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Abstract When phenotypic, but no genotypic data are

available for relatives of participants in genetic association

studies, previous research has shown that family-based

imputed genotypes can boost the statistical power when

included in such studies. Here, using simulations, we

compared the performance of two statistical approaches

suitable to model imputed genotype data: the mixture

approach, which involves the full distribution of the

imputed genotypes and the dosage approach, where the

mean of the conditional distribution features as the imputed

genotype. Simulations were run by varying sibship size,

size of the phenotypic correlations among siblings, impu-

tation accuracy and minor allele frequency of the causal

SNP. Furthermore, as imputing sibling data and extending

the model to include sibships of size two or greater requires

modeling the familial covariance matrix, we inquired

whether model misspecification affects power. Finally, the

results obtained via simulations were empirically verified

in two datasets with continuous phenotype data (height)

and with a dichotomous phenotype (smoking initiation).

Across the settings considered, the mixture and the dosage

approach are equally powerful and both produce unbiased

parameter estimates. In addition, the likelihood-ratio test in

the linear mixed model appears to be robust to the con-

sidered misspecification in the background covariance

structure, given low to moderate phenotypic correlations

among siblings. Empirical results show that the inclusion in

association analysis of imputed sibling genotypes does not

always result in larger test statistic. The actual test statistic

may drop in value due to small effect sizes. That is, if the

power benefit is small, that the change in distribution of the

test statistic under the alternative is relatively small, the

probability is greater of obtaining a smaller test statistic. As

the genetic effects are typically hypothesized to be small,

in practice, the decision on whether family-based imputa-

tion could be used as a means to increase power should be

informed by prior power calculations and by the consid-

eration of the background correlation.

Keywords Family-based imputation � Mixture model �
Dosage model � Robustness

Introduction

Increasingly twin and family registries include both phe-

notypic data and genotypic data measured in family

members (Boomsma et al. 2006; Willemsen et al. 2010).

However, due to specific design or resources, the genotypic

data may be limited to a subset of the family members,

such as a single sibling. It is well recognized that limiting

association analysis to ‘the complete data participants’, i.e.,

discarding relatives whose data are limited to phenotypic

measures, is wasteful. As demonstrated by Visscher and

Duffy (2006) and by Chen and Abecasis (2007) the genetic

relations among the relatives can be used to impute geno-

types of relatives lacking observed genotypic data. Sub-

sequently including the relatives in the association study
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will increase the power to detect association, although

actual increase depends on the phenotypic correlations

among the relatives (Visscher and Duffy 2006) and on the

accuracy of the imputations (Chen and Abecasis 2007).

The goal of this article is to further investigate the

factors affecting power following family-based imputation.

We consider imputation of up to 3 sibling genotypes given

a single genotyped sibling or a single genotyped sibling

and one parent. Within these imputation setups we carry

out an extensive comparison of the performance of the two

statistical approaches, namely, the mixture model, which

involves the full distribution of the imputed genotypes and

the dosage approach, in which the mean of the conditional

distribution features as the imputed genotype. The com-

parison is performed for two minor allele frequencies

(MAF) and a range of background correlations. Sibling

data only are included into the association analysis, where

the sibhips vary from 1 (the genotyped sib) to 4 (1

observed, 3 imputed genotypes). To check the validity of

our simulation program and the power calculations, we also

report the power in the full information model, as an

indication of the maximum power, attainable when all

siblings in a sibship have observed genotypes.

Secondly, we examined the effect on power of misspe-

cification of the background covariance structure in family-

based association analysis. Imputing genotypes and

extending the model to include sibships of size two and

greater does require modeling the background covariance

matrix. Such modeling may be of interest substantively, or

as a means to reduce the parameter space. As the calcu-

lation of power to detect a measured (imputed) genetic

effect will require some choice of background covariance

structure, one may ask whether misspecification will affect

the statistical power. To address this question, we simulate

sibling phenotypes according to an additive genes/unique

environment (AE) model and next, we fit two alternative

models to these data: a correctly specified AE model,

consistent with the model used for simulation, and a mis-

specified common environment/unique environment (CE)

model. We compare the observed powers of the two

models, with and without the misspecification. As model

misspecification is of interest regardless of whether geno-

types are imputed or not, we study its effect on power both

in the ‘all genotypes observed’ setting (i.e., the full infor-

mation setting) and in the setting in which some genotypes

were imputed (i.e., the dosage setting).

Finally, we illustrate empirically the results obtained

using simulations. In one empirical dataset we sought to

quantify the power gains conferred by family-based impu-

tation when the trait of interest is assessed on a continuous

scale. This analysis aims to replicate 112 of the 180 height

single nucleotide polymorphisms (SNPs) reported by Lango

Allen et al. (2010) in a Netherlands Twin Register (NTR)

dataset consisting of 5,910 siblings with observed and

imputed genotypes. We explore the mixed results by means

of the analysis of simulated data. The second illustration

considers tests of association between observed and kin-

ship-based imputed SNPs and a discrete trait—smoking

initiation. Specifically, in a dataset comprising of 5,981

observed and imputed sibling genotypes we reran the

analysis of Vink et al. (2009) for 20 of the 41 SNPs asso-

ciated with smoking initiation in their discovery sample.

Both analyses used solely sibling data and were carried out

first in the ‘complete data’ samples and then by extending

the samples to include the imputed sibling genotypes.

Methods

Models for sibship-based association

We simulated genotypic and phenotypic data for nuclear

families with four siblings. In the full information setting,

we computed the power to detect genetic association using

the complete information, i.e., 1 to 4 sibling genotypes and

phenotypes. Next, we limited the genotypic information to 1

sibling, or to 1 sibling and 1 parent, and, conditional on this

information we calculated the missing genotype distribution

in the remaining siblings. In this limited information setting

we considered the power of the mixture model and of the

dosage approach. Below we provide the details of the three

modeling approaches and of our simulations.

The full information model

We considered a diallelic locus with alleles A and a, and

frequencies p (A) and q = 1 - p (a), observed in nuclear

families with four siblings. Let gi denote the vector of

genotypes of m (1 to 4) sibs in family i, where possible

elements of gi are AA, Aa, and aa (Falconer and Mackay

1996). Throughout, the locus has an additive effect on the

phenotype, so we can assign the values d, 0 and 2d to the

three possible genotypes, where the value of d is dictated

by the minor allele frequency and our effect size. Letting

the allele A be increaser allele, we code 1 for the genotype

AA, 0 for the genotype Aa, and 21 for the genotype aa.

Let xij denote the vector of genotype indicators (21, 0 or

1). We regressed the phenotypes yi observed in m sibs in

family i (i.e., yi
t = [yi1...yim], where t denotes transposi-

tion) on the indicators:

yi¼b0þxi � b1þei; ð1Þ

where b0 is an m vector containing the intercept (e.g., for

m = 4, the elements of b0 are b0
t = [b0 b0 b0 b0]), b1 is the

scalar parameter of main interest, and ei is the m vector of

residuals. Conditional on genotype, the means are
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l1 = b0 ? b1, l2 = b0, or l3 = b0 - b1, and the residuals

are distributed e|x * N(0,S0), where S0 is the

m 9 m positive definite covariance matrix. In the OpenMx

specification, the background covariance matrix was esti-

mated using the decomposition S0 = DDt, where D is an

unconstrained lower triangular matrix.

We refer to this model as the full information model, as

this model is based on the complete genotype information

measured in all siblings in the sibship, i.e., all elements of

xi are observed. In this setting, the power analyses were

based on both exact data simulations (Van der Sluis et al.

2008) and on the standard Monte Carlo procedure. In the

latter, power was computed as the proportion of analyses in

which minus twice the difference in the log likelihoods the

two models—with and without the genotypic effect—is

greater than a critical value associated with the chosen

alpha (i.e., ca = 6.64 given a = .01). The Monte Carlo

procedure was employed for consistency: in the mixture

approach, we do not have sufficient statistics and therefore

cannot conduct exact power calculations.

The mixture approach

We considered the situation in which phenotypic data have

been collected in sibships of sizes 2, 3, and 4, while

genotypic data are limited to 1 sibling, or to 1 sibling and 1

parent.

Conditional on sib 1 genotype (gi1), we calculated the

probability of the sibling j (j = 2...m) genotype (gij) as

prob gijjgi1

� �
= prob gij& gi1

� �
= prob gi1ð Þ ð2Þ

(Chen and Abecasis 2007). The probabilities prob(gij &

gi1) and prob(gi1) can be derived from Mather and Jinks

(1977, ch. 7). Given m sibs, we calculate 3m-1 conditional

probabilities given the sib 1 genotype. This procedure is

followed for size 3 and 4 sibships, where conditionally on

the genotypic information within a family, the siblings 2 to

4 genotypes are independent events.

Equation 2 can be extended to include parental genotype

(gp) if this is available additionally to the sib 1 genotype.

Thus, more accurate conditional probabilities of the sib j

(j = 2...m) genotype are obtained as:

prob gijjgi1& gp

� �
= prob gij& gi1& gp

� �
= prob gi1& gp

� �

ð3Þ

Again the relevant probabilities can be derived from

Mather and Jinks (1977). To provide an indication of the

values of the posterior probabilities, these are shown in

Table 1 for MAF of .2. Table 1 includes the unconditional

Hardy–Weinberg (H–W) probabilities and the genetic

probability index (GPI; Kinghorn 1997), which is a

measure of the distance of the imputed probabilities to

the H–W probabilities. The measure ranges from 0 (H–W

probabilities) to 100 (genotype observed). We return to this

measure in the discussion.

For instance, given aa observed in sib 1, the genotype

probabilities of AA, Aa, and aa are .01, .18, and .81,

respectively. Given aa observed in sib 1 and in the parent,

these probabilities are .0, .10, and .90.

To test for association, we fitted a mixture model that

incorporates the regression model defined in Eq. (1). That

is, we regressed the observed phenotypes on the possible

elements of xij (i.e., 1, 0, -1), and we weighted the asso-

ciated densities by the conditional probabilities calculated

conditional on sib 1, or on sib 1 and parent 1.

The mixture fitted to the data is a 3m-1 component

mixture, where the proportion of sibpair genotypes within

each component of the mixture is determined by the con-

ditional probabilities (i.e., the finite mixture proportions).

For example, consider a sibship of size 2, where we have at

our disposal the phenotypes observed in both siblings yi1

and yi2, the genotype observed in sib 1 (gi1) and 3 proba-

bilities based on gi1 (and on parental genotype gp, if

available). Conditional on the sib 1 observed genotype (and

possibly gp) the distribution of the vector yi of the observed

phenotypes is assumed to follow a three component

bivariate normal mixture. This mixture distribution can be

expressed as the sum of 3 component distributions

weighted by the fixed mixing proportions pk (i.e., the

probabilities, conditional on the observed genotype, of

impute genotype AA, Aa, or aa) of sib-pairs in each

component:

Table 1 Posterior probabilities of the sibling 2 (s2) genotype AA,

Aa, or aa, conditional on the observed genotype in a single sib (s1) or

in a single sib and a single parent (p1), and given MAF = .2. The

H–W probabilities are the unconditional probabilities. The GPI is

Kinghorn’s genetic probability index, a distance measure (ranging

from 0 to 100) of the imputed probabilities from the H–W

probabilities

Observed Posterior probabilities of the s2

genotype

GPI

AA Aa aa

None (H–W) .04 .32 .64 0

s1 AA .36 .48 .16 49.33

s1 Aa .06 .58 .36 38.67

s1 aa .01 .18 .81 47.29

s1 AA and p1 AA .60 .40 .00 68.92

s1 Aa and p1 AA .10 .90 .00 86.67

s1 AA and p1 Aa .30 .50 .20 45.33

s1 Aa and p1 Aa .10 .50 .40 28.65

s1 aa and p1 Aa .05 .50 .45 26.69

s1 Aa and p1 aa .00 .60 .40 41.38

s1 aa and p1 aa .00 .10 .90 72.27
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f yi; p; S; lð Þ¼ R3
k¼1pkNk yi; S0;lkð Þ ð4Þ

in which S equals [S0 S0 S0], the matrix l contains the

means vectors of each component [l1, l2, l3] (possible

elements of lk are b0 ? b1, b0, and b0 - b1), p = [p1, p2,

p3] where pk represents the fixed mixing proportions of sib-

pairs within the k-component distribution, and Nk(yi;

S0,lk) represents the k-variate normal density function

within each component. The number of components con-

ditional on the sib 1 genotype is 3m-1, hence in the case of

3 (4) siblings, we have 9 (27) components. As in the full

information setting, in the specification in OpenMx, we

modeled the background covariance matrix using the

decomposition S0 = DDt. We imposed no additional con-

straints on D.

The dosage approach

In this approach, we calculated the expected value of the

genotype indicator based on the conditional probabilities

estimated as defined by the Eqs. (2) or (3). That is, con-

ditional on the sib 1 genotype (gi1), and given our coding of

1 (AA), 0 (Aa), and -1 (aa), the average indicator is

calculated as:

x�ij = prob gij = AAjgi1

� �
� prob gij = aajgi1

� �
ð5Þ

where xij
• represents the vector of expected number of

increaser alleles in sib j, and xi
• = [xi1 xi2

• ...xim
• ] in family i.

We specify the regression model for the observed

phenotype y in family i as follows:

yi¼b0þx�i � b1þei ð6Þ

where, as above, b0 is an m vector containing the intercept,

b1 is a scalar parameter, and ei is the m vector of residuals.

The residuals are distributed approximately as e|x *
N(0,S1). The subscript serves to indicate that the condi-

tional covariance matrices—S0 and S1—are not expected to

be exactly equal, as the variance of eij|xij
• is slightly lower

than the variance of eij|xij (Visscher and Duffy 2006; Chen

and Abecasis 2007). As in the previous approaches, the

expected background covariance matrix is modeled using

the Cholesky decomposition. We computed the power to

detect genetic association in this model by the means of the

Monte Carlo procedure.

Model fitting

We implemented the three models in OpenMx (R package

version 1.0.5; Boker et al. 2011). The full information

model and the dosage model were also implemented in the

R-nlme package (using the lme function; Pinheiro et al.

2012). This implementation is identical to the OpenMx

implementation, except that the conditional covariance

matrix was constrained as S1 = JrA
2 Jt ? re

2I, where J is

the m x 1 unit vector, and I is the (m x m) identity matrix.

This specification is consistent with the simulation in the

full information model, but slightly misspecified in the

dosage model: as mentioned above, the variance of eij|xij
•

(j = 2...m) is lower than the variance of eij|xij. We expect

this misspecification to be trivial, as the effect size of the

QTL is small (1 %; see below). In all cases the models

were fitted by means of maximum likelihood estimation.

Simulation details

1,000 genotypic and phenotypic datasets comprising 500

nuclear families with 4 siblings were simulated in R (R

development core team 2005). We first simulated parental

genotypes at a single diallelic locus in H–W equilibrium

and, given random mating, we used these to generate the

sibling genotypes. We assumed the diallelic genotype

explained 1 % of the phenotypic variance. As mentioned

above, we varied the minor allele frequencies (.2 and .5)

and the background phenotypic correlations among siblings

(.2 to .8, by 2). Note that the effect size was 1 % regardless

of MAF. We calculate and report the increase in power

relative to an association analysis which includes only the

subjects with observed genotypes, given the a of .01. All

simulations were carried out using the R software package

(http://www.r-project.org/) and were run on the Genetic

Cluster Computer (http://www.geneticcluster.org).

Misspecification of the background covariance

structure

Next, we studied the effect of misspecification of the

background covariance matrix (i.e., more serious than the

difference between S0 and S1) in family-based association

analysis. Sibling phenotypes were simulated according to

an AE model, which included: (a) a SNP with equally

frequent alleles, accounting for 1 % of the phenotypic

variance, (b) background heritability of .8, .45 and .15, and

(c) unshared environmental effects. We considered nuclear

families with sibship size 2 [pairs of monozygotic (MZ)

and dizygotic (DZ) twins] and 4 (pairs of twins and 2

siblings), where genotypes as well as phenotypes were

observed in all siblings in the sibship (the full information

setting). Furthermore, we simulated the limited information

setting, where some genotypes were missing (the dosage

setting). That is, in this latter setting, 50 % genotypes were

missing among parent 1 and parent 2 and 50 % genotypes

were missing among each sibling in the sibship.

To model association, two alternative models were fitted

to the AE simulated data: (a) the correctly specified AE

model, and (b) a CE model, where the background corre-

lations among siblings in the sibship were (incorrectly)
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constrained to be equal. To obtain empirical estimates of

the power, we carried out 10,000 replications and we

computed the proportion of datasets in which the genetic

effect was detected, given four levels of significance

(a = 10-2, 10-3, 10-4, and 10-7).

In addition, we verified the type I error rates, in both

settings, when fitting the model with and without the

misspecification. For this, sibling data were simulated

under the null model of no association given the conditions

described above; we then evaluated the effect of back-

ground misspecification on the type I error rates at alpha

levels of 10-2, 10-3, and 10-4 by examining 10,000 rep-

licates (100,000 replicates for the a = 10-4 cell).

Empirical illustrations

Height data

We illustrated empirically the results obtained using sim-

ulations. The first analysis examines the power advantages

conferred by family-based imputation when the trait tested

for association is continuous. First we performed family-

based imputation of 112 of the 180 SNPs previously

associated with height (Lango Allen et al. 2010) and next,

we carried out a sibship-based association analysis. We ran

the analysis with and without the imputed sibling geno-

types, and we assessed the association signals in the two

samples.

The data set used for this illustration consisted of 2,164

Dutch nuclear families from the NTR, where observed or

self-reported height data were available for 5,910 siblings

born between 1914 and 1991 (N = 3,667 females with a

mean height of 169.89 cm and SD = 6.43 cm, and

N = 2,243 males with a mean height of 183.16 cm and

SD = 7.07 cm). Families were included if at least one

member had observed genotypes. Height was measured in

adults at 18 years or older, and data of individuals with

multiple measurements available underwent consistency

checks (i.e., 236 siblings, representing 1.3 % of the 17,195

siblings who formed the initial phenotypic sample were

discarded due to differences larger than 5 cm between

multiple measures). As imputation exploits biological

relationships within nuclear families, we also excluded

self-reported half-siblings and non-biological parents

(N = 108 individuals, .5 % of the phenotypic sample).

Genotypic data were limited to 2,410 siblings and 1,437

parents. Conditional on the observed genotypes we impu-

ted 3,500 siblings who had height but no genotype data. To

impute missing sibling genotypes we used our own R script

(CSIBPROB, see http://www.psy.vu.nl/nl/over-de-faculteit/

medewerkers-alfabetisch/medewerkers-mp/minica-c-c/index.

asp).

In the next step, we carried out a linear mixed association

analysis (Visscher et al. 2004), first by limiting the sample to

the observed genotypes and second, by extending the sample

to incorporate imputed siblings genotype data by using

genotype dosages. Height was regressed on the genotype

indicator variable and on the observed covariates (sex and

birth cohort) modeled as fixed effects. As the sample

included monozygotic twins (i.e., N = 656 MZ twin pairs)

and full siblings, we modeled the background covariance

structure by an AE model. Like in the simulations, the

association analysis was limited to the sibling data.

The analysis of smoking initiation

The second empirical example illustrates the power gains

obtained by the inclusion into an association analysis of

imputed sibling genotypes when the phenotype of inter-

est is dichotomous. Specifically, we reran the associ-

ation analysis conducted by Vink et al. (2009) for 201

SNPs of the 41 SNPs associated with smoking initiation

(at p-values \ 10-4) in their discovery sample. The origi-

nal analysis was ran in unrelated individuals (N = 3,497),

while the present one is sibhip-based, performed by

implementing the above described two-step approach (i.e.,

imputation of missing sibling genotypes, which are sub-

sequently incorporated in an association analysis).

Measured phenotypes were available for 17,641 siblings

in 10,200 Dutch nuclear families from the NTR. Based on

self-report, half-siblings (N = 78) and non-biological par-

ents (N = 192) were excluded (representing .9 % of the

initial phenotypic sample). As in the previous empirical

example, solely families with at least one parental or sib-

ling observed genotype were retained for the analysis.

There were 2,210 families that met this criterion. In these

families 2,458 siblings and 1,420 parents had observed

genotypic data which were exploited to impute siblings

with measured phenotypes but lacking genotypic data. The

final phenotypic sample comprised of 3,125 controls (never

smoked tobacco) and 2,856 cases (ever smoked tobacco);

the siblings were born between 1914 and 1993 (mean

age = 42.62 years, SD = 11.61) and 61 % of the sample

were females. There were 86 siblings with observed

genotypes but no smoking-initiation data.

To model association we used an AE generalized mixed

effects model, fitted firstly to the sample limited to the

‘complete data’ siblings, and then to the sample incorpo-

rating siblings with imputed genotypes by using dosages.

Sex and age were included as covariates. Model fitting was

performed by using the MASS package (the function

glmmPQL, Venables and Ripley 2002) and the nlme

package for R (Pinheiro et al. 2012).

1 Of the 41 SNPs, 20 SNPs were available in the current sample.
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Results

The full information setting

We first evaluated the power to detect association in the

full information setting to obtain an indication of the

maximum power given maximum information (i.e., all

siblings in the sibship have measured genotypes and phe-

notypes). This verifies the validity of our simulation pro-

gram and our subsequent power calculations.

The results are displayed in Fig. 1 for the exact calcu-

lations and numerical values are shown in Table 2. As

mentioned, the effect size was chosen to equal 1 %

regardless of MAF, so that these results apply equally to

MAF = .2 and MAF = .5.

Figure 1 (left) demonstrates the effect of the background

correlation on power, in 500 families comprising size 1, 2,

3, or 4 sibship. The differences in power between the

sibships sizes are expected given the differences in sample

sizes (500 singletons confer less power than do 500 size 4

sibships). This is of little concern as we are interested in the

change in power associated with the use of imputed

genotypes within each sibship size. However, merely for

comparison, we also calculated the power for a constant

number of individual cases, specifically, 125 size 4 sib-

ships, 166 size 3 sibships, 250 size 2 sibships, and 500

singletons. These results are shown in Fig. 1 (right). As

Visscher et al. (2008) noted, power suffers when related

individuals are included into analysis for small to moderate

phenotypic correlations. However, for larger phenotypic

correlations, the power of a family based design exceeds

the power of an association analysis conducted in unrelated

individuals, given constant genotyping resources.

The mixture and dosage approaches

Next, we considered the genotypic sample consisting of

both observed and imputed sibling genotypes, and within

this setting we examined the power and the estimation

precision of the mixture model and of the dosage approach.

Figure 2 depicts the results of the power analyses. We

plotted the power relative to the expected power afforded by

a sample size of 500 singletons, given the alpha of .01. The

actual power in this case is .37 (Table 2), but this is scaled

to equal 1, and the observed power is divided by this .37.

Across all settings considered here, there was no dif-

ference in the observed powers of the mixture model and

the dosage approach. We found the power of the two

approaches was similarly affected by three factors: the

phenotypic correlation (see also Visscher and Duffy 2006),

the sibship size (2 to 4), and the accuracy of the imputation

(based on 1 sibling or on 1 sibling and 1 parent).

When the imputation was based on 1 genotyped sibling,

appreciable increase in power is observed only given rel-

atively strong or weak background phenotypic correlations

among the sibs. That is, when the background correlations

were either small (i.e., \.4) or high (i.e., [.6) imputing

siblings increased power by about a factor of 1.2–2 relative

to ‘no imputation analysis’. Phenotypic correlations had a

similar, albeit weaker effect, on the power given imputa-

tion based on 1 sibling and 1 parent genotypes. Within this

setting, the association analysis including imputed sibling

genotypes had greater power given low and high pheno-

typic correlations and it had reduced power for moderate

phenotypic correlations. However, even for phenotypic
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Fig. 1 The expected power in

the full information setting for

various background

correlations, given a = .01,

MAF = .2 and an effect size of

1 %. Left 500 families with 1, 2,

3 and 4 siblings. Right 500

genotyped siblings regardless of

sibship size (i.e., 500 singletons,

250 size 2 sibships, 166 size 3

sibships, and 125 size 4

sibships)

Table 2 Power in the full information model given an effect size of

1 %, a = .01 and N = 500 families. Power is shown as a function of

the sibship size (nsib) and background correlation. In the case of a

singleton (nsib = 1), the background correlation is not relevant

background correlation

nsib .2 .4 .6 .8

4 .93 .95 .98 .99

3 .85 .86 .93 .99

2 .68 .69 .76 .93

1 .37 .37 .37 .37
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correlations in this range this analysis was about a factor of

1.2–1.3 more powerful than the ‘no imputation’ analysis.

The power also increased with increasing sibship size.

Apart from the moderate correlations condition, power was

always larger in larger sibships, where, for instance, a size 4

sibship was about 10 % more powerful than a size 2 sibship.

Furthermore, as is to be expected, the design in which

imputation was based on 1 parent and 1 sibling genotypes

was found consistently more powerful than the design in

which the imputation was based on 1 sibling genotype

only, with average power gains of 10–15 %, across all

conditions. In this setting, the additional information about

parental genotype allowed an increase in the accuracy of

the imputed genotypes, an increase that resulted in greater

precision of estimating the genetic effect, and therefore

was associated with greater power.

Tables 3 and 4 display the mean and the standard

deviation of the estimate of b1 for MAF = .2 obtained in

the mixture model and in the dosage model, as fitted in

OpenMx (MAF = .5 produced comparable results). The

averages of the estimate of the genetic effect b1 are close to

their true value both when the analysis is limited to the

observed genotypes and when it additionally includes

imputed siblings. The variation in the standard deviation of
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Fig. 2 The empirical power of

the dosage model (top) and the

mixture model (bottom),

relative to the expected power

afforded by 500 singletons (the
black bolded line), given

a = .01. The grey lines the

empirical power afforded by

sibships sizes 2, 3 and 4 when

imputation is based on 1

genotyped sibling. The black
lines the empirical power

afforded by sibships sizes 2, 3

and 4 when imputation is based

on 1 sibling and 1 parental

genotypes. Power calculations

are based on 1,000 datasets

comprising 500 families, each

dataset with a simulated genetic

variant explaining 1 % of the

phenotypic variance, regardless

of MAF

Table 3 Average estimates of

the genetic effect b1 and the

associated standard deviations

(in parenthesis) for the mixture

models, for MAF = .2. The true

parameter value is b1 = .1767

(1,000 replicates)

Models Sibship

size

Background correlations

.2 .4 .6 .8

Observed genotypes 1 .176 (.079) .176 (.077) .175 (.078) .180 (.076)

Conditional probabilities given 1

sibling genotype (gi1)

2 .176 (.075) .176 (.077) .175 (.078) .180 (.070)

3 .176 (.073) .176 (.076) .175 (.078) .180 (.067)

4 .177 (.073) .176 (.076) .176 (.077) .180 (.064)

Conditional probabilities given 1 sibling

and 1 parent genotypes (gi1&gp)

2 .176 (.070) .176 (.073) .175 (.071) .178 (.062)

3 .176 (.067) .176 (.070) .176 (.067) .177 (.057)

4 .176 (.064) .175 (.068) .176 (.066) .177 (.053)
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the parameter estimate reflects the variation in power.

Including siblings with missing genotypes yields unbiased

estimates of the genetic effect and, as it leads to an increase

in the sample size, it allows for higher estimation accuracy.

The results obtained using the dosage model imple-

mented in OpenMx and nlme are quite similar (results not

shown), notwithstanding that the background covariance

matrix is highly constrained in nlme, but unconstrained in

OpenMx.2 This is expected as in the nlme specification the

model for the background covariance matrix is almost

completely consistent with the data generating model (the

minor difference stemming from the differences between

S0 and S1, as mentioned above).

The effects on power of misspecification

of the background covariance structure

Figure 3 displays the results for the full information

setting.

Figure 3 (left) indicates that in the full information set-

ting the observed power of the misspecified CE model was

in good agreement with the power of the correctly specified

AE model for weak to moderate background correlations.

With an increase in the background correlations we noted a

slight discrepancy among the powers of the two models

(Fig. 3, right). The discrepancy is higher (up to about 9 %)

for the size 2 sibship than for the size 4 sibship. Results for

the dosage model were similar (data not shown).

We also assessed the empirical type I error rates. Results

for both the full information setting and the dosage model

are given in Table 5.

As can be seen in Table 5 results were akin in the two

settings: they indicate that for low and moderate background

correlations, the misspecification of the background

covariance structure yields empirical type I error rates that

are consistent with the specified alpha levels. With these

settings, the likelihood-ratio test in the linear mixed model

appears to be robust to the degree of misspecification of the

family structure considered here. However, one can note that

when the background correlations are high (MZ correla-

tion = .80), in the incorrect model the rate of type I errors is

higher than expected. This effect is stronger in the size 2

sibship than in the size 4 sibship where the misspecification

pertains to a single element of a 4 9 4 covariance matrix.

Finally, we note that given the scenarios considered, the full

information model and the dosage approach yielded similar

results, confirming that imputation per se does not affect the

type I error rates (see also Chen and Abecasis 2007).

Application: height data

The results of the sibship-based association analysis aimed

at replicating 112 height SNPs in the NTR sample are

illustrated in Fig. 4.

Imputation enhanced the association signal at some loci,

notwithstanding that the sibling correlations are in the region

where the power gains are lowest (i.e., siblings are correlated

about .45 for height, e.g., Visscher et al. 2007). To provide an

illustration, we show in Table 6 the markers—associations

with p-values\10-2 based on the observed data—for which

we obtained the largest increase in v2 by including into

analysis imputed sibling genotypes.

One SNP only—rs1351394—reached a significant asso-

ciation with height (p-value \ .01/112), and clearly the

association signal was stronger in the sample that included

imputed siblings genotypes, i.e., v2 = 20.599 versus

v2 = 19.711 in the no imputation analysis, respectively. In

addition, we report the associations with a p-value\ .01, as

the present sample comprising 5,910 observed and imputed

sibling genotypes was underpowered to yield more signifi-

cant Bonferroni3 corrected results. These results indicate that

imputation increased the power to detect association, which

Table 4 Average estimates of

the genetic effect b1 and the

associated standard deviations

(in parenthesis) for the dosage

models, for MAF = .2. The true

parameter value is b1 = .1767

(1,000 replicates)

Models Sibship

size

Background correlations

.2 .4 .6 .8

Observed genotypes 1 .176 (.079) .176 (.077) .175 (.078) .180 (.076)

Dosage conditional on

1 sibling genotype

2 .176 (.075) .176 (.077) .175 (.078) .180 (.070)

3 .176 (.074) .176 (.077) .175 (.078) .180 (.067)

4 .177 (.073) .177 (.076) .176 (.077) .181 (.066)

Dosage conditional on 1

sibling and 1 parent genotypes

2 .176 (.070) .176 (.073) .176 (.071) .179 (.063)

3 .176 (.067) .176 (.071) .176 (.067) .178 (.059)

4 .176 (.065) .176 (.069) .177 (.067) .178 (.056)

2 Fitting the constrained model in Mx and nlme produced identical

results.

3 For convenience we have chosen the Bonferroni method to correct

for multiple testing, although this procedure can be conservative

(Laird and Lange 2011). However, in Fig. 4 we plot the values of the

noncentrality parameter of the likelihood ratio test, as these values do

not depend on the chosen alpha, or the correction for multiple testing.

They are illustrative of the variation in power—before and following

imputation—given various effect sizes.
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is consistent with our simulation results. That is, for some

SNPs the v2 as obtained when all sibling data are used is up to

a factor of 1.85 larger than the v2 as obtained when the

analysis is limited to siblings with observed genotypes. The

v2 averaged over the 112 SNPs was v2 = 2.499 in the

imputed sample, a value larger than the average v2 obtained

based on the ‘observed sample’ (v2 = 2.285).

Importantly, the results also indicate that the value of test

statistic may drop following imputation4 (i.e., the points below

the diagonal in Fig. 4). We conjectured that this drop in value

Table 5 Type I error rates in the Full information and in the Dosage

settings, in the correctly specified model (AE background) and in the

misspecified model (CE background, results displayed in italics). We

simulated sibling phenotypes for 500 monozygotic and 500 dizygotic

families and a SNP having a MAF = .5 and explaining 1 % of the

phenotypic variance. We varied the sibship size and the magnitude of

the MZ background correlations (10,000 simulations/cell for the cells

a = 10-2 and a = 10-3; 100,000 replicates for the a = 10-4 cell)

Sibship size Background correlations Level of significance No missing genotypes AE/CE Observed and imputed genotypes AE/CE

2 .15 a = 10-2

a = 10-3

a = 10-4

.010/.010

.001/.001

.0001/.0001

.009/.009

.001/.0009

.00007/.00008

.45 a = 10-2

a = 10-3

a = 10-4

.010/.012

.001/.001

.00007/.0001

.010/.012

.0008/.001

.00009/.0001

.80 a = 10-2

a = 10-3

a = 10-4

.009/.01

.001/.002

.0001/.0004

.01/.01

.001/.002

.0001/.0002

4 .15 a = 10-2

a = 10-3

a = 10-4

.010/.010

.0009/.001

.0001/.0001

.009/.009

.001/.001

.0001/.0001

.45 a = 10-2

a = 10-3

a = 10-4

.008/.011

.001/.001

.00009/.0001

.008/.010

.0009/.001

.00007/.0001

.80 a = 10-2

a = 10-3

a = 10-4

.01/.01

.001/.002

.0001/.0002

.009/.01

.001/.001

.0001/.0002
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Fig. 3 The empirical power to detect a genetic variant with a

MAF = .5, that explains 1 % of the trait variance in the correctly

specified AE linear mixed model (the grey line) and in the

misspecified CE linear mixed model (the black dashed line). In the

correct model the background covariances among identical twins

were specified as twice larger than in fraternal twins. In the incorrect

model the background covariance matrix was estimated subject to

equal covariances. The empirical power was computed for 10,000

datasets (100,000 datasets for the 10-7 cell) consisting of 500 MZ and

500 DZ families with sibships of size 2 and 4

4 As an additional check, the analysis of height data was repeated in

Merlin (Abecasis et al. 2002), and this analysis produced similar

results (results not shown).
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is due to the small effect sizes given that the 180 SNPs iden-

tified explain only about 10 % of the height variance (Lango

Allen et al. 2010). While power is increased by the imputation,

the actual test statistic may still drop in value, as it remains a

single realization of the distribution of the test statistic. This is

more likely to occur if the gain in power is relatively small. To

test this, we carried out additional simulations.

Additional simulations: explaining height results

Genotypes and phenotypes of a trait with heritability of

80 % (provided that the heritability of height has been

estimated at about 80 %, Silventoinen et al. 2003) were

simulated for 100 samples consisting of 500 MZ and 500

DZ families with size 4 sibships. The effect sizes of the

genetic variants were varied such that they explained .1 %,

.5 % and 1 % variance in the phenotype. To mimic the

height data we also varied the percent of missingness

among the observed parental and sibling genotypes: 50 %

genotypes were missing among parent 1 and parent 2 and

25, 60, 90, and 95 % genotypes were missing among sib-

ling 1, sibling 2, sibling 3 and sibling 4, respectively.

In the first step, we imputed the missing sibling geno-

types conditional on the observed genotypic data. We then

ran the association analyses in each of the three samples: the

full information sample, where all siblings (N = 4,000) had

complete phenotype and genotype data, the imputed sam-

ple, consisting of siblings with observed (N = *1,600) and

imputed genotypes (N = *2,400), and the limited sample,

where missing genotypes were not imputed (N = *1,600

genotypes observed). Figure 5 displays the results.

The v2 trend as obtained in the three samples was expected

to decrease as the genotypic information decreases, with the

Fig. 5 Chi-square as obtained in three samples: sample 1, consisting

of siblings with complete phenotype and genotype data (N = 4,000),

sample 2, consisting of siblings with observed (N = *1,600) and

imputed genotypes (N = *2,400), and sample 3, where missing

genotypes were not imputed (N = *1,600 observed genotypes).

Results are shown for three effect sizes (100 simulated samples). The

dotted lines show analyses where the chi-square as obtained in

the three samples is monotonically decreasing, as expected. The

continuous lines show results inconsistent with this expectation
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Fig. 4 Chi-square values obtained in the analysis that incorporates

3,500 imputed sibling genotypes along with the 2,410 observed

genotypes relative to the chi-square values obtained in the ‘‘no

imputation analysis’’. In the latter analysis the sample is limited to the

2,410 observed sibling genotypes. 112 SNPs were tested for

association with height. Shown in black are the 9 hits at a = .01

based on the observed data. Points below the diagonal are due to drop

in test statistic following imputation

Table 6 Increase in v2 obtained in a family-based association anal-

ysis that includes 2,410 observed and 3,500 imputed sibling geno-

types, relative to an association analysis limited to the observed

genotypes. The first 4 SNPs are hits at a = .01, the SNP rs1351394 is

a Bonferroni significant result

SNP v2 (no imputation

analysis)

v2 (imputed siblings

included)

v2

increase

rs1351164 7.467 10.972 1.47

rs724016 9.174 12.967 1.41

rs4282339 7.289 9.063 1.24

rs7759938 7.918 14.640 1.85

rs1351394 19.711 20.599 1.05
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imputed sample yielding a v2 value that is intermediate

between those obtained in the full information setting and in the

limited sample. We found that, for the .1 % effect size case, we

observed this trend in only 39 % of the analyses, these results

are shown as dotted lines in Fig. 5a. However, an increase in

the size of the effect was accompanied by an increase in the

proportion of results consistent with the expected rank ordering

of the v2 values; that is, in the .5 % (1 %) effect size case the

trend was monotonically decreasing in 67 % (80 %) of the

analyses (Fig. 5b and 5c). It follows from these results that the

most likely explanation for the drop in test statistic following

imputation is the small effect sizes of the 112 SNPs accom-

panied by large standard errors of the relevant parameter. That

the effect sizes are small, in fact too small to be detected in the

present sample is evident in the fact that there were only 9 hits

based on the observed data—displayed as black points in

Fig. 4—at the very liberal alpha of .01.

The analysis of smoking initiation

Results for the association analysis of smoking initiation

are given in Table 7.

The results are comparable to those obtained in the

previous analysis of height: some SNPs, but not all, showed

an increase in the test statistic with the inclusion into

analysis of imputed sibling genotypes. Notable is the

increase in power obtained at SNP rs3949478, whose

association signal approached the significance threshold

of a = 4e-04 based on the observed data and reached a

p-value of 7.27 9 10-06 by including the imputed geno-

types. This SNP, located in the ENTPD1 gene, significantly

predicts the probability of switching from never-smoking

to smoking initiation, conditional on sex and age, after the

Bonferroni correction has been applied (a = .01/20).

Discussion

Results of the present study suggest the following con-

clusions and recommendations concerning the use of

family-based genotype imputation in genomewide associ-

ation studies (GWAS). First, we found the mixture model

and the dosage approach accommodate equally well the

uncertainty of the imputed genotypes. That is, adding

imputed sibling genotypes—either by making full use of

the distribution of the imputed genotypes or by using

genotype dosages—produced unbiased estimates of the

parameter of interest. Furthermore, the power of the two

Table 7 Results of 20 tests of genetic association with smoking

initiation, ran in the ‘complete data’ sample (N = 2,458) and in the

sample that includes additionally imputed siblings genotypes

(N = 5,981). Sibling data only were included into analysis. The

background covariance matrix was modeled by an AE model. The

model was fitted by means of quasi-likelihood and provided Wald-

type tests of effects (t tests shown in italics), which, for consistency,

were converted to v2 values

CHR SNP No imputation analysis Imputed siblings added

v2 (t value) p-value v2 (t value) p-value

2 rs4608580 .86 (.93) .35 .008 (.09) .92

2 rs10865016 7.18 (2.68) .007 7.61 (2.76) .0057

2 rs787151 9.42 (3.07) .002 11.49 (3.39) .0007

3 rs1599903 .82 (.91) .36 1.06 (1.03) .29

3 rs9824246 .008 (.09) .92 1.21 (1.10) .27

3 rs16860281 7.02 (-2.65) .008 6.20 (-2.49) .01

7 rs6960379 2.49 (-1.58) .11 1.16 (-1.08) .27

7 rs2237781 5.61 (2.37) .01 4.79 (2.19) .02

7 rs4725563 .82 (-.91) .36 .64 (-.80) .41

8 rs4509385 .03 (-.18) .85 .16 (.41) .67

10 rs10999845 1.08 (1.04) .29 .79 (.89) .37

10 rs3949478 12.74 (-3.57) .0004 20.16 (-4.49) 7.27e-06

10 rs1856801 .88 (.94) .34 .64 (.80) .42

10 rs7082195 .36 (.60) .54 .13 (.37) .70

11 rs17477949 4.45 (2.11) .03 4.66 (2.16) .03

11 rs12797615 4.92 (2.22) .02 5.95 (2.44) .01

12 rs7313149 2.01 (-1.42) .15 1.82 (-1.35) .17

14 rs8009082 .46 (-.68) .49 .94 (-.97) .32

14 rs8019291 1.04 (-1.02) .30 .92 (-.96) .33

15 rs4774925 2.19 (1.48) .13 1.10 (1.05) .29
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approaches was equal across the conditions which were

considered. Our findings confirm the results of Visscher

and Duffy (2006), who carried out a small scale study of

the mixture approach limited to 10 replications. They are

also in accordance with the findings of Zheng et al. (2011),

who considered the mixture and the dosage approaches in

the context of genotype imputation of single nucleotide

polymorphism markers (Scheet and Stephens 2006), and

found the difference to be small, except given large effects

and poor imputation precision. The comparison was per-

formed under an additive genetic model; though, we expect

the two approaches would perform equally well also under

a non-additive genetic model, as shown by Zheng et al.

(2011). All things being equal, the dosage approach is

arguably the model of choice in analyzing family data with

missing genotypes, as it is computationally more conve-

nient. However, the more demanding mixture approach

might prove advantageous in certain circumstances. For

instance, this approach could be used to carry out within-

family tests of association, allowing one to tackle with

stratification (Fulker et al. 1999; Abecasis et al. 2000).

Results of simulations confirmed that the inclusion in an

association analysis of imputed sibling genotypes may

increase the statistical power. Therefore, for phenotypes for

which the siblings resemble each other either weakly (pheno-

typic correlation\ .4) or strongly (phenotypic correla-

tion [ .6) one should consider the inclusion into analysis of

imputed genotypes as this approach may increase the power up

to a factor of 1.3 relative to the ‘‘no imputation analysis’’. These

gains will be greater if the imputation is informed by observed

genotypes in more family members and at more loci—in which

case the identical-by-descent information can be exploited to

impute siblings with higher accuracy, as demonstrated by Chen

and Abecasis (2007) and by Burdick et al. (2006).

Li et al. (2009) noted the advantage of imputation: ‘‘(...)

imputing genotypes for known relatives of the individuals

included in a GWAS of mostly unrelated individuals will

always increase power (...) and should be considered

whenever phenotyped relatives for the individuals to be

genotyped in a scan are available’’ (page 391). However,

the computational effort is not always rewarded by sig-

nificant gains in power. Specifically, as discussed by Vis-

scher and Duffy (2006), we found the yield of this

procedure to low if the phenotypic correlations among the

siblings are between about .4 and .6.

As the gains in power also depend on the precision of

imputation, the question arises which individuals, if gen-

otyped, would provide maximum information about the

missing genotypes in their relatives? The question can

possibly be answered by considering the distance from the

unconditional H–W genotype probabilities to the proba-

bilities based on the observed genotypes in the relatives.

Kinghorn’s genetic probability index (GPI) can be used to

express this distance (Kinghorn 1997; see also Percy and

Kinghorn 2005), as it equals zero if the imputed proba-

bilities equal the H–W probabilities, and 100 if any

genotype probability equals 1. To illustrate this, we used

the R library GeneticsPed (Gorjanc and Henderson 2007)

to calculate the GPI of the probabilities in Table 1. For

instance, in the small example of Table 1, we find that the

precision of the imputation is greatest given observed sib

AA genotype and observed parent AA genotype

(GPI = 86.67), and smallest given sib genotype aa and

parent genotype Aa (GPI = 26.69). In contrast, a single

observed AA sib confers more information that an Aa sib

and an aa parent (GPI 49.33 vs. 41.38). Given that the GPI

is approximately related to power, in principle this index

provides a means to allocate genotyping resources (King-

horn 1999). See also Chen and Abecasis (2007) for dis-

cussion and illustration of efficient allocation of

genotyping resources in multi-locus family based

imputation.

Second, we investigated how statistical modeling of the

background covariance matrix affected the power to detect

a measured (imputed) genetic effect. For low to moderate

background correlations, the likelihood ratio test in the

linear mixed model appeared to perform correctly when the

residual structure was misspecified. Yet, the validity of this

conclusion should be considered as confined to the settings

of the simulation studies: the analysis was restricted to

sibling data, a small effect size of 1 % explained pheno-

typic variance, heritabilities of .15 and .45. How robust the

test is in circumstances different from those considered

here (i.e., in larger pedigrees or given larger effect sizes) is

subject to further study. Careful specification of the

residual structure, however, is required when the trait of

interest is highly heritable, as in this circumstance, the

misspecification will give more false positives than

expected.

Finally, concerning the empirical results we note the

following. The imputation will change the distribution of

the test statistics under the alternative hypothesis (effect is

present), such that the power increases. How much the

power increases depends on the background phenotypic

correlation among siblings, the number of additional

imputed cases, and on the quality of the imputation in

terms of the GPI. We note that the actual observed test

statistic following imputation need not necessarily be lar-

ger than the value of the test statistic observed prior to

imputation. As a single realization of the distribution of the

test statistic it is likely to be larger if the imputation greatly

increases the power. Conversely, if the power benefit is

small, that the change in distribution of the test statistic

under the alternative is relatively small, the probability is

greater of obtaining a smaller value. As the genetic effects

are typically hypothesized to be small, in practice, the
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decision on whether or not family-based imputation should

be used as a means to increase power should be informed

by prior power calculations and by the consideration of the

background correlation.
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supported by the ERC starting Grant 284167. The statistical analyses

were carried out on the Genetic Cluster Computer (http://www.

geneticcluster.org) which is financially supported by the Netherlands

Scientific Organization (NWO 480-05-003), the Dutch Brain Foun-

dation and the Department of Psychology and Education of the VU

University Amsterdam. Data collection and genotyping were funded

by the Netherlands Organization for Scientific Research (NWO:

MagW/ZonMW grants 904-61-090, 985-10-002, 904-61-193, 480-04-

004, 400-05-717, Addiction-31160008 Middelgroot-911-09-032,

Spinozapremie 56-464-14192), Center for Medical Systems Biology

(CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Bio-

banking and Biomolecular Resources Research Infrastructure

(BBMRI-NL, 184.021.007), the VU University’s Institute for Health

and Care Research (EMGO?) and Neuroscience Campus Amsterdam

(NCA), the European Science Foundation (ESF, EU/QLRT-2001-

01254), the European Community’s Seventh Framework Program

(FP7/2007–2013), ENGAGE (HEALTH-F4-2007-201413); the

European Science Council (ERC Advanced, 230374), Rutgers Uni-

versity Cell and DNA Repository (NIMH U24 MH068457-06), the

Avera Institute, Sioux Falls, South Dakota (USA), the National

Institutes of Health (NIH, R01D0042157-01A), the Genetic Associ-

ation Information Network (GAIN) of the Foundation for the US

National Institutes of Health, the (NIMH, MH081802) and by the

Grand Opportunity Grants 1RC2MH089951-01 and 1RC2 MH089995-

01 from the NIMH. The authors have no conflict of interest to declare.

References

Abecasis GR, Cardon LR, Cookson WO (2000) A general test of

association for quantitative traits in nuclear families. Am J Hum

Genet 66(1):279–292

Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-

rapid analysis of dense genetic maps using sparse gene flow

trees. Nat Genet 30(1):97–101

Boker S, Neale MC, Maes H, Wilde M, Spiegel M, Brick T, Spies J,

Estabrook R, Kenny S, Bates T, Mehta P, Fox J (2011) OpenMx:

an open source extended structural equation modeling frame-

work. Psychometrika 76(2):306–317

Boomsma DI, de Geus EJK, Vink JM, Stubbe JH, Distel MA,

Hottenga JJ, Posthuma D, van Beijsterveldt TCEM, Hudziak JJ,

Bartels M, Willemsen G (2006) Netherlands Twin Register:

from twins to twin families. Twin Res Hum Genet 9(6):849–857

Burdick JT, Chen WM, Abecasis GR, Cheung VG (2006) In silico

method for inferring genotypes in pedigrees. Nat Genet 38(9):

1002–1004

Chen WM, Abecasis GR (2007) Family-based association tests for

genomewide association scans. Am J Hum Genet 81(5):913–926

Falconer DS, Mackay TFC (1996) Introduction to quantitative

genetics, 4th edn. Prentice Hall, Harlow

Fulker D, Cherny S, Sham P, Hewitt J (1999) Combined linkage and

association sib-pair analysis for quantitative traits. Am J Hum

Genet 64(1):259–267

Gorjanc G, Henderson DA, with code contributions by Kinghorn B

and Percy A (2007) GeneticsPed: Pedigree and genetic relation-

ship functions. R package version 1.20.0. http://rgenetics.org

Kinghorn BP (1997) An index of information content for genotype

probabilities derived from segregation analysis. Genetics

145(2):479–483

Kinghorn BP (1999) Use of segregation analysis to reduce genotyping

costs. J Anim Breed Genet 116(3):175–180

Laird NM, Lange C (2011) The fundamentals of modern statistical

genetics. Springer Verlag, New York

Lango Allen H, Estrada K, Lettre G, Berndt S, Weedon MN,

Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Ferreira T,

Wood AR et al (2010) Hundreds of variants influence human

height and cluster within genomic loci and biological pathways.

Nature 467(7317):832–838

Li Y, Willer C, Sanna S, Abecasis GR (2009) Genotype imputation.

Annu Rev Genomics Hum Genet 10:387–406

Mather K, Jinks JL (1977) Introduction to biometrical genetics.

Cambridge University Press, Cambridge

Percy A, Kinghorn BP (2005) A genotype probability index for

multiple alleles and haplotypes. J Anim Breed Genet 122(6):

387–392

Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core

Team (2012) nlme: linear and nonlinear mixed effects models. R

package version 3.1–104

R development Core Team (2005) R: a language and environment for

statistical computing. Vienna, Austria: R Foundation for Statis-

tical Computing. http://www.R-project.org

Scheet P, Stephens M (2006) A fast and flexible statistical model for

large-scale population genotype data: applications to inferring

missing genotypes and haplotypic phase. Am J Hum Genet

78(4):629–644

Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK,

Davis C, Dunkel L, De Lange M, Harris JR, Hjelmborg JV,

Luciano M, Martin NG, Mortensen J, Nisticò L, Pedersen NL,
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