.470 0.082 0.028 0.072 0.021 1.860 1.847 0.716 0.706

0.1 0.860 0.854 0.068 0.009 0.061 0.006 0.019 0.014 0.010 0.004
1.417 1.409 0.081 0.011 0.072 0.008 1.407 1.393 0.353 0.342

0.2 0.846 0.839 0.063 0.002 0.058 0.001 0.009 0.004 0.006 0.000
1.347 1.337 0.091 0.003 0.083 0.001 0.921 0.888 0.114 0.091

0.3 0.831 0.824 0.062 0.000 0.058 0.000 0.005 0.000 0.005 0.000
1.260 1.248 0.113 0.000 0.105 0.000 0.401 0.374 0.014 0.000

0.4 0.819 0.812 0.060 0.000 0.057 0.000 0.006 0.002 0.007 0.002
1.164 1.150 0.144 0.000 0.137 0.000 0.090 0.068 0.081 0.066

0.5 0.822 0.815 0.053 0.000 0.051 0.000 0.004 0.000 0.027 0.023
1.094 1.077 0.172 0.000 0.168 0.000 0.023 0.000 0.228 0.210

Note: The values for the children’s population are at the odd rows, and those for the parents’ popu-
lation at the even rows.

squared bias for the haplotype estimates in the children’s population whereas the
even rows show these values for the parents’ population. For the first, second and
fourth column the last two rows give estimates based on the true value and the other
rows estimates based on a misspecified model, whereas for the third and fifth column
the seventh and eighth rows refer to the correctly specified model. It is clear that the
bias of the estimates grows with the misspecification of the recombination fraction;
so incorrectly assuming that the recombination fraction equals zero, like the exist-
ing methods do (Becker and Knapp (2002, 2004) and Putter et al. (2007)), is not
sensible. Furthermore, the estimates are worse for the parents’ population than for
the children’s population. Although the mean squared error and the bias vary with
the haplotype frequencies there is no indication that misspecification of the recom-
bination fraction is worse for some haplotype frequencies. However, only a few set-
tings have been considered and strong conclusions concerning this can not been
made.

We performed a second study to evaluate the effect of slight misspecification of the
recombination fraction. This is of interest, since nowadays the position estimates of
genetic markers are fairly precise. We simulated the data on 1000 sibling pairs using
haplotype frequencies (0.17, 0.13, 0.25, 0.45) in the first study and (0.4, 0.1, 0.1, 0.4)
in the second one and recombination fraction �=0.25 for both, and computed the
maximum likelihood estimates of the haplotype frequencies in the children’s popu-
lation using five different recombination fractions: �= 0.20, 0.23, 0.25, 0.27, 0.30.
The weighted mean square errors based on 1000 replications and the corresponding
sum of squared weighted sample biases were equal to 0.675, 0.670, 0.668, 0.667,
0.666 and 0.663, 0.658, 0.656, 0.655, 0.654, respectively in the first study and in
the second study the MSE equalled 0.00642, 0.00626, 0.00618, 0.00612, 0.00612 and
1000 times the squared weighted sample biases were 0.0826, 0.0193, 0.0145, 0.0249,
0.1267. We conclude that the estimation method is robust against small deviations
of the assumed recombination fraction from the true value.
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6.2. Second simulation study, testing

In the second simulation study we evaluated the reliability of the likelihood ratio
test for testing linkage equilibrium by determining its level for a range of values of
the haplotype frequencies and recombination fraction in the parents’ population.
The data were simulated under the null hypothesis of linkage equilibrium, so the
haplotype frequencies were chosen so that hkl =hk.h.l for k, l ∈{0, 1}.

In the first simulation the genotypes of 10,000 sibling pairs were simulated under
the assumptions that h00 =h01 =h10 =h11 =0.25 and �=0.5. The likelihood ratio test
statistic based on the genotypes of the sibs was compared to the 0.05 upper-quantile
of the chi-squared distribution with 1 degree of freedom to decide whether the null
hypothesis was rejected or not. This whole procedure, simulation, estimation and
testing, was repeated 10,000 times. The fractions of rejected hypotheses, an estimate
of the level of the test, were equal to 0.0296, 0.0493 and 0.0508 when using the three
recombination fractions 0.0, 0.4 and 0.5 in the algorithm of section 5 respectively.
Thus misspecification of the recombination fraction (the first two of the three cases)
lead to a conservative test. In a second simulation study the true recombination frac-
tion was lowered from 0.5 to 0.3 (with the haplotype frequencies unchanged at 0.25).
The estimated levels of the likelihood ratio tests were 0.0332, 0.0487, 0.0504, 0.0530
and 0.0557 when using the recombination fractions 0.0, 0.25, 0.30, 0.35 and 0.5,
respectively, thus showing conservativeness for underspecification of the recombina-
tion fraction and a slight increase in the level under overspecification. In a third sim-
ulation the vector of haplotype frequencies was taken equal to (0.2×0.4=0.08, 0.2×
0.6=0.12, 0.8 × 0.4=0.32, 0.8 × 0.6=0.48) and the recombination fraction �=0.5.
This lead to estimated levels 0.1224, 0.0484 and 0.0494 when using recombination
fractions 0.0, 0.4 and 0.5, respectively, thus showing a much larger true level than
the nominal level under underspecification of the recombination fraction, in contrast
to the first two studies.

Based on these results we conclude that the level of the test is robust against
small deviations of the assumed recombination fraction from the true value, but
not against large deviations. Assuming that the recombination fraction equals zero
when the true value is close to 0.5 can lead to invalid tests, where the direction of
the deviation from the nominal level depends on the haplotype frequencies.

6.3. Application to depression data

This work was partly motivated by the investigation of epistatic interaction between
genes associated with childhood depression/anxiety. Two physically unlinked single
nucleotide polymorphisms (SNPs) that have been previously shown to jointly affect
phenotypic variation were tested to be in linkage disequilibrium. The SNP rs902790
in GPR156, a GABA(B) related G-protein coupled receptor, and the SNP rs1979370
in DNAI2 have been predicted to have gene-gene interactions from a genome-wide
screen of two-locus population differentiation. Subsequently, a significant interaction
effect between the two genes and childhood depression/anxiety has been found.
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Table 8. Estimates of the haploptype frequencies of
SNPs in GPR156 and DNA12 genes of a Dutch twin
cohort, under full and null hypothesis

Full Null

0.0858553 0.01626504 0.09364481 0.00853542
0.8305960 0.06728365 0.8228222 0.07499757

Therefore, we test here the hypothesis that these two non-synonymous SNPs are in
linkage disequilibrium in the same cohort where the phenotypic association has been
found. Based on a cohort of 483 monozygotic and 476 dizygotic twin pairs (see,
Boomsma, van Beẅsterveldt and Hudziak (2005) for a description of this cohort)
we estimated the four haplotype frequencies under both full model and null hypo-
thesis and �=0.5 as given in Table 8. Furthermore, we calculated the p-value of the
likelihood ratio test of the null hypothesis of linkage equilibrium to be p=0.21, indi-
cating a lack of evidence of LD between the two SNPs (if the recombination fraction
� is taken equal to 0.0 the p-value would be 0.26). We also calculated the estimates
based on only the monozygotic twin pairs, and found differences in only the second
decimal of the estimates, indicating only a minor difference between monozygotic
and dizygotic twins.

The prediction that the two epistatically interacting SNPs should be in LD could
not be confirmed in this dataset. However, it is interesting to note that in the original
paper it was the double heterozygous genotype that exhibited the highest levels of
depression/anxiety, driving the epistatic effect in the phenotypic association. How-
ever, the double heterozygous genotype class is a mixture of all four haplotypes,
possibly explaining the lack of epistasis induced LD in this particular situation.

7 Discussion

In this article we derived the likelihood ratio test for testing linkage disequilibrium
from unphased genotypic data from a sample of siblings lacking genotypic infor-
mation on their parents. It was essential to take the family structure into account,
as otherwise the significance level of the test would be incorrect. To this aim the
genotypic information on the parents was viewed as missing data, after which the
maximum likelihood estimators of the haplotype frequencies under the null hypo-
thesis of LE and under the full model could be computed with the EM-algorithm,
and the likelihood ratio statistic by a similar algorithm.

Our algorithm differs from algorithms in standard packages by not assuming that
the parents’ population is in LE, and differs from algorithms in Becker and Knapp
(2004) and Putter et al. (2007) by not assuming that the recombination fraction
between loci of interest is equal to zero. The algorithm is more involved and more
time consuming than in the last references, because fewer of the 64 numbers of
q(x1 |y1, y2) for x1, y1, y2 ∈ X are equal to zero. One application of the algorithm
is in searching for epistatic effects of linked or unlinked loci that have lead to LD
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in the population by selection. Wrongly assuming that the recombination fraction
is equal to zero may yield biased estimates of the haplotype frequencies and wrong
test results. This was illustrated in a simulation study. The simulation study also
showed that a slight misspecification of the recombinaton fraction hardly affected
the haplotype estimates and the level of the chi-squared test for LE. So, even if
the recombination fraction is not exactly known and a (rough) estimate is used, the
results are reliable.

The maximum likelihood estimators of the haplotype-frequencies in the parents’
population are computed with an EM-algorithm. Confidence regions for these fre-
quencies can be constructed from the likelihood ratio test-statistic for testing the null
hypothesis that hkl =h0

kl for k, l =0, 1 for given haplotype frequencies h0
kl , k, l =0, 1.

The (1 − �)100%-confidence region for the haplotype frequencies equals all values
for h0

kl , k, l =0, 1 for which the null hypothesis would not be rejected (with the level
of the test equal to �).

In section 4 we have compared the efficiency of estimating single locus frequen-
cies based on sibs and based on a random sample of an equal number of unrelated
individuals. If available, a random sample is preferable, but the loss in efficiency is
small provided the maximum likelihood estimator as discussed in this article is used
on the sibs and not the more obvious empirical estimator. These results are in line
with the results obtained by Putter et al. (2007).

The algorithm presented in this article is restricted to two loci and applicable
to sib-data only. However, the ideas behind the algorithm apply to multiple loci
and more general pedigrees. Extension to multiple loci is particularly straightfor-
ward, although computational efficiency in the case of a large number of loci will
require efficient pre-analysis of the possible genotypes given the data, as is done
in algorithms for unrelated individuals. The proposed method is computationally
heavy and might therefore not be feasible for genome-wide analysis. (In our cur-
rent R implementation testing one pair of loci takes about 1/2 a second on a lap-
top with Intel T7300 2 GHz processor.) Interesting pairs or trios of loci could be
selected at forehand in order to speed up the computations. These pairs or trios may
be found based on previous findings (in literature), biological relationships (path-
ways) or by using a fast algorithm in a first step. Ignoring the sibling correlation in
the estimation of haplotype frequencies yields unbiased estimates, and the compu-
tations are much faster. After selecting the most interesting pairs and trios the hap-
lotype frequencies can be re-estimated, now incorporating the correlations
between the siblings.
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