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BACKGROUND & AIMS: It is currently unclear whether reported
changes in the gut microbiome are cause or consequence of in-
flammatory bowel disease (IBD). Therefore, we studied the gut
microbiome of IBD-discordant and -concordant twin pairs, which
offers the unique opportunity to assess individuals at increased risk
of developing IBD, namely healthy cotwins from IBD-discordant
twin pairs. METHODS: Fecal samples were obtained from 99
twins (belonging to 51 twin pairs), 495 healthy age-, sex-, and body
mass index–matched controls, and 99 unrelated patients with IBD.
Whole-genome metagenomic shotgun sequencing was performed.
Taxonomic and functional (pathways) composition was compared
among healthy cotwins, IBD-twins, unrelated patientswith IBD, and
healthy controls with multivariable (ie, adjusted for potential con-
founding) generalized linear models. RESULTS: No significant
differences were observed in the relative abundance of species
and pathways between healthy cotwins and their IBD-twins (false
discovery rate <0.10). Compared with healthy controls, 13, 19,
and 18 species, and 78, 105, and 153 pathways were found to be
differentially abundant in healthy cotwins, IBD-twins, and unre-
lated patients with IBD, respectively (false discovery rate <0.10).
Of these, 8 (42.1%) of 19 and 1 (5.6%) of 18 species, and 37
(35.2%) of 105 and 30 (19.6%) of 153 pathways overlapped
between healthy cotwins and IBD-twins, and healthy cotwins and
unrelated patients with IBD, respectively. Many of the shared
species and pathways have previously been associated with IBD.
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Changes in the composition of the gut microbiome are
associated with inflammatory bowel disease (IBD), but it
is presently unclear whether these changes are cause or
consequence of IBD.

NEW FINDINGS

The gut microbiome composition of individuals at
increased risk of developing IBD (i.e. healthy cotwins
from IBD-discordant twin pairs) displays IBD-like
signatures on a species and pathway level.

LIMITATIONS
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The shared pathways include potentially inflammation-related
pathways, for example, an increase in propionate degradation
and L-arginine degradation pathways. CONCLUSIONS: The gut
microbiome of healthy cotwins from IBD-discordant twin pairs
displays IBD-like signatures. These IBD-like microbiome signa-
tures might precede the onset of IBD. However, longitudinal
follow-up studies are needed to infer a causal relationship.

Keywords: Preclinical; Prediagnostic; Crohn’s Disease; Ulcera-
tive Colitis; Family Studies; Microbiota; Prediction; Discordant
Twin Design.

ver the past decade, a consistent body of evidence
This is a cross-sectional study. Future follow-up studies
will help to identify those cotwins who will develop IBD
in the long run, thereby allowing confirmation and
further in-depth analyses of our findings.

IMPACT

The overlap in gut microbial features between healthy
cotwins at increased risk of developing IBD and related
and unrelated IBD patients suggests that these IBD-like
microbiome signatures might precede the onset of IBD.
This potentially opens new avenues for diagnosis and
therapy in individuals with pre-symptomatic IBD.

* Authors share co-first authorship; § Authors share co-senior authorship.

Abbreviations used in this paper: 16S rRNA, 16S ribosomal RNA; BMI,
body mass index; CD, Crohn’s disease; FDR, false discovery rate; IBD,
inflammatory bowel disease; IBDU, inflammatory bowel disease unclas-
sified; NTR, Netherlands Twin Register; PALGA, Nationwide network and
registry of histo- and cytopathology in the Netherlands; PCoA, principal
coordinate analyses; PERMANOVA, permutational multivariate analysis of
variance; PPI, proton pump inhibitor; SCFA, short chain fatty acid; TWIN-
study, twin cohort for the study of (pre)clinical inflammatory bowel dis-
ease in the Netherlands study; UC, ulcerative colitis; UMC, University
Medical Center.
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C
Ohas accumulated that supports the association be-
tween the gut microbiota and inflammatory bowel disease
(IBD).1,2 Differences have been observed in the microbiome
of Crohn’s disease (CD) and ulcerative colitis (UC) patients
compared with individuals not affected by IBD in a large
number of studies, most of which were based on 16S ribo-
somal RNA gene (16S rRNA) sequencing.2,3 It is, however,
currently unclear whether these changes are a cause or a
consequence of intestinal inflammation, because longitudi-
nal microbiome studies are scarce and data from the pre-
diagnostic phase of IBD are lacking. Moreover, the large
interindividual heterogeneity induced by the effect of
(childhood) environmental factors4–7 and host genetics6,8,9

on the gut microbiome hampers the elucidation of the
exact contribution of the gut microbiome to the onset of IBD.

In the context of IBD, healthy cotwins with an IBD-affected
twin are at increased risk of developing IBD, with reported
concordance rates among monozygotic twin pairs as high as
64% for CD and 28% for UC.10 Studying the gut microbiome in
IBD-discordant and concordant twin pairs can thus provide
important insights in its role in the pathogenesis of IBD, also
because of the shared (childhood) environmental and genetic
factors between twins from the same twin pair.

Five previous studies, aiming to explore the gut micro-
biome in IBD-affected twin pairs, using fecal11–13 and
mucosal biopsy11,14,15 samples, reported differences in the
gut microbiome composition in IBD-affected twins
compared with their healthy cotwin. These studies were,
however, performed in small numbers of IBD-discordant or
-concordant twin pairs (10 or fewer),12–15 did not include
an unrelated matched healthy control group,11,15 or only a
small nonmatched healthy control group,12–14 and were
based on 16S rRNA sequencing,11,13–15 which does not allow
for prediction of microbial functional pathways.

The goal of the present study was to elucidate the
contribution of the gut microbiota in the risk of developing
IBD, by exploring the gut microbiome of healthy cotwins - at
increased risk of developing IBD - in comparison with the
gut microbiome of their IBD-twins, unrelated patients with
IBD, and those of unrelated healthy controls.

Material and Methods
Study Population

Participants from 2 cohorts were included in the present
cross-sectional study.
(1) IBD-twins and healthy cotwins: “TWIN-
study”. Twin pairs were included from the ongoing prospec-
tive longitudinal Dutch “Twin cohort for the study of (pre)
clinical inflammatory bowel disease in the Netherlands”
(TWIN) study (Netherlands Trial Register: NTR6681). Twin
pairs, �16 years of age, either IBD-discordant or -concordant,
from the Netherlands, were recruited via their treating physi-
cian, through awareness for the study on (social) media, or via
the Netherlands Twin Register (NTR).16 Potential candidates in
the NTR were identified through previously administered
questionnaires or those who gave consent for record linkage
were identified by linking the NTR-database with an IBD-
directed search in the nationwide network and registry of
histo- and cytopathology in the Netherlands (PALGA).17

Participants were followed longitudinally and evaluated at
intervals of 6 months at the University Medical Center (UMC)
Utrecht. Samples of blood, urine, feces, oropharyngeal swabs,
and (depending on consent) rectal biopsies were collected
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during study visits. In addition, questionnaires were used to
obtain information on demographics, family composition, diet,
general health, IBD-specific characteristics, medication use,
quality of life, and environmental factors.

For the present cross-sectional study, we analyzed 1 fecal
sample per participant, collected between October 2017 and
August 2019. Fecal samples of a twin pair were not included for
whole-metagenome sequencing if only 1 twin from a pair had
provided a fecal sample or when a twin had an ostomy or
pouch. If the whole-metagenome shotgun sequencing results of
a twin were excluded after sequencing, we kept the results of
their cotwin in the data analyses. All fecal samples were
collected within the same week per twin pair, except for 1 twin
pair (6 months between feces collection). Both IBD-discordant
(ie, one of the twins of a pair is affected by IBD) and IBD-
concordant (ie, both twins of the twin pair are affected by
IBD regardless of the IBD subtype) twin pairs are included in
the present study. No multiples consisting of more than 2 in-
dividuals were included. Individuals from IBD-discordant twin
pairs who are not diagnosed with IBD are referred to as
“healthy cotwins” and individuals from IBD-discordant or IBD-
concordant twin pairs who are diagnosed with IBD are referred
to as “IBD-twins.”

(2) Healthy controls and unrelated patients with
IBD: “Dutch Microbiome Project”. The Dutch Microbiome
Project is part of LifeLines,18 a large-scale population-based
cohort that prospectively included 167,729 individuals between
8 and 84 years of age and their families, who all have been
resident in the 3 Northern provinces of the Netherlands. In 2015,
10,000 LifeLines participants were asked to collect a fecal sample
as part of the Dutch Microbiome Project. Of these, w9700 in-
dividuals collected 1 fecal sample between 2015 and 2018. De-
mographics, medical information, and medication use were
collected via surveys. For the present cross-sectional study, we
included age-, sex- and BMI-matched healthy participants from
theDutchMicrobiome Project. Healthy individualswerematched
to each twin individual (ie, healthy cotwins and IBD-twins)with a
healthy control:twin ratio of 5:1. Matching was performed with
the MatchIt package in R using the method “optimal”.

Within the Dutch Microbiome Project, 99 participants had a
self-reported diagnosis of IBD. These individuals were included
in this study as “unrelated patients with IBD.”

Ethical Considerations
The TWIN-study and Dutch Microbiome Project study were

conducted in accordance with the declaration of Helsinki and
the Dutch Medical Research Involving Human Subjects Act. All
participants provided informed consent. The TWIN-study was
approved by the medical ethics committee of the UMC Utrecht.
The Dutch Microbiome Project was approved by the medical
ethics committee of the UMC Groningen. The PALGA search was
approved by the PALGA Privacy Commission and Scientific
Council. Linkage took place only for NTR participants who had
provided approval for linkage to external registers.

Participant Characteristics
IBD characteristics. For the TWIN cohort, diagnoses

and phenotypes were verified by review of medical records. For
participants in the Dutch Microbiome Project, diagnoses and
phenotypes were self-reported. IBD unclassified (IBDU) pa-
tients were grouped with UC patients in the analyses. In the
TWIN-study signs of active disease was defined as a patient
Harvey Bradshaw Index19 >4 in case of CD, and a patient Short
Clinical Colitis Activity Index20 >4 in case of UC or IBDU, or
endoscopic signs of inflammation as noted during proctoscopy
in the TWIN-study or endoscopy for clinical care. If no signs of
inflammation were found on proctoscopy in patients with UC,
patients were classified as having quiescent disease. In the
Dutch Microbiome Project, the Montreal classification, date of
diagnosis, symptoms, and endoscopic data were not available.

Twin-specific characteristics. The zygosity of twins
was based on self-reported zygosity or, in case of doubt, on a
zygosity questionnaire, based on childhood similarity between
twins. This questionnaire was developed by the NTR and has
been shown to have a 95.9% accuracy in predicting DNA
zygosity.16 Cohabitation was based on survey data.

Demographics. In both the TWIN-study and the Dutch
Microbiome Project, data on sex, age, body mass index (BMI),
smoking behavior, history of appendectomy, and history of
bowel resections were collected by surveys at the moment of
feces collection.

Medication use. Medication use, including antibiotics (in
the past 3 months), current proton pump inhibitors (PPIs), and
IBD medication, was determined by targeted medication sur-
veys in the TWIN-study and the Dutch Microbiome Project.
Stool Sampling and Analysis of the Gut
Microbiome

Fecal sample collection. In the TWIN-study, fecal
samples were kept at room temperature and transported to the
research facility by the participants within 31 hours of collec-
tion, and subsequently stored at �80oC (median time at room
temperature until �80oC: 9.7 hours; Q1–Q3: 4.8–19.8). In the
Dutch Microbiome Project, fresh fecal samples were frozen at
the participants’ homes in a standardized manner at �20oC.
Subsequently, frozen fecal samples were shipped on dry ice and
stored at �80oC on arrival. Fecal samples from both cohorts
remained frozen at �80oC until DNA extraction.

Microbial DNA extraction and sequencing. Micro-
bial genomic DNA was isolated via the QIAamp Fast DNA Stool
Mini Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions by the same research technician in the same
time period for both cohorts. The QIAcube (Qiagen) automated
sample preparation system was used for DNA isolation. Whole-
genome shotgun metagenomic sequencing was performed at
Novogene (HK) Company Limited (Wan Chai, Hong Kong) on
the Illumina (San Diego, CA) HiSeq 2000 platform to generate
approximately 8 Gb of 150 base pairs, paired-end, reads per
sample (mean 7.9 gigabytes, standard deviation 1.2 gigabytes,
median 14.4 million reads).

Quality control and determination of microbiome
parameters. Samples with a read depth below 10 million
reads were removed. From the raw metagenomic reads, the
Illumina adapters were removed using kneadData (v0.5.1)
toolkit, and reads were trimmed to PHRED quality 30. Trimmed
reads that aligned to the human genome (GRCh37/hg19) were
removed using kneadData integrated Bowtie2 tool (version
2.3.4.1), and after this, the quality of the metagenomes was
tested using the FastQC toolkit (version 0.11.7). Taxonomic
composition of the metagenomes was profiled by the Meta-
PhlAn2 tool (version 2.7.2) using the MetaPhlAn database of
marker genes (version mpa v20 m200). In addition, profiling of



May 2021 IBD-like Microbiome in Healthy Cotwins 1973

AT
genes encoding microbial biochemical pathways (ie, the func-
tional potential of the gut microbiome) was performed using
the HUMAnN2 pipeline (version 0.11.1) integrated with the
DIAMOND alignment tool (version 0.8.22), uniref90 protein
database (version 0.1.1), and the ChocoPhlAn pangenome
database (version 0.1.1).

Non-bacteria were filtered out and the taxonomic species
level was maintained. After these steps, 586 species and 576
pathways were identified across samples. For the diversity and
dissimilarity analyses, no further filtering steps were used. For
the regression analyses, only species and pathways that were
prevalent in �10% of samples were included.
CL
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Design of Data Analysis
To answer our question of to which extent the gut micro-

biome of healthy cotwins displays a signature of an IBD-like
microbiome, we performed our analyses in 2 steps. First, we
compared the healthy cotwins with their IBD-twins (within-
twin pairs comparison). Second, we compared the gut micro-
biome of healthy cotwins, IBD-twins, and unrelated patients
with IBD to the microbiome of healthy controls. By means of
these comparisons, we aimed to identify whether the micro-
biomes of healthy cotwins display a healthy signature (ie, is
similar to the gut microbiome of unrelated healthy controls) or
already displays an IBD signature (ie, is more similar to the
microbiome of their cotwins and unrelated patients with IBD).

We analyzed the gut microbiome at the following levels: (1)
a- and b-diversity; (2) (dis)similarity in gut microbiome
composition among individuals based on IBD concordance, IBD
phenotype, zygosity, and cohabitation; and (3) differential
relative abundances of individual species and pathways
including assessment of overlap in identified differentially
(compared with healthy controls) abundant species and path-
ways among the healthy cotwins, IBD-twins, and unrelated
patients with IBD.
Statistical Analyses
All statistical analyses were performed in R version 4.0.0

for macOS21 (analyses scripts can be found at: https://github.
com/WeersmaLabIBD/Microbiome/blob/master/IBD_Twins_
Microbiome_Utrecht_Groningen.md). Baseline characteristics
are shown as numbers and proportions for categorical vari-
ables, and as means and standard deviations for continuous
variables.

Microbiome diversity measures. We estimated di-
versity measures for both for the taxonomic (ie, species) and
functional (ie, pathways) composition. The a-diversity is
expressed as the Shannon Index for species and gene richness
for pathways. Differences between groups were tested with the
Mann-Whitney U test. The b-diversity was calculated as Bray-
Curtis distance and is visually shown using principal coordi-
nate analyses (PCoA) plots, showing PCoA1 and PCoA2 per plot.
The proportion of explained variance (R2) in the b-diversity
was assessed based on permutational multivariate analysis of
variance (PERMANOVA) using distance matrices implemented
as adonis function in vegan package for R.

For the within-twin pair comparisons, we estimated the
proportion of explained variance (R2) in the b-diversity adjust-
ing for twin pairs, thereby taking the clustering of twins within
their twin pair into account, and stratified for zygosity for the
following variables separately: IBD phenotype (no IBD, CD, or
UC), IBD-activity, belonging to the same twin pair, disease
location, history of bowel resection, age, sex, BMI, antibiotics use,
PPI use, and read depth. For the comparison of healthy cotwins,
IBD-twins, and unrelated patients with IBD with healthy con-
trols, we estimated the explained variance in b-diversity
comparing IBD-twins, healthy cotwins, healthy controls, and
unrelated patients with IBD, and for the variables IBD pheno-
type, sex, age, BMI, antibiotics use, PPI use, and read depth.

Similarity in gut microbiome composition. To test
whether the gut microbiome composition was similar between
pairs of individuals on a taxonomic or functional level, the pair-
wise Bray-Curtis dissimilarity was calculated, ranging from 0 to
1 with lower scores indicating more similarity in the micro-
biome composition. We assessed the associations between
dissimilarity and 4 variables: IBD concordance (ie, being
discordant or concordant for IBD), IBD phenotype, zygosity,
and cohabitation. To this end, dissimilarities between twins
from the same twin pair were calculated and compared with
the dissimilarities of 1000 random pairs of unrelated healthy
controls. IBD phenotype pairs were logically formed between
unrelated IBD-twins. For zygosity, we also compared the
dissimilarity with random pairs of unrelated twins (ie, pairs of
twins coming from 2 different twin pairs).

Differentially abundant taxa and pathways. We
assessed whether taxa and pathways were differentially
abundant by using multivariable general linear regression
models (GLM) of the Gaussian family, implemented in the GLM
function in R, using the MaAsLin2 package.22 The microbiome
taxa and pathway relative abundances that serve as outcomes
in the GLMs were arcsine square-root transformed. Species and
pathways were included in the analyses only if they were
present in both cohorts and were prevalent in at least 10% of
the samples.

For the comparison between IBD-twins and healthy
cotwins, we used twin pair as a random effect to take within-
twin pair effects (ie, clustering) into account. Furthermore,
the regression analyses with 119 species and 343 pathways as
outcomes were adjusted for IBD phenotype (ie, CD, UC, or no
IBD), disease location, age, sex, BMI, zygosity, antibiotics use in
the past 3 months, current PPI use, and sequence read depth.

Second, we assessed differential abundance of taxa and
pathways comparing healthy cotwins, IBD-twins, and unre-
lated patients with IBD with healthy controls in one model.
These regression analyses with 116 individual species and
330 individual pathways as outcomes were adjusted for
potentially confounding factors: IBD phenotype (ie, CD, UC,
or no IBD), age, sex, BMI, antibiotics use in the past 3
months, current PPI use, and sequence read depth. Next, we
assessed if overlap existed in the identified differentially
abundant taxa and pathways as present in the microbiomes
of healthy cotwins, IBD-twins, and unrelated patients with
IBD compared with healthy controls. Last, we compared the
relative abundances of 112 species and 339 pathways be-
tween IBD-twins and unrelated patients with IBD directly
adjusting for the same potentially confounding factors as in
the comparison with healthy controls.

Multiple testing correction. To correct for multiple
testing, the Benjamini-Hochberg correction was applied to
calculate the false discovery rate (FDR). An FDR <0.10 was
regarded as statistically significant. This significance threshold
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Table 1.Baseline and Sample Characteristics

The TWIN-study The Dutch Microbiome Project

Healthy cotwins
(n ¼ 38)

IBD-twins
(n ¼ 61)

Healthy controls
(n ¼ 495)

Unrelated IBD
patients (n ¼ 99)

Demographics and clinical characteristics

Female sex 25 (65.8) 39 (63.9) 312 (63.0) 59 (59.6)

Age (y) 44.7 (15.4) 40.1 (15.4) 42.3 (15.0) 52.8 (10.0)

BMI (kg/m2) 24.9 (3.8) 24.2 (3.3) 24.4 (4.0) 26.0 (3.9)

Current smoker 6 (15.8) 10 (16.4) 49 (9.9) 14 (14.1)

History of appendectomy 4 (10.5) 6 (9.8) 29 (5.9) 11 (11.1)

History of bowel resection 0 10 (16.4) NAe NAe

Current PPI use 6 (15.8) 9 (14.8) 24 (4.8) 12 (12.1)

Antibiotic use in past 3 mo 3 (7.9) 8 (13.1) 23 (4.6) 10 (10.1)

Twin pair characteristicsa

Zygosity
Monozygotic 16 (42.1) 37 (60.7) NA NA
Dizygotic 22 (57.9) 24 (39.3) NA NA

Concordance for IBD
Concordant for IBD 0 24 (39.3) NA NA
Discordant for IBD 38 (100) 37 (60.7) NA NA

Cohabitation with cotwin during sampling 4 (10.5) 10 (16.4) NA NA

IBD characteristics

IBD phenotype
CD — 33 (54.1) — 28 (28.3)
UC — 26 (42.6) — 72 (72.7)
IBD unclassified — 2 (3.3) — 0
No IBD 38 (100) — 495 (100) —

IBD duration (mo) NA 139 (112) NA NAe

Signs of active diseaseb NA 20 (32.8) NA NAe

Age of diagnosis CD (Montreal classification)c

A1 (�16 y) NA 3 (9.1) NA NAe

A2 (17–39 y) NA 26 (78.8) NA NAe

A3 (�40 y) NA 4 (12.1) NA NAe

Location CD (Montreal classification)c

L1 (ileum only) NA 13 (39.4) NA NAe

L2 (colon only) NA 7 (21.2) NA NAe

L3 (ileocolonic) NA 13 (39.4) NA NAe

L4 (proximal of ileum) NA 4 (12.1) NA NAe

Behavior CD (Montreal classification)c

B1 (nonstricturing, nonpenetrating) NA 18 (54.5) NA NAe

B2 (stricturing) NA 11 (33.3) NA NAe

B3 (penetrating) NA 4 (12.1) NA NAe

P (perianal modifier) NA 3 (9.1) NA NAe

Location UC (Montreal classification)c

E1 (ulcerative proctitis) NA 6 (23.1) NA NAe

E2 (left-sided UC) NA 7 (26.9) NA NAe

E3 (extensive UC) NA 11 (42.3) NA NAe

Missing NA 2 (7.7) NA NAe

Current IBD-medication use
No IBD-medication 38 (100) 10 (16.4) 495 (100) NAe

5-aminosalicylic acid — 20 (32.8) — NAe
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Table 1.Continued

The TWIN-study The Dutch Microbiome Project

Corticosteroids NA 3 (4.9) NA NAe

Methotrexate NA 1 (1.6) NA NAe

Ciclosporin NA 0 NA NAe

Thiopurine NA 24 (39.3) NA NAe

Anti–tumor necrosis factor-a NA 12 (19.7) NA NAe

Vedolizumab (anti-integrin a4b7) NA 2 (3.3) NA NAe

Ustekinumab (anti-interleukin12/23) NA 0 NA NAe

Tofacitinib (pan-janus kinase inhibitor) NA 0 NA NAe

Fecal sample and sequence characteristics

Bristol stool scaled

Type 1 or 2 7 (18.4) 10 (16.4) 47 (9.5) 6 (6.1)
Type 3 or 4 26 (68.4) 23 (37.7) 349 (70.5) 53 (53.5)
Type 5, 6, or 7 5 (13.2) 28 (45.9) 68 (13.7) 34 (34.3)
Missing 0 0 31 (6.3) 6 (6.1)

Number of bowel movements per wk 7.4 (2.71) 12.5 (11.5) 8.3 (4.17) Missing:
n ¼ 31

11.0 (7.4) Missing:
n ¼ 6

Number of sequence reads 16,108,523
(4,134,472)

15,271,177
(3,989,233)

24,057,674
(3,552,760)

25,111,866
(4,072,961)

NOTE. Continuous variables are depicted as mean (standard deviation), and categorical variables as number (proportion)
unless indicated otherwise.
n, number of participants; NA, not applicable.
aAll twin-related characteristics are here depicted per individual, but logically apply to both of the twin pair.
bSigns of active disease was defined as Harvey Bradshaw Index19 >4 in case of CD, and a Short Clinical Colitis Activity
Index20 >4 in case of UC or IBD unclassified, or endoscopic signs of inflammation as noted during either proctoscopy per-
formed as part of the TWIN-study protocol or during a colonoscopy which was performed as part of clinical care.
cAll proportions for Montreal classification characteristics are only calculated for those participants to whom it applies.
dThe Bristol stool scale ranges from 1 to 9, with 1 being separate hard lumps, and 9 entirely liquid consistency without solid
pieces. In the healthy controls and unrelated patients with IBD this reflects the mean over a week.
eThese variables are not assessed in the Dutch Microbiome Project.

Figure 1. No differences were detected in the gut microbiome composition (beta-diversity) between healthy cotwins and IBD-
twins, but both gut microbiomes differ from healthy controls. PCoA plots for the (A) taxonomic (species) and (B) functional
(pathways) composition of the gut microbiome. Each small dot represents 1 fecal sample. The larger centroids depict the
center per group (ie, healthy cotwins, IBD-twins, healthy controls, and unrelated patients with IBD). On the x- and y-axes the
first and second principal coordinate and proportion of explained variance are displayed. Based on the FDR from univariable
PERMANOVA analyses performed on the whole Bray-Curtis distance matrix (Supplementary Material 4), the healthy cotwins
and IBD-twins are not significantly different from each other on a taxonomic and functional level, whereas the gut microbiome
composition was statistically significantly different comparing healthy cotwins, IBD-twins, and unrelated patients with IBD with
healthy controls. **, FDR < 0.05; ns, FDR > 0.10.
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Figure 2. The gut microbiome composition of random pairs of healthy individuals is not more dissimilar than of twin pairs
stratified for IBD concordance, zygosity or co-housing. Box plots show Bray-Curtis dissimilarity (lower values reflect more
similarity) for random pairs of unrelated healthy controls and/or unrelated patients with IBD, random unrelated pairs of twins,
and true twin pairs. Each dot represents 1 pair. The left panel per subfigure shows the dissimilarity for the relative abundance of
species and the right panel for pathways. (A) The dissimilarity of IBD-concordant and IBD-discordant twin pairs is comparable
to that of random pairs of healthy controls. (B) Dissimilarity increases from random pairs of healthy controls, random unrelated
pairs of healthy cotwins, random unrelated pairs of UC-twins to random unrelated pairs of CD-twins, probably reflecting the
heterogeneity of microbiome changes associated with IBD. (C) and (D) show that the gut microbiomes of true twin pairs,
stratified for zygosity and co-housing during sampling, are not more similar than the gut microbiomes of random pairs of
unrelated healthy controls or random pairs of unrelated twins.
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was chosen because of the explorative setup of our study, to
capture both common associations and those with low effect
sizes.
Results
Participant and Sample Characteristics

In total, 99 twins from 51 twin pairs (61/99 IBD-twins,
and 38/99 healthy cotwins) from the TWIN-study, and 495
age-, sex-, and BMI-matched unrelated healthy controls and
99 unrelated patients with IBD from the Dutch Microbiome
Project were included in the present study (Table 1 and
Supplementary Materials 1 and 2). Fifty-three of the 99
twins were part of a monozygotic twin pair and 46 were
part of a dizygotic twin pair. Twelve (23.5%) of the 51 twin
pairs were IBD-concordant and 39 (76.5%) IBD-discordant.
Seven (13.7%) of the 51 twin pairs were living together at
the time of fecal sampling (Table 1 and Supplementary
Material 2).

Healthy controls from the Dutch Microbiome Project had
a comparable age, sex, and BMI, but smoked less frequently
as compared with all twins, whereas the unrelated patients
with IBD were older and had a higher BMI compared with
the TWIN cohort. A history of appendectomy and antibiotic
or PPI use was encountered more frequently in twins and
unrelated patients with IBD than in healthy controls. IBD-
twins were compared with the unrelated patients with
IBD more often diagnosed with CD (54.1% vs 28.3%,
Table 1). The sequence read depth was higher in healthy
controls and unrelated patients with IBD as compared with
the TWIN participants (Table 1), the linear regression ana-
lyses were therefore adjusted for sequence read depth.
Healthy Cotwins and IBD-Twins Are Alike in
Microbiome Diversity and Differ From Healthy
Controls

There were no significant differences in a-diversity, that
is, the per-participant diversity, on taxonomic and functional
level between the healthy cotwins and the IBD-twins
(FDR ¼ 0.14, FDR ¼ 0.62, respectively, Supplementary
Material 3). Furthermore, no statistically significant differ-
ences in the Shannon Index were observed between healthy
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cotwins, IBD-twins, unrelated patients with IBD, and healthy
controls. The gene richness was statistically significantly
higher in healthy cotwins compared with healthy controls,
and IBD-twins compared with healthy controls (FDR ¼
0.007, FDR ¼ 0.007, respectively, Supplementary
Material 3).
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No statistically significant differences were found in the
gut microbiome of the healthy cotwins compared with the
IBD-twins for the overall taxonomic (PERMANOVA of Bray-
Curtis b-diversities: R2 ¼ 0.015, FDR ¼ 0.12) and functional
(PERMANOVA: R2 ¼ 0.011, FDR ¼ 0.36) composition
(Figure 1, Supplementary Material 4). The overall taxonomic
and functional composition was different for healthy cot-
wins, IBD-twins and unrelated patients with IBD compared
with healthy controls (PERMANOVA: taxonomic: R2 ¼ 0.004,
0.012, 0.010; FDR ¼ 0.012, 0.0002, 0.0002; functional: R2 ¼
0.013, 0.012, 0.020; FDR ¼ 0.0002, 0.0002, 0.0002 respec-
tively, Figure 1, Supplementary Material 4). Overall, no dif-
ferences between the gut microbiome composition of
healthy cotwins and IBD-twins were detected, whereas both
groups’ microbiome composition differed from healthy
controls.

Association Between IBD Concordance, IBD
Phenotype, Zygosity, and Co-housing and the
Composition of Gut Microbiome

The associations of IBD concordance, IBD phenotype,
zygosity, and co-housing during sampling with the interin-
dividual heterogeneity in gut microbiome composition were
assessed by using the Bray-Curtis dissimilarity by
comparing 2 individuals. In line with our observations for
the similarity in microbiome diversity between healthy
cotwins and IBD-twins, we found no differences in the
dissimilarity between IBD-discordant and IBD-concordant
twin pairs, both at a taxonomic and functional levels
(Figure 2A). When looking at unrelated random pairs of
healthy controls and unrelated random pairs of twins, we
observed an increase in dissimilarity from healthy, healthy
cotwins, to UC, to CD, underscoring the heterogeneity in
changes in the gut microbiome composition in IBD
(Figure 2B). The gut microbiomes of monozygotic or dizy-
gotic twin pairs or twin pairs co-housing during sampling
was not more similar than those of random unrelated
healthy controls (Figure 2C and D).

Healthy Cotwins, IBD-Twins, and Unrelated IBD
Patients Differ in Relative Abundance of Species
and Pathways From Healthy Controls

To identify whether the gut microbial features of the
healthy cotwins are more alike to those displayed in an IBD
microbiome (ie, IBD-twins and unrelated patients with IBD)
or more alike to those displayed in healthy controls, we
performed multivariable linear regression analyses adjusted
=
Figure 3. The relative abundance of species and pathways in t
lated patients with IBD differs from healthy controls and these p
analyses adjusted for age, sex, BMI, antibiotics use, PPI use, I
depicting the absolute number of differentially abundant (FDR
healthy controls and the overlap between healthy cotwins, IBD-t
individual (B) species and (C) pathways that are differentially
groups. Larger symbols depict lower FDR values, the color dep
decrease in relative abundance, and >0 an increase in relativ
species and pathways shared differentially abundant among the
shared species and pathways. Pathway names are based on th
for IBD subtype (CD, UC, and no IBD), age, sex, BMI, anti-
biotics and PPI use, and sequencing depth. In the within-
twin pairs analyses, additionally adjusted for zygosity and
disease location, and with twin pair as random effects, none
of the 119 species and 343 predicted bacterial pathways
tested were differentially abundant between the healthy
cotwins and the IBD-twins (FDR >0.1, Supplementary
Material 5). However, compared with the healthy controls,
19 species and 105 pathways were differentially abundant
within the gut microbiome of IBD-twins, and 18 species and
153 pathways in unrelated patients with IBD (Figure 3, and
Supplementary Materials 6 and 7, FDR <0.1). The relative
abundance of 13 species and 78 pathways differed signifi-
cantly between microbiomes of healthy cotwins and healthy
controls (Figure 3, Supplementary Material 8).

The number of species and pathways that were differ-
entially abundant when we compared IBD-twins and unre-
lated patients with IBD directly, 7 species and 34 pathways
(Supplementary Material 9), was less than when we
compared both groups with healthy controls. In combina-
tion with the overlap of 7 species and 70 pathways that
were differentially abundant compared with healthy con-
trols, this indicates that the gut microbiome composition of
IBD-twins and unrelated patients with IBD was comparable.
Healthy Cotwins Share Differentially Abundant
Taxa and Pathways With IBD-Twins and
Unrelated IBD Patients Compared With Healthy
Controls

Of the 19 species and 105 pathways that were differ-
entially abundant between IBD-twins compared with
healthy controls, 8 of these species (42.1%) and 37 path-
ways (35.2%) were also differentially abundant between
the healthy cotwins compared with healthy controls.
Moreover, of the 18 species and 153 pathways that were
differentially abundant between the unrelated patients with
IBD and the healthy controls, 1 of these species (5.6%) and
30 pathways (19.6%) were also differentially abundant
between the healthy cotwins compared with the healthy
controls (Figure 3 and Supplementary Material 10).

Among these, an increase in the relative abundance of
potentially pathogenic species Escherichia unclassified,
Gordonibacter pamelaeae, and Eggerthella unclassified,
among others, was observed in the gut microbiomes of
healthy cotwins and IBD-twins or unrelated patients with
IBD, as compared with the healthy controls (Figures 3B and
4A–C). Faecalibacterium prausnitzii was only statistically
he gut microbiomes of healthy cotwins, IBD-twins, and unre-
artly overlap. Results from multivariable general linear model
BD phenotype, and sequence read depth. (A) Venn diagrams
<0.10) species (top) and pathways (bottom) compared with
wins, and unrelated patients with IBD. Balloon plots show the
abundant compared with healthy controls among at least 2
icts the size of the effect. A beta coefficient <0 implicates a
e abundance compared with healthy controls. Not only are
groups, the effect size and direction are mostly similar in the
e HUMAnN 2.0 pipeline.



Figure 4. Relative abundance of a selection of species. The relative abundance of IBD-associated species, (A) Escherichia
unclassified, (B) Eggerthella unclassified, (C) Gordonibacter pamelaeae is increased among healthy cotwins and shared
differentially abundant between IBD-twins and/or unrelated patients with IBD compared with healthy controls. The relative
abundance of (D) Faecalibacterium prausnitzii, often inversely associated with IBD, is decreased in unrelated patients with IBD
and IBD-twins, but not in healthy cotwins compared with healthy controls. The FDR values are based on multivariable genera
linear model analyses adjusted for age, sex, BMI, antibiotics use, PPI use, IBD phenotype, and sequence read depth.
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Figure 5. Relative abundance of a selection of pathways. The relative abundance of pathways of (A) enterobacterial common
antigen biosynthesis, (B) N-acetylthomosamine (an enterobacterial common antigen component) biosynthesis, (C) enter-
obactin (a siderophore and virulence factor) biosynthesis, (D) L-arginine degradation, and (E) propionate (an SCFA) degradation
are increased in healthy cotwins and shared differentially abundant in the gut microbiomes of IBD-twins and unrelated patients
with IBD compared with healthy controls. (F) Butyrate biosynthesis is decreased in unrelated patients with IBD and IBD-twins,
but not in healthy cotwins compared with healthy controls. The FDR values are based on multivariable general linear model
analyses adjusted for age, sex, BMI, antibiotics use, PPI use, IBD phenotype, and sequence read depth.
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significantly decreased compared with healthy controls in
IBD-twins and unrelated patients with IBD, but not in
healthy cotwins (Figures 3B and 4D).

Two pathways involved in the biosynthesis of family-
specific surface enterobacterial common antigen, which is
specific to the family Enterobacteriaceae, among which the
genus Escherichia23 (ECASYN_PWY_enterobacter-
ial_common_antigen_biosynthesis, 7315_dTDP_N_acetylth-
omosamine_biosynthesis) were increased in the healthy
cotwins, IBD-twins, and unrelated patients with IBD, as
compared with the healthy individuals (FDR <0.1)
(Figures 3C and 5A and 5B). The relative abundance of
pathways for the biosynthesis of siderophores, iron-
chelating molecules that are known potential virulence
factors,24 were increased in healthy cotwins, IBD-twins, and
unrelated patients with IBD, namely enterobactin,
(ENTBACSYN_PWY_enterobactin_biosynthesis, Figure 5C),
and in healthy cotwins and IBD-twins, namely aero-
bactin (AEROBACTINSYN_PWY_aerobactin_biosynthesis,
Figure 3C). Moreover, the relative abundance of genes
encoding the degradation of amino acid L-arginine, which is
known to promote gut integrity via tight junctions between
enterocytes,25,26 (AST_PWY_L_arginine_degradation_II_AST_
pathways) was increased in healthy cotwins, IBD-twins, and
unrelated patients with IBD (Figure 5D) and the degrada-
tion of short-chain fatty acid (SCFA) propionate
(PWY0_1277_3_phenylpropanoate_and_3_3_hydroxyphenyl_
propanoate_degradation, HCAMHPDEG_PWY_3_phenylpro-
panoate_and_3_3_hydroxyphenyl_propanoate_degradation_to_
2_oxopent_4_enoate) was increased in the gut microbiomes of
healthy cotwins and IBD-twins, as compared with the healthy
individuals (Figure 5E, FDR<0.1). In line with the decrease in
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the relative abundance of F prausnitzii, the relative abundance
of 2 butyrate synthesis pathways (CENTFERM_PWY_pyr-
uvate_fermentation_to_butanoate and 6590_superpathway_
of_Clostridium_acetobutylicum_acidogenic_fermentation) were
only statistically significantly decreased in IBD-twins and un-
related patients with IBD, and not in healthy cotwins
(Figure 5F), although 1 butyrate biosynthesis pathway was
decreased in healthy cotwins and IBD-twins compared
with healthy controls (5676_acetyl_CoA_fermentation_to_
butanoate_II).

Taken all together, an increase in potentially pathogenic
species and proinflammatory pathways was noted in the gut
microbiome of healthy cotwins of IBD-discordant twin pairs
compared with healthy controls. A substantial proportion of
these differences are shared with IBD-twins and unrelated
patients with IBD.
Discussion
In this unique cross-sectional study analyzing the gut

microbiome in IBD twin pairs, using metagenomic shotgun
sequencing, we observed no differences in a and b di-
versity and the relative abundance of individual species
and pathways between healthy cotwins and their IBD-
twins. Compared with age-, sex-, and BMI-matched
healthy controls, healthy cotwins displayed a large over-
lap in differentially abundant species and pathways, not
only with their IBD-twins, but also with unrelated patients
with IBD. Among these overlapping species and pathways,
species associated with IBD and potentially inflammation-
related pathways were present. This implies that either
the diagnosis of IBD might be preceded by microbial
compositional changes or an increased risk of IBD is
associated with an altered microbial composition or a
combination of both.

In the present study, the relative abundances of taxa and
pathways were not statistically significantly different be-
tween IBD-twins and their healthy cotwins. This is in
contrast with previous, smaller-sized, 16S rRNA sequencing
based microbiome IBD twin studies,11,13–15 in which gut
microbiome differences between IBD-affected twins, espe-
cially individuals with ileal CD, and their healthy cotwins
were reported.11,13 In these previous twin studies, further-
more, a microbial profile linked to ileal CD that differed
from healthy cotwins and patients with colonic CD,11–13 and
a less diverse microbial composition at the intestinal mu-
cosa in UC-affected twins compared with their healthy cot-
wins was observed.14 This last phenomenon was found to
be less pronounced in healthy cotwins, but was still
decreased compared with healthy non-IBD related twins.14

A Belgian study in siblings and parents of CD-affected pa-
tients, using denaturing gradient gel electrophoresis, found
a fecal microbiome dysbiosis in the unaffected relatives as
compared with healthy controls characterized by mucin
degrading microbiota.27 An English study among siblings of
patients with CD also noted a dysbiosis in the fecal micro-
biome of the IBD-unaffected siblings.28 The results of these
smaller family (ie, non-twin) studies based on techniques
with lower resolution are in line with our findings with a
changed composition of the fecal microbiome in healthy
cotwins with IBD-affected twins.

The question arises whether shared genetics and
(childhood) environment, rather than IBD phenotype or
disease activity, might have resulted in a more similar
composition of the gut microbiome between healthy cotwins
and their IBD-twins. Previous work underscored the large
impact of environmental factors during childhood on the
adult gut microbiome composition.5 To further unravel the
processes shaping the gut microbiome and explore the pu-
tative microbial drivers of IBD, we included unrelated pa-
tients with IBD, in addition to the IBD-twins. Unrelated
patients with IBD showed only minor differences in indi-
vidual taxa and pathways with IBD-twins. Interestingly,
healthy cotwins did not only have overlap in differentially
abundant species and pathways with their IBD-twins, but
also with the unrelated patients with IBD compared with
healthy controls. This renders shared environment and ge-
netics as sole explanation for the overlap in microbiome
signatures between IBD-twins and their healthy cotwins
less probable, and suggests a mechanistic role for the gut
microbiome in the development of IBD in the prediagnostic
state whether or not related to subclinical inflammation,
which we cannot rule out. Although prediagnostic micro-
biome data are lacking for IBD, in type 1 diabetes mellitus
gut microbiome changes, albeit moderate, have been shown
to occur before diagnosis,29 hinting toward the possibility of
gut microbial changes occurring in the mechanistic chain of
disease development.

One of the IBD signatures detected in healthy cotwins
was an increase in the relative abundance of Escherichia
unclassified (Figure 4A). Escherichia unclassified belongs to
the genus of gram-negative, facultative anaerobic taxa that
display lipopolysaccharide, a potent stimulator of innate
immune responses, on their outer surface. Escherichia
unclassified has previously been associated with UC and CD,
and is considered a key pathogenic driver in IBD.30,31

Moreover, 2 pathways involved in the biosynthesis of
family-specific surface enterobacterial common antigen,
which is shared by all members of, and restricted to, the
family Enterobacteriaceae,23 and a pathway for the biosyn-
thesis of enterobactin, a siderophore that chelates Fe3þ and
is known to be a virulence factor,24 were increased in the
healthy cotwins, IBD-twins, and unrelated patients with IBD,
as compared with the healthy individuals. The relative
abundance of the genes encoding L-arginine degradation
was increased in healthy cotwins, IBD-twins, and unrelated
patients with IBD, as compared with the healthy controls, as
well. L-Arginine is a precursor for the synthesis of poly-
amines. Polyamines contribute to the integrity of the gut and
reduced expression of proinflammatory cytokines by
monocytes and macrophages.32 L-arginine has been associ-
ated with a protective effect of colitis in mice models,33,34

and decreased levels of L-arginine have been observed in
the intestinal epithelium in active UC possibly caused by
decreased cellular uptake and increased consumption by
nitric oxide synthase 2.32 A decreased L-arginine biosyn-
thesis or increased L-arginine degradation has been re-
ported previously in metagenomic shotgun sequencing-
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based microbiome studies in IBD.3,35 Likewise, an increase
in the relative abundance of the gene encoding the degra-
dation of propionate, an SCFA, was observed in healthy
cotwins, IBD-twins and unrelated patients with IBD, as
compared with healthy controls. SCFAs are an important
energy source for enterocytes, and induce tolerogenic and
anti-inflammatory enterocyte and T-cell phenotypes by
multiple mechanisms.36,37 SCFAs constitute an increasingly
convincing link between the gut microbiome and the IBD
phenotype, and SCFA supplementation has been found to
attenuate colonic inflammation.38 Interestingly, the relative
abundance of F prausnitzii (often inversely associated with
IBD2), a well-known butyrate producer, and 2 butyrate
biosynthesis pathways was found to be decreased in IBD-
twins and unrelated patients with IBD, but not in healthy
cotwins. We could thus not replicate the data from 1
Spanish39 and 1 English28 smaller-sized 16S rRNA quanti-
tative polymerase chain reaction–based study, in which a
decrease of F prausnitzii in relatives of patients with UC39

and relatives of patients with CD28 was found.
To date, insights in the preclinical phase of IBD are

scarce.40 Previous epidemiological studies have shown an
increased risk of developing IBD in healthy cotwins from
IBD-discordant twin pairs.10 It is therefore tempting to
speculate that changes in the gut microbiome of healthy
cotwins precede IBD development and are involved in the
pathogenesis. An alternative explanation might be that these
microbiome alterations reflect the impact of shared genetic
makeup or environmental factors in these individuals, but
do not necessarily lead to IBD development. Longitudinal
studies, with sampling at multiple timepoints in high-risk
individuals before the onset of IBD (for example the GEM-
project41), are therefore needed to get a true insight in the
preclinical phase of IBD.

Our study is, to the best of our knowledge, the largest
twin study in the field of IBD and the microbiome up to date
with high-resolution assessment of the taxonomic and
functional composition of the gut microbiome. An important
strength of our study included the comparison of carefully
phenotyped IBD-discordant and -concordant twin pairs, and
a large cohort of age-, sex-, and BMI-matched healthy con-
trols and unrelated patients with IBD, allowing us to study
several aspects of the overlap of the microbiome between
healthy cotwins and patients with IBD. Although the par-
ticipants came from 2 cohorts, the DNA isolation, library
preparation, and sequencing were for all samples performed
in the same way, at the same location and time by the same
technician, minimizing the risk for batch effects. Further-
more, we adjusted our analyses for potential confounding
factors, thereby reducing the chance of identifying spurious
associations between the microbiome composition and IBD-
status.

Our study does, however, have its limitations. Further
increasing the sample size could have increased the power
to detect more subtle differences in microbiome composi-
tion. Furthermore, multicollinearity prevented us from
correcting for the use of IBD medication (which has been
shown, however, to be only mildly associated with the gut
microbiome composition42), and stool consistency. Patients
with CD and patients with UC were grouped together in our
analyses. However, by including IBD phenotype as a co-
variate in our regression models we corrected for its po-
tential confounding effects. Although we sought, as
described, to minimize batch effects as much as possible,
this could not completely be avoided, given the fact that the
fecal samples were collected from individuals included in 2
different cohorts. Last, the unrelated patients with IBD were
self-reported and, therefore, detailed information on Mon-
treal classification, IBD-medication use, and disease activity
was not available. Nonetheless, the gut microbiome
composition of IBD-twins and unrelated patients with IBD
considerably overlapped, as would have been expected
when comparing 2 cohorts of patients with IBD.

In conclusion, we found that the gut microbiome of
healthy cotwins from IBD-discordant twin pairs displays
IBD-like signatures, both at a taxonomic and functional
level. The gut microbiome of these individuals at increased
risk of developing IBD displays similarities to the gut
microbiome of their IBD-affected twins and unrelated pa-
tients with IBD, and is different from healthy controls. These
IBD-like microbiome signatures could be a reflection of a
shared genetic background and environment and might
precede IBD development. However, longitudinal studies
are needed to infer a causal relationship.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online, version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2021.01.030.
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