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In the present article, we discuss the role that quantitative genetic methodology may play in assessing and
understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the
relationship between the observed covariance structures, on the one hand, and the underlying genetic and
environmental influences giving rise to such structures, on the other. We note that this relationship may
be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimension-
ality assessment alone. One situation in which dimensionality assessment may be impeded is that in
which genetic and environmental influences, of which the observed covariance structure is a function,
differ from each other in structure and dimensionality. We demonstrate that in such situations settling
dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover
the (possibly different) dimensionalities of the underlying genetic and environmental structures. We
illustrate using simulations and an empirical example on childhood internalizing problems.
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It could be argued that all psychometric modeling starts and
ends with the assessment of dimensionality, that is, with the
determination of the number of latent psychological attributes that
are measured through a set of indicators (e.g., questionnaire items,
subtest scores). Psychometrics starts with dimensionality assess-
ment because some idea of how many attributes one intends to
measure, however implicit, guides the test construction and item
selection process, as well as the psychometric models one subse-
quently entertains as viable candidate models for the data. Ideally,
it also ends with dimensionality assessment in that when the fog
clears and validity issues begin to be settled, a picture emerges of
which psychological attributes are measured by the test items;
clearly, this question cannot be answered without simultaneously
resolving the dimensionality issue.

The importance of dimensionality assessment, however, extends
beyond purely psychometric issues pertaining to test construction,
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as dimensionality assessment impacts the research questions that
psychologists pose and, as a result, the answers they obtain. For
instance, via identification of item clusters, dimensionality assess-
ment steers the allocation of items to subscales. This not only
determines which subtest scores are analyzed in empirical data
analysis, but also significantly influences the interpretation of
latent variables hypothesized in psychological research. This in-
terpretation may in turn result in revisions of theory concerning the
nature of the psychological construct under consideration. In this
way, procedures aimed at determining dimensionality play a cen-
tral role in psychology; not just in the development of psycholog-
ical tests, but also in the revision of interpretations of psycholog-
ical constructs, and thus in the development of psychological
theory (Cronbach & Meehl, 1955; Gorsuch, 1983; Haig, 2005a,
2005b; Mulaik, 1987; Rummel, 1970).

The most widely used, and in this sense most important, way of
investigating dimensionality is through the statistical method of
exploratory factor analysis (EFA) and related models (e.g., prin-
cipal component analysis; Lawley & Maxwell, 1971). The influ-
ence of this method pervades many different areas in psychology.
For instance, EFA has played an important role in the development
of the five-factor model of personality (Costa & McCrae, 1985;
Goldberg, 1990), the theory of childhood psychopathology asso-
ciated with the Child Behavior Checklist (CBCL; Achenbach,
1966, 1991), and the Cattell-Horn—Carroll model of the structure
of cognitive abilities (Carroll, 2003; Cattell, 1941; Horn, 1965).
Many other examples could be listed, as EFA is one of the most
widely used statistical techniques in the psychological science
(Fabrigar, Wegener, MacCallum, & Strahan, 1999). In the past
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decades, confirmatory methods, such as item response theory
modeling and confirmatory factor analysis (CFA), have been
added to the repertoire for dimensionality assessment, and a good
deal of work has gone into the development of heuristics to
facilitate the process (Fabrigar et al., 1999; Henson & Roberts,
2006; Zwick & Velicer, 1982, 1986).

Notwithstanding the availability of these statistical tools, the
evaluation of dimensionality remains difficult. For instance, in the
area of cognitive abilities research, there is currently a lack of
consensus on whether the g factor (general intelligence) can be
equated with some of the more specific common factors, such as
working memory or fluid reasoning (e.g., Ackerman, Beier, &
Boyle, 2005; Matzke, Dolan, & Molenaar, 2010). Given the lack of
sufficiently elaborate theory, research relies heavily on the inter-
correlations among common factors as a source of information
concerning dimensionality, conditional on the specified factor
structure. Similar issues arise in psychopathology research, where
some of the most prominent debates concern the origin of cova-
riation between symptoms of two or more disorders (e.g., Angold,
Costello, & Erkanli, 1999; Cramer, Waldorp, van der Maas, &
Borsboom, 2010; Lilienfeld, Waldman, & Israel, 1994). For in-
stance, the co-occurrence of symptoms of anxiety and depression
is typically subject to many different explanations, ranging from
those that view the disorders as different points on the same
continuum to those conceptualizing them as empirically and con-
ceptually distinct phenomena (Clark, 1989).

It would thus appear that EFA and related methods, which work
purely on the observed covariation between the items,' do not
always have sufficient resolution to firmly clinch dimensionality
issues. However, it is not entirely clear why dimensionality as-
sessment is so difficult. In the light of work done in the field of
quantitative genetics (e.g., Boomsma & Molenaar, 1986; Martin &
Eaves, 1977), we propose that one of the possible reasons under-
lying this difficulty is that item covariation, upon which EFA and
related methods work, may be the result of genetic and environ-
mental influences that differ from each other in dimensionality and
structure. In the current article, we study the relationship between
item covariance structures, on the one hand, and the underlying
genetic and environmental covariance influences giving rise to
such structures, on the other. This relationship, as we will show,
may be such that it hampers obtaining a clear phenotypic dimen-
sionality (i.e., dimensionality assessed on the basis of observed
item covariation only). Incorporating genetic information in item
analysis may yield a deeper understanding of the number of latent
variables measured through the test scores. This provides impor-
tant insights and research opportunities in the context of dimen-
sionality assessment.

The structure of this article is as follows. We first introduce
genetic factor modeling as applied in the classical twin design, and
note that the genetic and environmental influences underlying the
observed item covariation do not necessarily resemble each other
in structure. This fact, in turn, may have implications for dimen-
sionality assessment. We illustrate using (a) a simulation study and
(b) an empirical example on childhood internalizing psychopathol-
ogy. Before addressing these issues, however, it is necessary to
cover the basics of the genetic factor model as applied in the
classical twin design.

Genetic Covariance Structure Modeling and the Twin
Design

Genetic covariance structure modeling (Martin & Eaves, 1977)
is the application of structural equation modeling (Bollen, 1989;
Kline, 2005) to data collected in genetically informative samples,
such as siblings or adoptees (Boomsma, Busjahn, & Peltonen,
2002; Frani¢, Dolan, Borsboom, & Boomsma, 2012; Neale &
Cardon, 1992). The fact that the samples are genetically informa-
tive (i.e., they consist of relatives whose average degree of genetic
resemblance is known based on quantitative genetic theory; Fal-
coner & Mackay, 1996) makes it possible to assess the relative
contributions that genetic and environmental factors make to in-
dividual differences in observed traits (i.e., phenotypes). This is
done by modeling genetic and environmental effects as contribu-
tions of latent variables to individual differences in observed traits,
and estimating these contributions as regression coefficients in the
linear regression of the observed traits on the latent genetic and
environmental variables. The genetic and environmental latent
variables themselves represent the effects of many unidentified
influences: The genetic factors represent the effects of an unknown
number of genes (polygenes), and the environmental factors cor-
respond to effects of a potentially large number of unmeasured
environmental influences. Measured genotypic and environmental
information may also be included in the analyses (Cherny, 2008;
Medland & Neale, 2010), but we do not consider this possibility in
the present article.

Identification in genetic covariance structure modeling is achieved
by using the information on the average degree of genetic resem-
blance between relatives in specifying the model. For instance, in the
classical twin design the sample consists of monozygotic (MZ) and
dizygotic (DZ) twin pairs. DZ twins share on average 50% of their
segregating genes, whereas MZ twins share nearly their entire ge-
nome (Falconer & Mackay, 1996; van Dongen, Draisma, Martin, &
Boomsma, 2012). The observed (i.e., phenotypic) covariance struc-
ture is typically modeled as a function of latent factors representing
three sources of individual differences: additive genetic (A), shared
environmental (C), and individual-specific environmental (E)
sources.” Additive genetic influences are modeled by one or more A
factors, which represent the total additive effects of genes relevant to
the phenotypes. Based on quantitative genetic theory (Falconer &
Mackay, 1996), the A factors are known to correlate 1 across MZ
twins and .5 across DZ twins. Environmental influences affecting a
phenotype in family members in an identical way, thereby increasing
their similarity beyond what is expected based on genetic resemblance
alone, are modeled by one or more C factors. Therefore, by definition,
the C factors correlate unity across twins, regardless of zygosity. All
environmental influences causing the observed trait to differ in two
family members are modeled by one or more E factors. These influ-

! Or on the estimated covariation between latent distributions assumed to
underlie discrete items.

2 In addition, the trait may be influenced by nonadditive genetic effects
(D). Unlike additive genetic effects, which result from additive action of
genes, nonadditive genetic effects represent interactive effects of genes on
the trait of interest. These will not be modeled in the present article, as the
classical twin design does not allow for simultaneous estimation of A, D,
C, and E effects. In our empirical example, we performed a series of
univariate analyses with the results showing most of the items in our data
set to conform better to an ACE than to an ADE model.
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ences include environmental events to which each family member is
uniquely exposed (e.g., two members of a twin pair engaging in
different extracurricular activities), as well as events to which multiple
family members are exposed but are affected by in a different way
(e.g., both twins may be exposed to parental divorce, but the divorce
may affect the trait of interest in each of the twins differently). Thus,
by definition, the E factors correlate O across twins.

The twin design relies on several further assumptions, which
include the equal environment assumption (i.e., it is assumed that
MZ and DZ twins are equally correlated in their exposure to
environmental factors of etiological relevance to the trait under
study), equality of variance in MZ and DZ twin pairs, and absence
of genotype—environment interaction (i.e., of dependency of ge-
netic effects on the environment and vice versa), of genotype—
environment correlation (i.e., of nonrandom placement of geno-
types in the range of available environments), of rater bias, and of
recruitment bias (e.g., Dolan, 1992; Lykken, McGue, & Tellegen,
1987; Martin & Wilson, 1982; Neale, Eaves, Kendler, & Hewitt,
1989; Stoolmiller, 1999). The presence of these phenomena does
not hamper the approach, but requires them to be modeled explic-
itly (see, e.g., Derks, Dolan, & Boomsma, 2006). For other as-
sumptions of the twin model, see, for example, Derks et al. (2006);
Falconer and Mackay (1996); Lykken, McGue, Bouchard, and
Tellegen (1990); Martin, Boomsma, and Machin (1997); Plomin,
Defries, McClearn, and McGuffin (2008); and Purcell (2002).

Figure 1 depicts two examples of the particular multivariate
twin model relevant to the present article. Within a given model
two identical parts are specified, one for each twin. These parts

relate the observed phenotypic variables to the latent common
variables. For each twin, the covariation in item scores is specified
to be a function of the twins’ A, C, and E factors. The A, C, and
E factors are correlated 1, 1, and 0 in the MZ twins and .5, 1, and
0 in the DZ twins, respectively. Note that the correlations between
the A, C, and E factors within an individual are assumed to be 0,
as are the cross-correlations between Twin 1 and Twin 2. Subse-
quently, the data are analyzed in a multigroup analysis of MZ and
DZ covariance matrices. The expected covariance structure in a
multivariate twin model is thus

(Eu 212) _ (2A+ I+ 3

raZat 3¢ ) 0
221 222 VAEA + 2C '

Iat3c+3g

where, given p phenotypes (i.e., observed traits, indicators) per
individual, %, (X,,) is the p X p covariance matrix of Twin 1
(Twin 2), 212 is the Twin 1 — Twin 2 p X p covariance matrix,
and X ,, X, and 3 are the additive genetic, shared environmen-
tal, and unique environmental p X p covariance matrices, respec-
tively. The coefficient r, is the additive genetic twin correlation (1
for MZ twins, .5 for DZ twins). The 3, %, and X matrices may
be subject to further modeling, as depicted in Figure 1. Although
the 3., 3, and 3 covariance matrices may be subjected to any
kind of a covariance structure model (see Boomsma & Molenaar,
1987; Eaves, Long, & Heath, 1986; Neale & Cardon, 1992), we
focus on the type of model depicted in Figure 1.

The first model in Figure 1 is a common pathway model (Ken-
dler, Heath, Martin, & Eaves, 1987), also known as the psycho-

Twin 1 Twin 2

Twin 1

Twin 2

Figure 1. A common pathway (left) and an independent pathway (right) genetic factor model. Matrix names
on the sides correspond to notation in the text. Note: As indicated by the notation, the a, ¢, e, and \ parameters
are subject to equality constraints over Twin 1 and Twin 2. A = additive genetic factor; C = shared
environmental factor; E = individual-specific environmental factor.
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metric factor model (McArdle & Goldsmith, 1990). In common
pathway models, all the A, C, and E influences on item covariation
are mediated by a latent variable, henceforth referred to as the
psychometric factor (factors P, and P, in Figure 1). P, and P, may
be viewed as phenotypic latent factors (i.e., latent factors obtained
in factor analysis as typically applied in psychological research;
e.g., “neuroticism” or “g”). In common pathway models, the
psychometric factor acts as a mediator of the genetic and environ-
mental effects.

The second model is the independent pathway model (Kendler
et al., 1987), also known as the biometric factor model (McArdle
& Goldsmith, 1990). An example of this model is depicted in the
right panel of Figure 1. In independent pathway models, there is no
phenotypic latent variable that mediates genetic and environmental
effects on the item responses. Rather, the A, C, and E factors
influence item responses directly. In terms of the phenotypic
covariance matrix of item responses, we can convey the common
and the independent pathway model as follows:

31 =30 =APA + O, = A(D, + D + Pr)A' + O, )

= AT W) + TW G + TpWelp A + O,

2‘«21 = 212 = A("A‘DA + (I)C)AI + ®cp21
=A(rAT WA T) + TeW A+ O,

3= 20 = AAWAAL + ACWCAL + AWEAL + O, 3)

301 =3 =AM WAL + AW AL + Oy,

respectively. Here A (in the common pathway model) and A 5, A,
and Ag (in the independent pathway model) matrices contain the
loadings of the indicators on the psychometric factor and on the
biometric (A, C, and E) factors, respectively, and ¥,, W, and
W are the covariance matrices of the A, C, and E factors. In the
common pathway model, the covariance matrix of the psychomet-
ric factor, ®, equals ®, + ®- + Py, that is, [\ W, I, +
W I + W'y, where ', T, and I' are the vectors of
factor loadings I', = [a], I'c = [c], I'y = [e]. Note that in both
models the diagonal matrices @ (denoted ®, and @, ,, as they may
vary over the models) contain the residuals of the items in the
model and O, and @, ,, matrices contain the Twin 1 — Twin
2 covariance among the residuals. The residual matrices may be
subjected to their own decomposition, that is, @ = @, + O +
O and O,, = r,0, + O (Neale & Cardon, 1992), as depicted
in Figure 1.% It is immediately clear from Figure 1 that the common
pathway model differs from the independent pathway model in the
presence of the psychometric factors P, and P,. As we explain
next, this difference can have important implications for dimen-
sionality assessment.

Phenotypic Latent Variable Model and the Common
Pathway Model

In the present article, we distinguish between genetic factor models
(introduced above) and phenotypic factor models. By phenotypic
factor model we refer to the factor model as usually formulated and
applied in psychological research. The term phenotypic is used be-
cause the model is applied only to the observed (i.e., phenotypic)
covariation; no genetic information is used. The eight-factor cross-

informant model of the CBCL (Achenbach, 1966) and the five-factor
model of personality (McCrae & Costa, 1999; McCrae & John, 1992)
are examples of a phenotypic factor model.

The common pathway model bears a number of similarities to the
phenotypic factor model. Notably, both the phenotypic factor model
and the common pathway model are based on the assumption that all
covariation in item responses is attributable to one or more latent
variables. In phenotypic factor modeling, this is formulated as the
requirement of measurement invariance: influences of all external
variables affecting covariation in item responses run only via the
latent variable (Mellenbergh, 1989; Meredith, 1993). Likewise, in
common pathway modeling one assumes that all the A, C, and E
influences on item covariation run only via the psychometric factor.
That is, there are no direct effects of A, C, and E on the items.*

The assumption of full mediation of external influences by a latent
variable has strong implications. For instance, different external vari-
ables affecting a set of item responses via the same latent variable
exert the same magnitude of influence relative to each other on all the
items that depend on that latent variable. For instance, if an A and a
C variable affect a set of items via the same psychometric factor, the
magnitude of influence exerted by the variable A on any individual
item will be a scalar multiple of the magnitude of influence exerted by
the variable C on that item, and this scalar multiple (k) will be a
constant across all the items depending on this psychometric factor.
This can be seen from the regression equations describing the com-
mon pathway model, for example (in terms of the symbols used in
Figure 1),

X1 = )\1(aA| + CC] + eEl) + &1 = )\1aA] + )\ICCI + )\leEl + €11
)
x1p = My(aA| + cC; +eE)) + &5 = MaA; + NyeCp + MeE,; + &5,

etc. (note that €, = A,;, + C,, + E,, in Figure 1, etc.). In
contrast, the independent pathway model imposes no proportion-
ality constraints on the factor loadings, for example,

xy=aA; +¢,C;+eE| + e, (@)
X1 = aA; +¢,Cp + eE| + &y,

etc. Specifically, letting k denote a positive constant, we note that the
introduction of the constraints a,/a, = c,/c, = e,/e, = k renders
Equation 4 and Equation 5 equivalent (Yung, Thissen, & McLeod,
1999). Thus, the common pathway model makes explicit an assump-
tion of the phenotypic latent variable model concerning the sources of
item covariation—all influences on item covariation run via the phe-
notypic latent variable. This means, barring cases of model equiva-
lence, that a latent variable model cannot hold unless the correspond-
ing common pathway model holds. Because any given latent variable
hypothesis implies a corresponding common pathway model, a refu-
tation of that common pathway model constitutes evidence against the
latent variable hypothesis.

* A more detailed account of the residual decomposition is provided in
Appendix A.

* As such, the common pathway model may be interpreted as a MIMIC
model (Joreskog & Goldberger, 1975), as the causal influences of A, C,
and E factors on the observed responses are mediated by the phenotypic
factor. However, in this case the multiple causes are latent rather than
observed variables as in the Joreskog and Goldberger (1975) case.
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For this reason, one may test the latent variable hypothesis by
comparing the fit of a common pathway model to that of a corre-
sponding independent pathway model. Specifically, if a model in
which all the A, C, and E factors exert direct influence on the
phenotype fits the data statistically better than a model in which these
influences are mediated by a phenotypic latent variable, this would
provide evidence against the hypothesis that the effects on the ob-
served item covariation are completely mediated by the phenotypic
latent variable. In that case the latent factors employed in the pheno-
typic factor model are no more than an amalgamation of the direct
influences of the A, C, and E factors on the observed item responses.
This would have implications for the substantive interpretation of
such factors as well-defined, causal entities that produce the observed
item covariation (e.g., Borsboom, Mellenbergh, & van Heerden,
2003; Haig, 2005a, 2005b).” If, on the other hand, an independent
pathway model does not fit the data better than the corresponding
common pathway model, this would provide support for the structure
employed in the common pathway model and substantiation for the
corresponding phenotypic latent variable hypothesis. Comparison of
an independent pathway model and a common pathway model may
be conducted using a likelihood ratio test, because, as shown above,
a common pathway model can be derived from an independent
pathway model by imposing appropriate proportionality constraints
on the factor loadings (i.e., the models are nested).

The logic underlying the present approach is essentially the same as
that involved in measurement invariance research and multiple indi-
cators multiple causes (MIMIC) modeling: The latent variable is
required to screen off the effects of genetic and environmental factors
(in Pearl, 2000, terminology, the latent variable d separates genes and
environment from the item responses). However, what makes the
genetic case special is that the A, C, and E factors (a) plausibly
determine the variance of the latent variable completely and (b) can be
highly structured by applying standard genetic theory to genetically
informative data. This allows for unique possibilities to investigate
hypotheses on the origins of structures seen in the correlations among
psychometric items. To demonstrate that the proposed methodology
works under realistic conditions, we next provide a simulation example.

Simulation Study

To illustrate the relationship between the observed association
structures and the underlying genetic and environmental structures,
we simulated several data sets. In each data set, a different pattern of
genetic and environmental effects gives rise to the observations.
These patterns depart progressively from the ideal situation of a
common pathway model. As we will show, such departures lead to
psychometrically indeterminate covariation structures, in the sense
that standard psychometric research practices would not (and in fact
could not) converge on correct assessments of the underlying dimen-
sionality. However, we also show that attending to genetic informa-
tion, present in the widely available twin data sets, allows one to
resolve the psychometric puzzle accurately (i.e., to better understand
the dimensionality of the data set).

In total, four data sets were simulated. In the first data set (Data Set
0) the data are consistent with a common pathway model. In the three
subsequent data sets (Data Sets 1-3), the assumption of the common
pathway model concerning the proportionality of the genetic and
environmental effects on the items is violated to an increasing extent.
This was achieved by manipulating the dimensionalities of the latent
A, C, and E structures (i.e., the order of the covariance matrices W 4,

FRANIC ET AL.

W, and Wy). Figure 2 outlines the general structure of this simula-
tion.

Each of the four data sets comprises 12 continuous normally
distributed variables per individual (24 variables per twin pair), for
1,000 MZ and 1,000 DZ twin pairs. We used exact data simulation
(i.e., the simulated data fitted the generating model exactly; e.g., van
der Sluis, Dolan, Neale, & Posthuma, 2008). We limit the current
presentation to a single set of parameter values (given in Table 1),°
which we do not vary over the four simulations. The manipulation
involves only (a) varying the dimensions of the W,, W, and W
covariance matrices (and the dimensions of the corresponding A4,
Ac, and A matrices) and (b) varying the patterns of factor loadings
within the A, Ac, and A matrices. However, all simulations were
performed with five sets of parameter values, and our conclusions
were found to be invariant.” The simulation script provided in Ap-
pendix B may be used to verify the generality of our inferences. In the
following text, we will first review the four generating models. Sub-
sequently, we present the results of dimensionality assessment for the
four data sets.

Models

The baseline model (Model 0, depicted in the first panel of Figure
2) is a common pathway model. The expected phenotypic covariance
structure (X p) under this model is

(211 2"12)
2'2] 2'22
B <A(cI>A + @ + DA’ + 0O,

A @y + POA + Oy,
A(ra®, + PN+ O ’

A@, + D + DA’ + O,

where 3, (2,,) is the 12 X 12 phenotypic covariance matrix of
Twin 1 (Twin 2); %5 is the 12 X 12 Twin 1 — Twin 2 phenotypic
covariance matrix; A is a vector containing the loadings of the
indicators on the psychometric factor; ®,, ®, and P are the A,
C, and E variance components of the psychometric factor, respec-
tively; coefficient r, is the additive genetic twin correlation (1 for
MZ twins, .5 for DZ twins); @, is a diagonal matrix containing
the residuals of the items; and @,,,, and O, are matrices
containing the Twin 1 — Twin 2 covariance among the residuals.
In the present case, the variance of each of the items in %, (Z,)
is 1, and the correlations between the indicators range from .12 to .62.

The model above may also be expressed in terms of parameters
of an independent pathway model, as presented in Table 1. In this
independent pathway model, the expected covariance structure

Zp) is:

3 This would, however, not diminish the usefulness of phenotypic latent
variables as a means of summarizing data or their utility as predictors. In
addition, the specific reasons for rejecting the common pathway model
may be local (due only to a subset of observed variables), and thus the
violation may be accommodated by the addition of parameters or by the
removal of offending variables.

®The table does not detail the parameters of the ACE model for the
residuals given our focus on dimensionality assessment; these are given in
Appendix A and the simulation script (Appendix B).

7 Details on the five sets of parameter values may be obtained from the
first author.
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Table 1
Parameters of Models 0-3

Model 0 in terms of common pathway parameters

A" = [0.1, 0.15, 0.2, 0.25, 0.3, .35, 0.4, 0.45, [0.5, 00.55, 0.6, [0.65]

r,=1[05], e =[03], 'y = [0.2]

W, =W =W = [1]

0., = I — diag[A(®,+ P+ P)HA] =1 — diag[ AT W', + T W + FWel'y)HA']
= diag(.9, .85, .8, .75, .7, .65, .6, .55, .5, 45, 4, 35)

O o1, = 8T — diag(A(®,+ PHA")

= diag(.72, .68, .64, .6, .56, .52, .48, .44, 4, 36, .32, .28)

O 14, = 55T — diag(A(5®, + P)A")

= diag(.495, 4675, .44, 4125, 385, .3575, .33, .3025, .275, .2475, .22, .1925)

Model 0 in terms of independent pathway parameters
I'yA" = [0.05, 0.075, 0.1, 0.125, O.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3, 0.325]

Ay
A = TcA" = [0.03, 0.045, 0.06, 0.075, 0.08, 0.105, 0.120, 0.135, 0.150, 0.165, 0.180, 0.195]
Ay = T'gA" = [0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0O.10, O.11, 0.12, 0.13]
\PA = 1I’C = WE = [1]7 ®ip: ®cp’ ®ip21mz = ®cp21mz7 ®iledz = ®cp21dz
Model 1
W, = diag(1, 1)
A V.05 Vo075 Vi1l V.25 V.15 V.75
A V.2 V.25 V.25 V275 V.3 V325
Model 2
Wi, = diag(1, 1)
. (V02 V03 Vo4 Vo Vi Vo
BT V.05 V.06 V.01 Vo8 V.09 V.10
Model 3
W =diag(l, 1, 1)
V.03 V075 V120 V. 165
AL = V.045 V.08 V135 V. 180
V.06 V. 105 V150 V195
Note. The models are conveyed in terms of parameters that differ from the preceding model. For instance, the parameter matrices not listed under Model

1 (Ac, Ag, We, Wg, O, and O, ,,) equal those in Model 0. In addition, the factor loading parameters are conveyed in terms of square roots, as this gives
straightforward information on the proportion of variance explained (e.g., a factor loading of (.1 indicates [.1> = .1 explained variance). A = vector
containing the loadings of the indicators on the psychometric factor; I', I, I'y = vectors of factor loadings of the psychometric factor on the A, C, and
E factors; W,, W, W = covariance matrices of the A, C, and E factors; @Cp = G)ip = 12 X 12 diagonal matrix containing the residual item variances;
O p2imz = Oipaim, = 12 X 12 diagonal matrix of Twin 1 — Twin 2 covariances among monozygotic twins; @514, = 0214, = 12 X 12 diagonal matrix

of Twin 1 — Twin 2 covariances among dizygotic twins; A, Ac, Ag = matrices containing direct factor loadings of the items on the A, C, and E factors.

<2H 2'12) _ (AA‘I'AAAIA + AC‘I’CAE + AElIIEA;-I + ®ip

rAAA‘I’AAg + AC‘I'CAtC + @ip2]
3 3 FAAAWAA), + AW AL + Oy .

AW AL+ AWCAL + AWEAL + O

Here A, A, and Ag vectors contain the loadings of the
indicators on the A, C, and E factors, respectively, and the residual
matrices @, 0,5, and 0,4, are equal to those in the
common pathway model. In the case of the present model (Model
0), Xcp = X;p. Note that the independent pathway factor loading
parameters above are fully consistent with a common pathway
model; that is, the elements of A ,, A, and Ag matrices satisfy the

proportionality constraint a,/a, , | = c;/c; , | = ele, , |, = k, where

i=1,...11 and k is a constant). Taking these parameter values
as a point of departure, we specify the three subsequent models.

In Model 1, the additive genetic influences on the items are
represented by two orthogonal A factors per twin. Note that this
model (depicted in the second panel of Figure 2) may alternatively
be represented as a common pathway model with two phenotypic
factors per twin, each factor being a function of its own A, C, and
E factor (where the two A factors are uncorrelated and the two C
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factors, as well as the two E factors, correlate unity). In this sense,
the model does not represent a severe violation of the common
pathway structure.

In Model 2 (depicted in the third panel of Figure 2), the structure
employed in Model 1 is further altered, by increasing the dimen-
sionality of the E structure. This model represents a more severe
violation of the common pathway structure, as the items here no
longer cluster identically with regard to A and E influences (i.e.,
the patterns of factor loadings in the A, and Ay matrices differ
from each other). For instance, sets of items that form a unidimen-
sional structure with respect to additive genetic influences are
two-dimensional with respect to unique environmental influences.
In Model 3 (fourth panel of Figure 2), the common pathway
structure is further violated by increasing the dimensionality of the
C structure. Here, the clustering of the items is markedly different
with regard to the A, C, and E influences; thus, the observed
dimensionality is a function of A, C, and E influences that severely
violate the common pathway structure.

Analyses

The analyses of the data sets consisted of two parts. In the first
part, the aim was to examine the effect that the violations of the
common pathway structure had on the phenotypic dimensionality
estimates. To this end, the dimensionality of the data sets was
assessed using EFA. The phenotypic latent factors obtained in the
EFA were subsequently used as a basis for specifying confirma-
tory genetic factor common pathway models. As in standard ge-
netic research, here we decomposed the variation in the latent
factors obtained in the phenotypic EFA into genetic and environ-
mental components. In the second part, the aim was to obtain a
clearer indication of the data-generating mechanism by disposing
of the hypotheses concerning the number of latent variables in the
model, and applying independent pathway modeling in a purely
exploratory manner, to uncover the (possibly different) structures
of the A, C, and E influences. Specifically, we used EFA to
determine the possibly different dimensionalities of the covariance

Table 2
Fit Measures Obtained in Phenotypic Exploratory Factor
Analysis of Data Sets 1-3

Factor x> df P RMSEA
Data Set 1

If 325.3 54 0 .0003

2f 0 43 1 0

3f 0 33 1 0

4f 0 24 1 0
Data Set 2

1f 470.0 54 0 .0004

2f 133.6 43 1 .0002

3f 0 33 1 0

af 0 24 1 0
Data Set 3

If 543.8 54 0 .0004

2f 328.5 43 0 .0004

3f 196.8 33 0 .0004

4f 89.5 24 0 .0003

5f 0 16 1 0

Note. RMSEA = root-mean-square error of approximation.

Table 3
Factor Correlations Obtained in Phenotypic Exploratory Factor
Analysis (EFA) of Data Sets 1-3

Factor 1f 2f 3f 4f 5f
Two-factor EFA solution Data
Set 1
If 1
2f .04 1
Three-factor EFA solution Data
Set 2
If 1
2f 24 1
3f —.68 16 1
Five-factor EFA solution Data
Set 3
If 1
2f .09 1
3f —.06 .09 1
4f .04 .04 23 1
5f -.02 —.01 .26 25 1

matrices X ,, 3, and X, in terms of the latent covariance matri-
ces W,, W, and Wy (see Equations 1 and 3). Here the dimen-
sionality of the observed covariance matrix is a function of the A,
C, and E covariance structures, which may differ in dimensional-
ity, and in no way satisfy the common pathway model. The
advantage of this is that it provides an insight into the dimension-
ality of the phenotypic structure that does not assume, but does not
exclude, the common pathway model. The analyses were per-
formed using Mplus (Muthén & Muthén, 2007a), Mx (Neale,
2000), and R (R Development Core Team, 2009).® In evaluating
model fit, we used the comparative fit index (CFI), the Tucker—
Lewis index (TLI), and the root-mean-square error of approxima-
tion (RMSEA).

Results

Given that Model 0 has a unidimensional structure and was used
only as a baseline model from which parameter values were
derived, we limit the presentation to the results obtained in anal-
yses of Data Sets 1-3.

Data Set 1. Seeing as Model 1 can be viewed as a two-factor
common pathway model in which the two C factors, as well as the
two E factors, correlate unity, one can simply accommodate the
violation of the one-factor common pathway structure by fitting a
two-factor model. The phenotypic EFA results, a summary of
which is provided in Tables 2—4 (see also Figure 3), reflect this: A
two-factor EFA solution provides a perfect fit to the data, as do a
two-factor common pathway model (x> = 0, df = 581, p = 1,
RMSEA = 0, CFI = 1, TLI = 1) and a two-A, two-C, two-E
independent pathway model (x> = 0, df = 508, p = 1, RMSEA =
0, CFI = 1, TLI = 1) based on this two-factor EFA solution. Note
that perfect fit is associated with chi-square values of 0 because we

8 All scripts may be obtained from the first author upon request. We
alternated between Mplus and Mx because Mplus estimates the polychoric
correlations very efficiently, whereas Mx’s matrix-based syntax is very
convenient in fitting models involving high-dimensional Cholesky decom-
positions. R was used for its data simulation features.
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Table 4
Promax-Rotated Factor Loadings Obtained in Phenotypic Exploratory Factor Analysis of Data Sets 1-3
Data Set 1 Data Set 2 Data Set 3 Data Set 2

Factor Pl P2 Pl P2 P3 Pl P2 P3 P4 P5 Pl P2 P3 P4
x1 309 191 253 .289 459
x2 378 234 310 —.167 281 .108 285 215
x3 437 270 358 267 —-.209 309 127 329 249
x4 489 507 121 —.208 .249 227 358 507
x5 535 555 132 —.157 243 429 555
X6 578 .600 .143 562 .600
x7 .633 521 .170 .639 297 .596 107
x8 671 553 181 402 449 —.109 .632 113
x9 .708 583 .190 311 .398 .367 —.113 .666 12
x10 742 798 —.105 352 362 .365 —.175 495 737 S1
x11 775 .833 —.109 367 478 —.191 474 770 533
x12 .807 867 —.114 382 782 .209 801 554
Prop var 263 .107 251 .102 .063 .102 .084 .065 .058 .050
Prop cum var 263 371 251 353 416 102 .186 250 309 359

Note. Highest factor loadings for each item appear in bold. Prop (cum) var = proportion of (cumulative) variance explained.

used exact data simulation. The parameter estimates obtained in
genetic factor modeling indicate that C and E are unidimensional
(the correlations between the two C factors in both the common
and the independent pathway model are 1, as are the correlations
between the two E factors), whereas A may be represented by two
orthogonal factors. The structure depicted in the second panel of
Figure 2 therefore need not preclude accurate dimensionality as-
sessment. However, one might consider situations in which the
data-generating structure is less consistent with the common path-
way model; in the following examples we consider more severe
violations of the common pathway structure.

Data Set 2. In Model 2, the X, and X matrices are both
two-dimensional, but the items cluster differently with regard to A
and E influences (e.g., clusters of items that form a unidimensional
structure with respect to additive genetic influences are two-
dimensional with respect to unique environmental influences).
Note that the data-generating structure may still be accommodated
by a common pathway model with four phenotypic factors, each

e Model 0] « - Model 1
~ -
- -
N T 0\
g T 940+0-0-0.g.q. P "0~0-0-0.g.4 0-0-0
_ T T T T T T T T T T T T
‘g 2 4 6 8 10 12 2 4 6 8 10 12
c
o)
S < Model 2| , | Model 3
i = o~
| .
o ©w| o
A -~
= i \ . \0-0-0
g ] -°-°'°'°'°-°-g., o | ‘ﬂ‘o-o.gw_ﬁ
T T T T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
Component

Figure 3. Eigenvalues of the phenotypic covariance matrices for Models
0-3.

affecting three items. However, as common pathway analyses are
confirmatory in nature and predicated on the results of phenotypic
analyses, we first investigated whether phenotypic EFA correctly
indicated the number of phenotypic factors needed to account for
the observed covariance structure.

The results of the EFA are shown in Table 2. Here, both a
one-factor solution and a two-factor solution were clearly rejected
by the chi-square statistic, but in a three-factor solution both the
chi-square and the RMSEA indicated a perfect fit (x> = 0, df = 33,
p = 1,RMSEA = 0, CFI = 1, TLI = 1). In the four-factor solution
the same was the case, although the model (based on promax
rotation; presented in Table 4) does not correspond to the data-
generating structure. Moreover, in the four-factor solution none of
the items appear to be best represented by the third factor, and only
one item loads substantially (factor loading above \/.025) on the
fourth factor. Considering the fit statistics and the factor structure
given in Tables 2 and 4, it appears that in the standard situation of
dimensionality assessment the three-factor solution would repre-
sent a compelling choice.

On the basis of this three-factor EFA solution (detailed in Table
4), we specified a three-factor common pathway model and a
corresponding independent pathway model, depicted in Figure 4.
In both of these models, the phenotypic covariation in Twin 1
(Twin 2) is a function of three mutually correlated A (C, E) factors
(i.e., Wy, W, and Wy are 3 X 3 matrices with freely estimated
off-diagonal elements). Although inclusion of cross-loadings im-
proves model fit, we specify simple structure models given our
focus on dimensionality assessment. For the common pathway
model, the fit measures were x*(577) = 2158, p < .001,
RMSEA = .052, CFI = .944, TLI = .944, and for the independent
pathway model, x*(507) = 1148, p < .001, RMSEA = .036,
CFI = 976, TLI = .974. Additional analyses showed that
inclusion of cross-loadings (as indicated by the EFA solution)
improves model fit for both the common pathway model and the
independent pathway model; however, even then, the parameter
estimates remain somewhat biased. Thus, even if one assumed
the presence of cross-loadings, these models are still unable to
precisely convey the actual A, C, and E effects on the items. If
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Figure 4. A common pathway (upper panel) and an independent pathway (lower panel) model based on the
phenotypic exploratory factor analysis of Data Set 2. A = additive genetic factor; C = shared environmental
factor; E = individual-specific environmental factor.

one considers the generating model (third panel in Figure 2), it quately describe the present data-generating mechanism. Al-
is clear why this is the case: a model that assumes equal though we detail only the results based on the three-factor EFA
clustering of items with regard to A, C, and E effects (as does solution, none of the EFA solutions presented in Table 2 cor-
any model based on phenotypic factor analysis) cannot ade- rectly convey the genetic and environmental effects on the
Table 5
Fit Statistics Obtained in Exploratory Factor Analysis of the X.,, 2, and 3., Matrices in Data Sets 2 and 3
Data Set 2 Data Set 3
Factor X df p RMSEA X df p RMSEA
A
If 519.7 54 0 .0004 519.7 54 0 .0004
2f 0 43 1 0 0 43 1 0
C
If 0 54 1 0 1157.7 54 0 .0006
2f 0 43 1 0 495 43 0 .0005
3f 0 33 1 0 0 33 1 0
E
If 1302.9 54 0 .0007 1302.9 54 0 .0007
2f 0 43 1 0 0 43 1 0

Note. RMSEA = root-mean-square error of approximation.
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Figure 5. Data Set 2: Normalized eigenvalues for the 3, 3¢, and 3y
matrices (upper panel) and factor loadings obtained in the exploratory
factor analysis solutions with two A, one C, and two E factors (lower
panel). Shading codes for different latent factors. A = additive genetic
factor; C = shared environmental factor; E = individual-specific environ-
mental factor.

items. It is interesting to note that the misspecification of the
phenotypic models (in the sense that none accurately repre-
sented the data-generating structure) was not evident in the fit
measures associated with the models; the fit measures associ-
ated with all but the one-factor EFA solution indicated an
excellent fit.

The second part of the analyses was aimed at directly ad-
dressing the dimensionality issue, without reference to the
phenotypic factor structure. To this end, the A, C, and E
components of the observed covariance structure were esti-
mated from the data, and the dimensionality of each of those
components was separately evaluated using EFA. The A, C, and
E covariance components (i.e., the 12 X 12 %,, 3, and 3
matrices) may be estimated from twin data by fitting the model
given in Equation 1. These analyses were carried out in Mx
(Neale, 2000). Subsequently, each of the three covariance ma-
trices was subjected to EFA. As we do not assume any pheno-
typic model and make no predictions about the dimensionalities
of the X, 3, and 3 covariance components, this approach is
purely exploratory.

The results of the EFA are given in Table 5 and Figure 5. As
apparent from both the table and the scree plots in the figure,
the results correctly indicate the order of the W,, W, and W
matrices to be 2, 1, and 2, respectively. The estimated factor
loadings of the corresponding EFA solutions with two A, one C,
and two E factors, shown in the lower panel of Figure 5,
correspond exactly to the parameters of the generating model.

Data Set 3. In Model 3, the A, C, and E structures differ
appreciably from one another. The results of phenotypic EFA,
shown in Tables 2—4, indicate that a model with five phenotypic

factors provides an adequate description of the data. However, as
evident from Table 4, the pattern of factor loadings in this model
is inconsistent with a simple structure; thus, deciding on the
number of actual latent dimensions underlying the data and the
nature of the factors is complicated. Given that none of the EFA
solutions in Table 2 can correctly convey the genetic and environ-
mental effects on the items, we do not detail the possible confir-
matory common and independent pathway models one may fit to
the data given the EFA results. Instead, we present the solution
obtained by the EFA of the X ,, 2, and X variance components
(see Figure 6 and Table 5). As evident from both Table 5 and
Figure 6, a two-A, three-C, two-E structure is clearly supported by
the EFA results, and both the factor loading structure and the
values of the factor loading parameters are recovered correctly
(lower panel of Figure 6).

Finally, we note that the chosen dimensionalities of the W ,,
W, and W matrices represent only one instance of a violation
of the common pathway model. In the present simulation, the
values within the A4, Ac, and Ag matrices are still consistent
with a common pathway model (i.e., the nonzero elements of
AL, Ac, and Ay matrices satisfy the proportionality constraint
ala, ., , =cjfc, ., =¢ele;,. =k wherei=1,...11and kis a
constant). In other words, the correlation between the nonzero values
in the A4, Ac, and Ay matrices is 1; that is, the factor loadings are
collinear. It is possible to further violate the common pathway struc-
ture by manipulating the correlations between the values in the A4,
Ac, and A matrices. However, this violation is less detrimental to
model fit than are the differences in dimensionalities of W ,, W, W
matrices.

The present simulation shows that the clustering of the items
with respect to genetic and environmental effects is required to
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Figure 6. Data Set 3: Normalized eigenvalues for the 3, 2, and 3
matrices (upper panel) and factor loadings obtained in exploratory factor
analysis solutions with two A, three C, and two E factors (lower panel).
Shading codes for different latent factors. A = additive genetic factor; C =
shared environmental factor; E = individual-specific environmental factor.
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be identical for a unidimensional latent variable model to hold.
This is in line with the theoretical derivation presented earlier in
this article. In addition, it shows that if genetic and environ-
mental effects do not cluster identically, psychometric analyses
may fail to correctly indicate the dimensionality of the latent
space. In these cases, the data either will show a significant
degree of indeterminacy with respect to alternative dimensional
hypotheses or will support an incorrect latent structure. How-
ever, attending to the genetic and environmental antecedents of
the items successfully resolved the dimensionality issue. We
now apply this methodology to an empirical data set.

Ilustration: Childhood Internalizing Problems

Internalizing problems concern conditions such as anxiety,
depression, and somatization. Dimensionality assessment has
traditionally been difficult for such problems. For instance,
current diagnostic systems like the Diagnostic and Statistical
Manual of Mental Disorders (4th ed.; American Psychiatric
Association, 1994) distinguish anxiety and mood disorders as
separate categories, but there is a significant amount of evi-
dence to suggest that the overlap between such disorders is
larger than can be reasonably expected were such a categorical
distinction between types of disorders correct (e.g., Brady &
Kendall, 1992). This is supported by genetic analyses, which
univocally suggest that the genetic effects that impact anxiety
and depression are shared, whereas the unique environmental
effects are not (see, e.g., Kendler et al., 1987; Kendler, Neale,
Kessler, Heath, & Eaves, 1992; Middeldorp, Cath, Van Dyck, &
Boomsma, 2005). This presents an extraordinarily difficult task
for the test constructor. For how should items that probe dif-
ferent anxiety and mood related problems be allocated to sub-
scales? Can we reasonably expect a clear outcome of dimen-
sionality assessment in this case? In the present example, we
show that such an outcome is unrealistic given the genetic and
environmental background of internalizing problems. In addi-
tion, we show how the use of genetic information uncovers a
complex dimensional pattern that can be used to further the
psychometric understanding of test scores.

Data

The data were obtained from the Netherlands Twin Register
at VU University Amsterdam (Bartels, van Beijsterveldt, et al.,
2007; Boomsma et al., 2006) and consist of maternal ratings of
11,565 twins (including 2,085 MZ and 3,599 DZ complete twin
pairs) of mean age 10.1 years (SD = 0.4) on the Internalizing
grouping of the Dutch version of the Child Behavior Checklist
for Ages 4-18 (CBCL/4-18; Achenbach, 1991; Verhulst, Van
der Ende, & Koot, 1996). The Internalizing grouping of the
CBCL is a scale designed to measure disturbances in intropu-
nitive emotions and moods in children, and consists of three
subscales: Anxious/Depressed, Withdrawn, and Somatic Com-
plaints, comprising 31 discrete items (listed in Appendix C) in
total. Responses are given on a 3-point scale.’

Descriptive Statistics

The item distributions were positively skewed, with response
rates ranging from 54.8% to 96.8% (M = 84.8, SD = 10.3) for
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the response O (symptom not present), 2.9% to 41.2% (M =
13.2, SD = 9.4) for the response 1 (symptom somewhat/some-
times present), and 0.2% to 6.4% (M = 1.5, SD = 1.3) for the
response 2 (symptom very/often present). MZ and DZ twin item
correlations and the distribution of inter-item correlations are
depicted in Appendix C.

Analyses

As in the preceding example, the analyses consisted of two
parts. In the first set of analyses, the phenotypic dimensionality of
the data set was assessed using EFA, and the solutions obtained in
EFA were tested in a confirmatory manner, by (a) specifying and
fitting simple structure phenotypic models based on the EFA
results'® and (b) subsequently using these simple structure models
as a basis for specifying genetic common and independent path-
way models. In common pathway models, the variance in the
phenotypic factors obtained in EFA was decomposed into A, C,
and E components. The independent pathway models were based
on the common pathway models, in the sense that they retain the
structure employed in the common pathway models (i.e., they
contain the same number of A, C, and E factors, affecting the same
clusters of items) but dispose of the psychometric factors (i.e.,
allow for the items to load directly on the A, C, and E factors).
Thus, the common pathway models represent a special case of
(i.e., are nested under) the independent pathway models. By
comparing the fit of these common and independent pathway
models, we address the focal question of whether one can
interpret the phenotypic common factors substantively and
causally.

In the second set of analyses, independent pathway modeling
was applied in an exploratory manner. In particular, the analyses
consisted of estimating the unconstrained genetic and environmen-
tal covariance matrices (i.e., the 31 X 31 additive genetic, shared
and unshared environmental covariance matrices 2 ,, 2, and
3. and subjecting each of these covariance matrices to EFA to
obtain an indication of their dimensionality (i.e., the order of the
covariance matrices W,, W, and Wg; Equation 3).

As in the simulation example, the analyses were performed
using Mplus, Mx, and R.'" Given the discrete nature of the items,
we fitted discrete factor models (i.e., we assumed the discrete
indicator variables to be a realization of a continuous normal latent
process and fit models to polychoric correlations; Flora & Curran,

9 Returning to the aforementioned assumptions of the twin design, in the
present study we tested a number of these assumptions, including absence
of rater bias and absence of recruitment bias. The issue of rater bias was
addressed by comparing the standard deviations observed in our sample to
those of normative samples (Verhulst et al., 1996). These were found to
differ only slightly: The ratios of our standard deviations to those of
normative samples are .91, .83, and .95, for the Anxious/Depressed, With-
drawn, and Somatic Complaints scales, respectively. The issue of rater bias
in the present data has been addressed in the past. Bartels, Boomsma,
Hudziak, van Beijsterveldt, and van den Oord (2007) reported that in a
subset (N = 7,718) of the present sample, the estimate of the upper bound
of the phenotypic variance that may contain rater bias is ~.14.

!9 EFA and CFA were performed using split-half validation. Cases were
randomly assigned to either half of the sample; one half was subsequently
used for EFA (N = 5,782), and the other for CFA (N = 5,783).

"' The scripts used to perform the analyses may be obtained from the
first author.
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2004; Wirth & Edwards, 2007) using the robust weighted least
squares estimator (Muthén & Muthén, 2007b). The polychoric
correlations between the 31 items and between the 62 (31 per twin)
items served as input in the phenotypic and the genetic factor
analyses, respectively. In evaluating model fit, we used CFI, TLI,
and RMSEA. As both our sample size and the models employed
were large, the chi-square statistic was of limited use as an overall
fit measure (Joreskog, 1993), and was employed only to test local
hypotheses concerning comparisons of nested models, as these
comparisons are associated with a smaller approximation error.

Results

The initial analysis involved phenotypic EFA of the 31 items.
The term phenotypic here indicates that only the observed (phe-
notypic) covariation is analyzed; that is, the analysis does not
exploit the fact that the sample consists of familially related
individuals.'? EFA indicated two well-fitting models, a three- and
a four-factor model (depicted in Figures 7A and 7B). Interestingly,
in both of these models, the items originally belonging to the
Anxious/Depressed scale cluster into those appearing to be more
relevant to anxiety (3. Fears doing something bad, 4. Must be
perfect, 8. Nervous, tense, 9. Fearful, anxious, 10. Feels too guilty,
11. Self-conscious, 14. Worries) and those more related to depres-
sion (1. Lonely, 2. Cries a lot, 5. Feels unloved, 6. Others out to get
him, 7. Feels worthless, 12. Suspicious, 13. Sad). Note that the
depiction in the figure is simplified insofar as only the path with
the highest factor loading is shown for each item. The factor
loadings associated with the paths omitted from the figure equal
.05 on average; for comparison, the mean of the factor loadings for
the depicted paths equals .58. Detailed results, including item
content, factor loadings, factor correlations, and proportion of
variance explained (R?), are given in Appendix C.

Subsequently, based on the EFA results and the standard CBCL/
4-18 model, a three- and a four-factor phenotypic model (Figures
7C and 7B, respectively) were specified and fitted to the data. As
is evident from the figure, a firm distinction was hard to make
between the fit of a model in which the anxiety and depression
items represent a single dimension (Figure 7C) and a model in
which they represent two distinct dimensions (Figure 7B). The
additional solution provided by EFA (Figure 7A), in which items
associated with anxiety load on the Withdrawn factor, obtained a
similar fit. Whereas items pertaining to somatic complaints con-
sistently form one dimension, the dimensionality of items pertain-
ing to depression, anxiety, and withdrawn behavior therefore re-
mains less clear. This is perhaps not surprising in the light of the
well-established difficulty of distinguishing phenotypically the
dimensions of anxiety and depression (see, e.g., Clark & Watson,
1991).

In the next step, the results of phenotypic analyses were used as
a basis for specifying genetic factor models. In common pathway
models, the factor structure of the models tested in the phenotypic
CFA (Figures 7B and 7C) was retained, and the contributions of
the A, C, and E factors to the phenotypic latent factors were
investigated. The three- and four-factor common pathway models
specified in this way differ only minimally in terms of model fit:
The respective fit measures were x*(583) = 2030, p < .001,
CFI = 952, TLI = .966, RMSEA = .030, and x*(584) = 1811,
p < .001, CFI = .959, TLI = .971, RMSEA = .027. In indepen-

dent pathway modeling, the structure employed in the three- and
four-factor common pathway models was retained, but the psy-
chometric factors are disposed of; that is, the items were allowed
to load directly on the A, C, and E factors. Again, the three- and
four-factor models differed only minimally in terms of model fit;
the fit measures associated with the two models were x*(534) =
1142, p < .001, CFI = .980, TLI = .984, RMSEA = .020, and
x>(542) = 1161, p < .001, CFI = 979, TLI = .984, RMSEA =
.020, respectively.'?

Returning to the focal question of whether independent pathway
models fit the data appreciably better than the corresponding
common pathway models, we compared the general fit of the
models and carried out likelihood ratio tests of the proportionality
constraints mentioned above. These tests revealed both the three-
and four-factor-based independent pathway models to fit better
than their common pathway counterparts (chi-square difference
tests:'* x%(25) = 1066, p < .001, for the three-factor-based models
and x%(23) = 864, p < .001, for the four-factor-based models).
This implies that the common pathway models, in which the latent
variables mediate all the A, C and E effects on individual pheno-
typic differences, fail to convey accurately the genetic and envi-
ronmental effects on the items. Again, we note that the misspeci-
fication of the common pathway models was not evident in the fit
measures associated with the models. Both common pathway
models obtained a good fit, and the same is true of the phenotypic
models.

In the second set of analyses, we employed EFA to evaluate the
dimensionalities of the X, 3, and X covariance matrices. The
results are shown in Figure 8. An inspection of scree plots indi-
cates a one-dimensional C structure. The structures of A and E
matrices remain, however, somewhat less clear. To explore the A
and E structures further, we use the EFA results as a basis for
specifying a number of competing independent pathway models
with varying A, C, and E dimensionalities and fit these models to
the phenotypic covariance matrix. An example of these confirma-
tory independent pathway models is depicted in Figure 9. A
detailed overview of the fit measures and interfactor correlations
associated with each of the models is given in Table C6. Overall,
a comparison of these models indicated a model with two A, one
C, and four E factors as the best fitting model, X2(531) = 1082,
p < .001, CFI = 982, TLI = .986, RMSEA = .019. This model
is depicted in Figure 9. It should, however, be noted that most of
the models tested did not differ considerably in terms of model fit;
therefore the structure in Figure 9 need not necessarily be conclu-

12 As treating observations from the same family as independent may
result in biased estimates, we performed a correction for clustering avail-
able in Mplus, which has been shown to work well in this context (Rebollo,
de Moor, Dolan, & Boomsma, 2006).

'3 Given that the fit of the three- and four-factor models is virtually
indistinguishable, in practice one might simply accept the three-factor
model on the basis of parsimony. However, given our interest in the
specific reasons for the nearly identical fit, at this point we make no
decisions on which model to accept and proceed with the analyses.

!4 For robust weighted least squares estimators the standard approach of
taking the difference between chi-square values and the corresponding
degrees of freedom is not appropriate because the chi-square difference is
not chi-square distributed (Muthén & Muthén, 2007b). We therefore per-
formed chi-square difference testing using scaling correction factors (Sa-
torra & Bentler, 2001).



publishers.

is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

This document is copyri
This article is intended solely for the personal use of the individual user anc

CAN GENETICS HELP PSYCHOMETRICS? 419

A)

.40

B)

Q)

4///;&\\‘

.57

(W)

[ Dx [x D D [x D x D x DD x x D x]

IS DS

D D D D Dx e D

PN

[x [x [x [ [x [x [ x x I x ]

EFA  CFA
CFI 918
@ TLI 967
RMSEA 032
df 242
p 0
EFA  CFA
CFI 945 810
TLI 977 925
RMSEA 027 051
$2 1210 3663
dr 232 227
P 0 0
EFA  CFA
CFI 873
TLI 952
RMSEA 041
» 2536
df 236
P 0

. CBCL/4-18 Anxious/Depressed scale D CBCL/4-18 Withdrawn scale[l CBCL/4-18 Somatic Complaints scale

A = Anxious

AD = Anxious/Depressed

D = Depressed

W = Withdrawn

SC = Somatic Complaints

Figure 7. The three-factor model based on exploratory factor analysis (EFA; A), the four-factor model based
on EFA (B), and the standard Child Behavior Checklist for Ages 4—18 (CBCL/4-18) three-factor model (C). Fit
indices (on the right) obtained in EFA (geomin rotation) and confirmatory factor analysis (CFA). N = 5,782 for
EFA, N = 5,783 for CFA. For EFA solutions, only the path with the highest factor loading is shown for each
item. CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of

approximation.

sive. In addition, rejecting a common pathway model in favor of
the corresponding independent model does not establish the struc-
ture employed in the independent model as in any way definitive,
and there is, naturally, a possibility of other types of models (e.g.,
the mutualism model of van der Maas, et al., 2006, or the network
model of Cramer et al., 2010) providing a better account of the
data. The use of the independent pathway model, as presented in
this article, is merely instrumental to testing the mediation of
external effects on item covariation by a latent variable. Further-
more, the present results do strongly suggest a unidimensional C
structure and multidimensional (but mutually differing) A and E
structures.

In light of the present results, the results of the phenotypic
analyses start to make more sense; the inability of phenotypic
modeling to distinguish between several models appears to be due
to the phenotypic structure being generated by three sources: a
one-dimensional C, a two-dimensional A, and a four-dimensional
E source.

Discussion

Even though the analysis and determination of dimensionality is
of central importance in psychological science, currently available

strategies for dimensionality assessment often leave the issue
undecided. Building on ideas concerning genetic item analysis, as
developed in quantitative genetics (Eaves, 1983; Heath, Jardine,
Eaves, & Martin, 1989; Kendler et al., 1987; Neale, Lubke, Aggen,
& Dolan, 2005; van den Berg, Glas, & Boomsma, 2007; Waller &
Reise, 1992), the present article has outlined how genetic infor-
mation may be brought to bear on the dimensionality assessment
problem. In particular, the methodology outlined in this article
may be used with genetically informative data to (a) put latent
variable hypotheses to a stronger test than is possible in purely
phenotypic analyses and (b) gain insight into why dimensionality
issues may be difficult to settle.

The methodology proposed in this article may therefore not only
improve dimensionality assessment, but may also suggest expla-
nations of why specific dimensional hypotheses are violated. Al-
though dimensionality assessment remains a difficult and to some
extent subjective task, these methods therefore offer enhanced
resolution relative to that possible in purely phenotypic analyses.
Importantly, we do not claim that assessment of phenotypic di-
mensionality without incorporating genetic information cannot
produce correct results, or that genetic analyses render standard
methods obsolete. Rather, we think that genetic designs offer an



gical Association or one of its allied publishers.

ent is copyrighted by the American Psycholo

This docu

ated broadly.

ividual user and is not to be dissemin

ended solely for the personal use of the inc

This article is i

o [To A

o .. ...
I’

o | o o |

o (=) o L ]
o

0 [Te} [Te}

S o %] N

O_ %oo_ q_

‘05 15 25 05 15 25 0 5 15 25

Figure 8. Child Behavior Checklist for Ages 4—18 data: Eigenvalues of
the 3 ., 3¢, and 3 matrices (upper panel) and factor loadings obtained in
exploratory factor analysis solutions with two A, one C, and four E factors
(lower panel). Shading and shapes code for different latent factors. Only
the highest factor loading for each item is shown.

underutilized and informative source of data that may help re-
searchers to better understand the dimensionality of their con-
structs. Practically we envisage a situation in which phenotypic
dimensionality research produces varied results, which will in
practice simply result in disagreement concerning dimensionality.
For instance, this is the case for cognitive abilities, with respect to
which there are competing models that differ in dimensionality
(notwithstanding many decades of research). One solution to this
is to collect larger data sets. However, the present article suggests
to researchers that the greater resolution provided by larger data
sets may not provide the answer. We propose that it might be
useful to seek out twin data in order to investigate possible differ-
ences in dimensionality of genetic and environment influences on
major constructs.

As mentioned previously, the logic underlying our approach is
essentially the same as that involved in measurement invariance
research and MIMIC modeling. Moreover, common and indepen-
dent pathway model comparisons have been considered outside the
context of genetics (see, e.g., Carlson & Mulaik, 1993). However,
what makes the analyses presented here different is that unlike in
standard MIMIC modeling, the A, C, and E factors determine the
variance of the latent variable completely. Furthermore, the situ-
ation in which the common pathway model is rejected is at least as
informative as that in which it is retained, as the information
contained in genetically informative data sets allows one to exam-
ine the exact nature of violations of dimensional assumptions;
something that is typically not the case in standard MIMIC mod-
eling. In the twin model, one can establish whether or not the
common pathway model fits and, in case of misfit, can arrive at a
detailed account of the cause of misfit, thereby moving the ques-
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tion of dimensionality from the phenotypic level to the genetic
level and the environmental level. This increased resolution (i.e.,
the possibility to view the lack of unidimensionality of the ob-
served covariation structure as a function of the dimensionalities of
its underlying genetic and environmental structures) is unique to
the twin design and is, in our opinion, a particularly powerful
aspect of the present method.

In our illustrative analyses, the incorporation of genetic infor-
mation turned out to be highly informative. In standard phenotypic
analyses, it proved difficult to decide whether a three- or four-
dimensional latent structure underlies the data—a situation that is
not uncommon in psychometric investigations into dimensionality,
where one often has to decide between solutions that differ sub-
stantively but appear to be nearly equivalent statistically. Incorpo-
rating genetic information, however, suggested that the reason for
the ambiguity in the data with respect to these structures is that
several models are correct, but apply to different sources of item
covariation: A two-factor model seems to better reflect additive
genetic influences, whereas a four-factor model better reflects
unique environmental influences. Interestingly, common environ-
mental influences appear to influence item scores across the board,
suggesting that the common part of environmental variation varies
along a single dimension.'3

The question of how many dimensions are measured by the
Internalizing scales of the CBCL can now be viewed from a new
perspective, which may be surprising to the psychometrician: In
terms of genetic variance, the items appear to measure two dimen-
sions, corresponding to genetic influences distinctly affecting
symptoms of depression, anxiety, and withdrawal, on the one
hand, and somatic complaints, on the other. This implies, for
instance, that genes act in a nonspecific way to influence the
chance of developing depression-, anxiety-, and withdrawal-
related symptomatology. Individual-specific environmental influ-
ences distinctly affect symptoms of depression, anxiety, with-
drawal, and somatic complaints (thus, individual-specific
environmental events may be, for example, specifically depresso-
genic or specifically anxiogenic), whereas environmental events
shared by family members appear to have either a positive or a
negative effect on the entire range of symptoms. In terms of, for
instance, the anxiety—depression distinction, the present results
suggest that these two syndromes share the same genetic basis but
are distinctly affected by individual-specific environmental
events—a finding that is in line with prior genetic investigations
into the dimensionality of anxiety and depression (e.g., Kendler et
al., 1987; 1992; Middeldorp et al., 2005).

It should be noted that the current results do not necessarily
reflect upon the utility of the CBCL in the clinical context; we do
not doubt its usefulness for diagnostic purposes, especially given
that the broad structure found in our analyses is in line with the
current item allocation of the CBCL. However, in the context of
research one should bear in mind that the current scales may not
measure three distinct sets of genetic, common environmental, and
individual-specific environmental influences but possibly reflect a

31t is possible that a unidimensional C component partly stems from
method variance. For instance, variance due to rater bias, if not explicitly
modeled, is absorbed by C (Neale & Cardon, 1992). Given data by multiple
raters, it is possible to test for presence of rater bias.
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more complex underlying structure. Depending on the specific
research goals, the results of this type of analysis may provide a
basis for redefining the current scales to arrive at distinct measures
of each of these sources of influences (e.g., if one’s aim is to
measure common environmental influences, one may view the
item set as unidimensional and accordingly derive a single sum
score from the data).

Naturally, the results of this type of analyses are relevant not
only to theories of psychopathology; we consider their impli-
cations to be much wider. For instance, theories in develop-
mental psychology may benefit from investigating the individ-
ual differences in the development of behavior as a function of
genetic and environmental influences, or examining how the
various dimensions of environmental and genetic influences
change and develop over time. Also, the results might have
implications for genetics itself. Specifically, the search for
genes affecting specific behaviors is often based on a composite
measure of a phenotype, such as a sum score. However, if these
phenotypes are heterogeneous, analogous to the way the CBCL
appears heterogeneous, using a total score as a basis for gene
search would appear suboptimal, as the total score itself might
not accurately reflect the genetic structure underlying the data
(van der Sluis, Verhage, Posthuma, & Dolan, 2010). We con-
sider this issue to be important, because power to detect the
effects of measured genes is likely to suffer if the phenotypic
measure is not correctly defined (van der Sluis, et al., 2010).
Independent pathway item-level analysis, as described in this
article, offers possibilities for redefining the phenotypic scores
in terms of genetic and environmental effects. This may in turn
allow for using latent trait estimates derived from a model such
as that in Figure 7 as a basis for gene search.

In addition to these practical benefits of the present method-
ology, there are important conceptual considerations that follow
from the ideas presented in this article. For instance, latent
variable models like the factor model can be viewed as incor-
porating hypotheses concerning a common-cause structure that
underlies item covariation (Borsboom, 2008; Borsboom et al.,
2003; Haig, 2005a, 2005b). However, the question of whether
latent variables hypothesized in a given context may be said to
exist and have causal relevance is a point of dispute in many
fields; one need only consider the fields of intelligence and
personality research, where considerable controversy exists re-
garding the theoretical status of variables such as the g factor
and the five factors of personality. To the extent that such
models survive the confrontation with genetic information, as
described here, they may be considered more strongly corrob-
orated than they could be in analyses of purely phenotypic data.
However, if models for genetic and environmental effects have
different structures, as was the case for the illustration data in
this article, the common factors found in our phenotypic anal-
ysis may in fact be an amalgam of several different genetic and
environmental models. Clearly, in this case, the ascription of
causal force to such amalgams is problematic.

In conclusion, we expect that the methodology proposed in
this article may bear considerable fruit in disentangling dimen-
sionality issues in the research areas where they have generated
controversy, and shed light on the theoretical status of impor-
tant hypothesized latent variables in intelligence, psychopathol-
ogy, and personality research. The time is ripe for investiga-
tions along these lines. In the past decades, behavior genetics
researchers have constructed large and well-archived twin and
family registries that are perfectly suited for analyses such as
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those reported here (e.g., a 1998 review lists 16 twin registries
in Europe alone; Boomsma, 1998; Busjahn, 2002). The data sets
contained in those registries are typically obtainable via proto-
cols for collaborative projects, and in some cases even publi-
cally available (e.g., Add Health; see Harris, Halpern, Smolen,
& Haberstick, 2006). In addition, the development of psycho-
metric software as well as the current speed of computers has
led to a situation where the required statistical analyses have
become feasible. In our view, this opens up a wealth of possi-
bilities for refining and extending psychometric investigations
beyond the analysis of purely phenotypic covariation.
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Appendix A

Model for the Residuals in the Simulation Study

The residuals of items in the model may also be subjected to
a decomposition into genetic and environmental components.
The model for the residuals was not detailed in the main text,
where it was merely stated that the parameter values for the
residual matrices were obtained by subtraction, for example,
0., = 0,, =1 — diag[A(®, + ®- + P)A']. However, the
residuals in the current simulations conform to an ACE model,
and could alternatively be simulated by specifying the expected
residual covariance matrix as a function of residual ACE pa-
rameters:

<®]l ®]2 ) _
®21 ®22
(AAHAA;\ + ACTTCAL + AgTTLAL

rAAAITLAY + AT AL
rAAAITLAY + AcTTAG ’

ALILAL + ATTCAL + AGITLAL

where O,,(0,,) is the 12 X 12 matrix of residual item vari-
ances of Twin 1 (Twin 2); @ ,(0,,) is the 12 X 12 Twin | —
Twin 2 residual covariance matrix; A,, As, and Ag are the
diagonal matrices containing the factor loadings of the items on
the residual (item-specific) A, C, and E factors; Il,, Il, and
II; are the covariance matrices of the residual A, C, and E
factors; and r, is the additive genetic twin correlation (1 for
monozygotic [MZ] twins, .5 for dizygotic [DZ] twins). Note
that because the residual covariance matrices were simulated to
be equal across all the models above (e.g., @;, = O, O

cp? ip21mz =

O.o1m and Oy 5,4, = O n14,), in the expression above we
dispose of the “cp” and “ip” notation. Figure Al depicts the
ACE model for the residuals.

The residual parameter values were equal across the four mod-
els:

I, = O. =M = diag(1, 1,1, 1, 1, 1, 1, 1, 1,1, 1, 1),

A, = diag(\/.450, \/.425, \/.400, \/.375, \/.350, \/.325,
\/.300, \/.275, /.250, \/.225, 1/.200, \/.175),

A. = diag(\/.270, \/.255, \/.240, \/.225, \/.210, \/.195,
\/.180, \/.165, \/.150, \/.135, 1/.120, \/.105),

Ap = diag(\/.18, /.17, \/.16, \/.15, /.14, /.13, \/.12,
V.11, /.10, \/.09, \/.08, 1/.07).

Coming back to Expression 1 in the main text:

DIV FERNN 0N D R D T O IR 7
3 2p - rA2A+2C 2A+EC+2E ’

we may now note that 3, is a function of both common and
residual additive genetic influences, that is, %, = AP, A" +
A LA (or %, = A\WLAL + ALITLA," in an independent
pathway model). Similarly, 3 = ADPA" + AJILAL, ete.
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Figure AlI. A common pathway genetic factor model with common and residual additive genetic (A), shared
environmental (C), and individual-specific environmental (E) factors.

Appendix B

Simulation Script

The R code used to simulate data and perform the phenotypic c=sqrt(.3) # c factor loadings

a

C

e

425

exploratory factor analysis (EFA) is given below. The notation in e=sqrt(.2) # e factor loadings

the code corresponds to that in the text (e.g., A is lambda in the psy.a=psy.c=psy.e=1 {#f variances of the A,
code). Note: In writing the code we tried to be explicit and have C, and E factors

therefore sacrificed concision for clarity. THHHEHEHEHE

{Model 0: lambda=matrix(1l,nx,np)

library (MASS) gamma.a=matrix(c(a),np,na) # matrix of
n=1000 ffsample size factor loadings

nx=12 ffnumber of indicators gamma.c=matrix(c(c),np,nc) # matrix of
np=1 #f number of psychometric factors factor loadings

na=nc=ne=1 # number of A, C, and E factors gamma.e=matrix(c(e),np,ne) # matrix of
l=sqrt(seq(.1,,by=.05,length.out=nx)) # factor loadings

loadings of the indicators on the phi.a=gamma.a%*%psy.a%*%t (gamma.a) # A
psychometric factor variance component of the psychometric
a=sqrt(.5) # a factor loadings factor

(Appendices continue)
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phi.c=gamma.c%*%psy.c%*%t (gamma.c) #f C
variance component of the psychometric
factor

phi.e=gamma.e%*%psy.e%*%t (gamma.e) # E
variance component of the psychometric
factor

phi=phi.a+phi.c+phi.e # variance of the
psychometric factor
theta=diag(diag(diag(nx) -

lambda%*%phi%*%t (lambda))) # diagonal matrix
of item residuals for twinl (twin2)
sigmall=1lambda%*%phi%*%t (lambda) +theta i
expected covariance matrix of twinl (twin2)
1pl.mz=1lambda%*% (phi.a+phi.c)%*%t(lambda)
1pl.dz=1ambda%*%(.5%phi.a+phi.c)%*%t(lambda)
thetal?2.mz=diag(diag(diag(.8,nx)-1pl.mz)) #
diagonal matrix of MZ twinl-twin2 covariance
among the residuals
thetal2.dz=diag(diag(diag(.55,nx)-1pl.dz)) #
diagonal matrix of DZ twinl-twin2 covariance
among the residuals
sigmal2.mz=1pl.mz+thetal2.mz # expected MZ
twinl-twin2 covariance matrix
sigmal2.dz=1pl.dz+thetal2.dz # expected DZ
twinl-twin2 covariance matrix
sigma.mz=cbind (rbind (sigmall,sigmal2.mz),
rbind(sigmal2.mz,sigmall)) # expected MZ
covariance matrix
sigma.dz=cbind (rbind (sigmall,sigmal2.dz),
rbind(sigmal2.dz,sigmall)) 3 expected DZ
covariance matrix
data.ph=mvrnorm(n,rep(0,nx),sigmall,emp=T)
# simulate data for phenotypic analyses
data.mz=mvrnorm(n,rep(0,nx*2),sigma.mz,
emp=T) #f simulate MZ twin data
data.dz=mvrnorm(n,rep(0,nx*2),sigma.dz,
emp=T) #f simulate DZ twin data

data=cbind (rbind (data.mz,data.dz),rep(0:1,
each=n)) ## 0 = MZ, 1 = DZ
write(t(data),“data lalcle.dat”,
ncol=2*nx+1)

THHHHHHHHHE

# generate the same covariance structure
from an IP model:

lambda.a=a*lambda

lambda.c=c#*lambda

lambda.e=e*lambda
sigmall=1lambda.a%*%psy.a%*%t (lambda
.a)+lambda.c%*%psy.c%*%t (lambda.c)+1lambda
.e%*%psy.e%*%t (lambda.e) +theta
sigmal2.mz=lambda.a%*%psy.a%*%t (lambda
.a)tlambda.c%*%psy.c%*%t (lambda.c) +thetal2
.mz
sigmal2.dz=.5%lambda.a%*%psy.a%*%t (lambda

.a)+lambda.c%*%psy.c%*%t (lambda.c)+thetal2
.dz

f#flambda.a/lambda.c # proportionality of a,
c, and e effects

fflambda.a/lambda.e

#flambda.c/lambda.e

THHHHHHHHHE

# or (to specify the ACE model for the
residuals explicitly):
delta.a=diag(rep(sqrt(seq(.45,,by=-.025,
length.out=nx)))) # matrix of A residual
factor loadings
delta.c=diag(rep(sqrt(seq(.27,,by=-.015,
length.out=nx)))) # matrix of C residual
factor loadings
delta.e=diag(rep(sqrt(seq(.18,,by=-.01,
length.out=nx)))) # matrix of E residual
factor loadings

pi.a=pi.c=pi.e=diag(nx)
theta.a=delta.a%*%pi.a%*%t (delta.a) # A
residual variance component in twinl (twin2)
theta.c=delta.c%*%pi.c%*%t(delta.c) # C
residual variance component in twinl (twin2)
theta.e=delta.e%*%pi.e%*%t (delta.e) # E
residual variance component in twinl (twin2)
theta=theta.a+theta.c+theta.e # diagonal
matrix of item residuals for twinl (twin2)
thetal?2.mz=theta.a+theta.c # residual MZ

twinl - twin2 covariance
thetal2.dz=.5%theta.a+theta.c # residual DZ
twinl - twin2 covariance

f#flambda.a%*%psy.a%*%t (lambda.a) +theta.a # A
variance component
#lambda.c%*%psy.c%*%t(lambda.c)+theta.c # cC
variance component

fflambda.e%*%psy.e%*%t (lambda.e)+theta.e # E
variance component
#lambda.a%*%psy.a%*%t(lambda.a)+theta
.at+lambda.c%*%psy.c%*%t (lambda.c)+theta
.ctlambda.e%*%psy.e%*%t (lambda.e) +theta.e
ffsigmall

THHHHHHHHHE

# phenotypic EFA:

cov.ph=cov(data.ph)
plot(l:nx,eigen(cov.ph)$values,type=“b~,
xlab=“Item”,ylab=“Eigenvalue”)

text(10.5,5, “Model 0')
efa=chi=df=p=rmsea=f.cor=as.list(rep(0,4))
for (4 in 1:4)({

efa[[i]]=factanal (covmat=cov.ph,n.obs=n,
factors=i,rotation="promax*)
chi[[i]]=round(efal[i]]$STATISTIC,?2)
df[[i]]=efa[[i]]S$dof
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pl[[i]l]=round(efal[i]]SPVAL,2)
if(chi[[i]]-df[[i]]>0) {rmsea
[[i]]1=(sqrt(chi[[i]]-dE[[i]]))/n/dEf[[i]])
if(i > 1) {rm=promax(unclass(efa
[[i]]S%1loadings))Srotmat
f.cor[[i]]=solve(rm%*%t (rm))

I

res=cbind(chi,df,p,rmsea)

dimnames (res) [[1]] =paste(l:4,”factors’,
sep=")

res

THHHHHHHHHE

fModel 1:

na_m2=2

lambda.a m2=matrix(c(a*lambda[l1:6,],rep(0,
nx),a*lambdal[7:12,]) ,nx,na_m2)
psy.a_m2=diag(na_m2)

sigmall m2=1lambda.a m2%*%psy.a _m2%*%t(lambda
.a_m2)+lambda.c%*%psy.c%*%t (lambda
.c)+lambda.e%*%psy.e%*%t (lambda.e) +theta
sigmal2.mz_m2=1lambda.a_m2%*%psy

.a_m2%*%t (lambda.a_m2) +1lambda.c%*%psy
.c%*%t (lambda.c) +thetal2.mz
sigmal2.dz_m2=.5%lambda.a_m2%*%psy
.a_m2%*%t (lambda.a m2)+lambda.c%*%psy
.c%*%t (lambda.c)+thetal2.dz
sigma.mz_m2=cbind (rbind (sigmall m2,sigmal?2
.mz_m2) ,rbind(sigmal2.mz_m2,sigmall_m2)) i
expected MZ covariance matrix

sigma.dz m2=cbind (rbind (sigmall m2,sigmal?2
.dz_m2),rbind(sigmal2.dz_m2,sigmall_m2)) #
expected DZ covariance matrix
data.ph=mvrnorm(n,rep(0,nx),sigmall m2,
emp=T) # simulate data for phenotypic
analyses
data.mz=mvrnorm(n,rep(0,nx*2),sigma.mz_m2,
emp=T) # simulate MZ twin data
data.dz=mvrnorm(n,rep(0,nx*2),sigma.dz m2,
emp=T) # simulate DZ twin data

data=cbind (rbind (data.mz,data.dz),rep(0:1,
each=n)) # 0 = MZ, 1 = DZ
write(t(data), “data 2alcle.dat”,
ncol=2%nx+1)

THHHHHHHEHE

Model 2:

ne_m3=2

lambda.e_m3=matrix(c (e*lambdal[l:3],rep(0,6),
exlambda[10:12],rep(0,3),exlambda[4:9],
rep(0,3)),nx,ne_m3)

psy.e_m3=diag(ne_m3)

sigmall _m3=lambda.a m2%*%psy.a_m2%+%t (lambda
.a_m2)+lambda.c%*%psy.c%*%t (lambda
.c)tlambda.e m3%*%psy.e m3%*%t (lambda
.e_m3)+theta

sigmal2.mz_m3=lambda.a_m2%*%psy

.a_m2%*%t (lambda.a_m2)+lambda.c%*%psy
.c%*%t (lambda.c) +thetal2.mz
sigmal2.dz_m3=.5%lambda.a_m2%*%psy
.a_m2%*%t (lambda.a_m2)+lambda.c%*%psy
.c%*%t (lambda.c) +thetal2.dz
sigma.mz_m3=cbind (rbind (sigmall m3,sigmal?2
.mz_m3) ,rbind (sigmal2.mz_m3,sigmall_m3)) #
expected MZ covariance matrix
sigma.dz_m3=cbind (rbind (sigmall_m3,sigmal?2
.dz_m3) ,rbind (sigmal2.dz_m3,sigmall_m3)) #
expected DZ covariance matrix
data.ph=mvrnorm(n,rep(0,nx),sigmall m3,
emp=T) # simulate data for phenotypic
analyses
data.mz=mvrnorm(n,rep(0,nx*2),sigma.mz_m3,
emp=T) # simulate MZ twin data
data.dz=mvrnorm(n,rep(0,nx*2),sigma.dz_m3,
emp=T) # simulate DZ twin data

data=cbind (rbind (data.mz,data.dz),rep(0:1,
each=n)) # 0 = MZ, 1 = DZ
fwrite (t (data), “data 2alc2e.dat”,
ncol=2%nx+1)

THHHHHHHEHE

{Model 3:

nc_ma4=3

lambda.c_mia=t(matrix(c(

1,0,0,

O O O O F OO+~ OO
O O O FH OO K O O
_H O O+ OO H+H OO+ O

NI

,nx,nc_m4,byrow=T))

lambda.c _mé4a[lambda.c _mia==1]=c#*lambda
lambda.c_m4=t(lambda.c_m4a)
psy.c_m4=diag(nc_mi)

sigmall m4=lambda.a m2%*%psy.a _m2%*%t(lambda
.a_m2)+lambda.c_m4%*%psy.c_mi%*%t (lambda
.c_m4)+lambda.e m3%*%psy.e_m3%*%t (lambda
.e_m3)+theta
sigmal2.mz_m4=1lambda.a_m2%*%psy
.a_m2%*%t (lambda.a m2) +lambda.c_mi%*%psy
.c_m4%*%t (lambda.c_m4) +thetal2.mz
sigmal2.dz_m4=.5%lambda.a_m2%*%psy
.a_m2%*%t (lambda.a m2) +lambda.c mi%*%psy
.c_m4%*%t (lambda.c_m4) +thetal2.dz
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sigma.mz_m4=cbind (rbind (sigmall_m4,sigmal?2 data.mz=mvrnorm(n,rep(0,nx*2),sigma.mz_ms,
.mz_m4) ,rbind (sigmal2.mz_mé,sigmall_m&)) # emp=T) # simulate MZ twin data

expected MZ covariance matrix data.dz=mvrnorm(n,rep(0,nx*2),sigma.dz_m4,
sigma.dz_m4=cbind(rbind (sigmall_m4,sigmal? emp=T) # simulate DZ twin data

.dz_m4) ,rbind(sigmal2.dz_m4,sigmall_m4)) ff data=cbind (rbind (data.mz,data.dz),rep(0:1,
expected DZ covariance matrix each=n)) # 0 = MZ, 1 = DZ
data.ph=mvrnorm(n,rep(0,nx),sigmall m4, write (t(data),“data 2a3cle.dat”,

emp=T) # simulate data for phenotypic ncol=2%nx+1)

analyses

Appendix C

Child Behavior Checklist for Ages 4-18 (CBCL/4-18) Internalizing Scale: Item Correlations, Item Content, and
Detailed Results of Phenotypic and Genetic Independent Pathway Analyses
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Figure C1. Monozygotic (MZ) and dizygotic (DZ) polychoric twin correlations (left) and distribution of
inter-item polychoric correlations (right) for the 31 items of the Child Behavior Checklist for Ages 4-18
Internalizing scale.
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Table C1
Item Content of the CBCL/4—18 Internalizing Scale

Anxious/depressed Withdrawn Somatic complaints
1. Lonely 15. Rather be alone 23. Feels dizzy
2. Cries a lot 16. Would not talk 24. Overtired
3. Fears doing something bad 17. Secretive 25. Aches, pains
4. Must be perfect 18. Shy, timid 26. Headaches
5. Feels unloved 19. Stares blankly 27. Nausea
6. Others out to get him 20. Sulks 28. Eye problems
7. Feels worthless 21. Lacks energy 29. Skin problems
8. Nervous, tense 22. Withdrawn 30. Stomachaches
9. Fearful, anxious 31. Vomiting

10. Feels too guilty
11. Self-conscious
12. Suspicious

13. Sad

14. Worries

Note. CBCL/4-18 = Child Behavior Checklist for Ages 4—18.

Table C2
Three-Factor Exploratory Factor Analysis Solution for the CBCL/4—18 Internalizing Scale
Factor
Item AD W SC Item content R?
AD1 0.67 Lonely 0.47
AD2 0.41 Cries a lot 0.20
AD3 0.25 0.39 Fears doing something bad 0.22
AD4 0.21 0.27 Must be perfect 0.12
ADS 0.90 Feels unloved 0.81
AD6 0.78 Others out to get him 0.61
AD7 0.68 0.21 Feels worthless 0.51
ADS8 0.42 Nervous, tense 0.23
AD9 0.56 Fearful, anxious 0.35
AD10 0.29 0.41 Feels too guilty 0.26
ADI1 0.82 Self-conscious 0.71
ADI2 0.54 0.20 Suspicious 0.33
ADI13 0.6 0.26 Sad 0.44
AD14 0.35 0.41 Worries 0.31
W1 0.55 Rather be alone 0.31
w2 0.64 Would not talk 0.43
W3 0.78 Secretive 0.62
w4 0.95 Shy, timid 1.09
W5 0.51 Stares blankly 0.30
w6 0.40 Sulks 0.20
w17 0.51 Lacks energy 0.27
w8 0.82 Withdrawn 0.69
SC1 0.56 Feels dizzy 0.33
SC2 0.26 0.35 Overtired 0.22
SC3 0.76 Aches, pains 0.58
SC4 0.71 Headaches 0.50
SC5 0.84 Nausea 0.70
SC6 0.32 Eye problems 0.11
SC7 0.23 Skin problems 0.06
SC8 0.73 Stomachaches 0.54
SC9 0.67 Vomiting 0.46
Correlations

Factor

AD —

W .64 —

Ne 40 42 —

Determinacies

Factor .96 .96 94

Note. N = 5,782. Only factor loadings larger than .2 are depicted. Highest factor loadings for each item appear
in bold. CBCL/4-18 = Child Behavior Checklist for Ages 4—18; AD = Anxious/Depressed; W = Withdrawn;

SC = Somatic Complaints.
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Table C3
Four-Factor Exploratory Factor Analysis Solution for the CBCL/4—18 Internalizing Scale
Factor
Item D A W SC Item content R?
ADI1 0.70 Lonely 0.50
AD2 0.43 Cries a lot 0.21
AD3 0.33 0.52 Fears doing bad 0.40
AD4 0.27 0.40 Must be perfect 0.23
ADS5 0.91 Feels unloved 0.84
ADG6 0.80 Others out to get him 0.64
AD7 0.74 0.2 Feels worthless 0.58
ADS8 0.23 0.38 Nervous, tense 0.23
) AD9 0.50 Fearful, anxious 0.31
= ADI10 0.38 0.59 Feels too guilty 0.50
% ?; ADI1 0.47 0.48 Self-conscious 0.46
< 8 ADI2 0.57 Suspicious 0.35
=3 AD13 0.65 Sad 0.46
2 g AD14 0.43 0.45 Worries 0.39
3 E W1 0.52 Rather be alone 0.28
= 2 w2 0.64 Would not talk 0.44
P w3 0.78 Secretive 0.61
Z 8 w4 0.36 0.68 Shy, timid 0.71
o S W5 0.26 0.44 Stares blankly 0.27
g8 W6 0.42 Sulks 0.23
5 o w7 0.50 Lacks energy 0.27
s 5 W8 0.71 Withdrawn 0.52
g § SCl1 0.55 Feels dizzy 0.32
g g SC2 0.20 0.36 Overtired 0.21
g2 = SC3 0.78 Aches, pains 0.63
<= SC4 0.72 Headaches 0.52
S SC5 0.84 Nausea 0.71
s SC6 0.34 Eye problems 0.13
s SC7 0.24 Skin problems 0.07
S8 SC8 0.74 Stomachaches 0.55
£ %5 SC9 0.67 Vomiting 0.46
f 2 Correlations
% g Factor
-
< & A 38 —
- w 57 41 —
= 5 SC 41 38 33 —
QT:)‘ f Determinacies
e
2 2 Factor .96 .89 .94 .96
z ’ﬁ Note. N = 5,782. Only factor loadings larger than .2 are depicted. Highest factor loadings for each item appear
= g in bold. CBCL/4-18 = Child Behavior Checklist for Ages 4—18; D = Depressed; A = Anxious; W =
s - Withdrawn; SC = Somatic Complaints.
g o
- g (Appendices continue)
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Table C4
Three-Factor Confirmatory Factor Analysis Model for the CBCL/4—18 Internalizing Scale: Factor
Loadings, R?, and Factor Correlations

Factor
Item AD W SC Item content R?
ADI1 0.75 Lonely 0.56
AD2 0.56 Cries a lot 0.31
AD3 0.54 Fears doing bad 0.29
AD4 0.50 Must be perfect 0.25
ADS 0.77 Feels unloved 0.59
AD6 0.74 Others out to get him 0.55
AD7 0.80 Feels worthless 0.64
ADS8 0.62 Nervous, tense 0.39
AD9 0.66 Fearful, anxious 0.44
ADI10 0.73 Feels too guilty 0.54
ADI1 0.62 Self-conscious 0.39
ADI12 0.69 Suspicious 0.48
ADI13 0.84 Sad 0.71
AD14 0.76 Worries 0.57
W1 0.59 Rather be alone 0.35
w2 0.66 Would not talk 0.44
W3 0.72 Secretive 0.52
w4 0.56 Shy, timid 0.31
W5 0.67 Stares blankly 0.45
W6 0.63 Sulks 0.40
W17 0.62 Lacks energy 0.38
W8 0.83 Withdrawn 0.68
SC1 0.64 Feels dizzy 0.41
SC2 0.79 Overtired 0.62
SC3 0.79 Aches, pains 0.62
SC4 0.64 Headaches 0.40
SC5 0.81 Nausea 0.65
SC6 0.37 Eye problems 0.14
SC7 0.33 Skin problems 0.11
SC8 0.69 Stomachaches 0.48
SC9 0.60 Vomiting 0.36
Correlations

Factor

AD —

w .80 —

SC 57 S1 —

Note. N = 5,783. CBCL/4-18 = Child Behavior Checklist for Ages 4—18; AD = Anxious/Depressed; W = Withdrawn;
SC = Somatic Complaints.
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Table C5
Four-Factor Confirmatory Factor Analysis Model for the CBCL/4—18 Internalizing Scale:
Factor Loadings, R?, and Factor Correlations

Note. N = 5,783. CBCL/4-18 = Child Behavior Checklist for Ages 4—18; D = Depressed; A = Anxious; W
= Withdrawn; SC = Somatic Complaints.
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Factor
Item D A W SC Item content R?
ADI1 1.00 Lonely 1.00
AD2 0.58 Cries a lot 0.34
AD3 1.00 Fears doing bad 1.00
AD4 0.53 Must be perfect 0.28
ADS5 0.79 Feels unloved 0.62
AD6 0.77 Others out to get him 0.59
AD7 0.83 Feels worthless 0.68
. ADS8 0.66 Nervous, tense 0.44
g AD9 0.70 Fearful, anxious 0.49
£ 3 ADI0 0.77 Feels too guilty 0.59
Z - ADI1 0.66 Self-conscious 0.44
= 3 ADI12 0.72 Suspicious 0.51
a g ADI13 0.87 Sad 0.75
3 E AD14 0.81 Worries 0.65
= 2 Wi 0.60 Rather be alone 0.35
3 "‘:‘ w2 0.66 Would not talk 0.44
g 2 W3 0.72 Secretive 0.52
o = W4 0.56 Shy, timid 0.31
S 2 W5 0.67 Stares blankly 0.45
8 w6 0.63 Sulks 0.39
g2 W7 0.62 Lacks energy 0.38
g = w8 0.83 Withdrawn 0.68
3 @ SC1 0.64 Feels dizzy 0.41
25 sC2 0.79 Overtired 0.62
= 2 SC3 0.79 Aches, pains 0.62
i S SC4 0.64 Headaches 0.40
S 2 SC5 0.81 Nausea 0.65
20 SC6 0.37 Eye problems 0.13
o SC7 0.33 Skin problems 0.11
Ao SC8 0.69 Stomachaches 0.48
s Z SC9 0.60 Vomiting 0.36
5 = Factor correlations
~ O
i g Factor
S g D -
2= A 73 —
25 w 73 73 —
= > SC 49 .54 Sl —
=]
()
o
2
e



and is not to be disseminated broadly.

gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

CAN GENETICS HELP PSYCHOMETRICS? 433

Table C6
Fit Measures and Interfactor Correlations for Independent Pathway Models With Different Dimensionalities of A, C, and E Factors

Interfactor correlations

Model X2 df CFI TLI RMSEA  Factor Al A2 A3  Factor Cl C2 C3 Factor El E2 E3
4A 4C 4E 1161 542 979 984 .020 A2 .64 C2 .99 E2 .79
A3 99 52 C3 99  1.00 E3 47 54
A4 31 35 32 C4 .99 97 .96 E4 39 34 17
3A 3C 3E 1142 534 980 .984 .020 A2 .85 C2 1.00 E2 .55
A3 32 14 C3 1.00 1.00 E3 36 .26
3A 1C 3E 1140 532 980 984 .020 A2 98 E2 52
A3 34 13 E3 36 .26
2A 1C 3E 1148 532 979 984 .020 A2 .26 E2 52
E3 39 17
2A 1C 3E* 1245 533 976 982 .022 A2 .16 E2 78
E3 30 .47
2A 1C 4E 1082 531 982 986 .019 A2 20 E2 .70

E3 56 34
E4 31 47 21

Note. The three- and the four-factor-based independent pathway models based on the phenotypic results (see Figures 7B and 7C) are shown in bold.
Interfactor correlations greater than .9 are shown in italic bold. A = additive genetic factor; C = shared environmental factor; E = individual-specific
environmental factor; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation.

#The clustering for the E structure is Depressed, Anxious/Withdrawn, Somatic Complaints, instead of Anxious/Depressed, Withdrawn, Somatic
Complaints.
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