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Functional and effective 
whole brain connectivity using 
magnetoencephalography to 
identify monozygotic twin pairs
M. Demuru1, A. A. Gouw1,2, A. Hillebrand2, C. J. Stam2, B. W. van Dijk2, P. Scheltens1, B. M. 
Tijms1, E. Konijnenberg1, M. ten Kate1, A. den Braber1,3, D. J. A. Smit3,4, D. I. Boomsma3 & P. J. 
Visser   1

Resting-state functional connectivity patterns are highly stable over time within subjects. This suggests 
that such ‘functional fingerprints’ may have strong genetic component. We investigated whether 
the functional (FC) or effective (EC) connectivity patterns of one monozygotic twin could be used to 
identify the co-twin among a larger sample and determined the overlap in functional fingerprints within 
monozygotic (MZ) twin pairs using resting state magnetoencephalography (MEG). We included 32 
cognitively normal MZ twin pairs from the Netherlands Twin Register who participate in the EMIF-AD 
preclinAD study (average age 68 years). Combining EC information across multiple frequency bands 
we obtained an identification rate over 75%. Since MZ twin pairs are genetically identical these results 
suggest a high genetic contribution to MEG-based EC patterns, leading to large similarities in brain 
connectivity patterns between two individuals even after 60 years of life or more.

Inter-individual variability in functional brain connectivity has been associated with inter-individual differences 
in measures of cognitive functioning1, gender2, ageing3, 4 and the presence of brain pathology5. Despite the obser-
vation that resting-state networks (RSNs) have a topographic core that is homogeneous between individuals6–9, 
recent papers have shown that it is possible to reliably identify single-subjects based on their functional connec-
tivity patterns as measured with functional magnetic resonance imaging (fMRI)10, 11. Therefore, these patterns can 
be regarded as ‘functional connectivity fingerprints’ (FCFs) or connectivity profiles. In this study, we considered 
four different ways of defining connectivity: three undirected (functional) and one directed (effective). Functional 
and effective connectivity capture two different aspects of interaction between time-series. The former evaluates 
the statistical interdependency between two time-series without giving any information about the influence of 
one time-series on the other, whereas effective connectivity captures the influence of one signal on the other12.

We investigated whether the functional (FC) or effective (EC) connectivity patterns of one monozygotic (MZ) 
twin could be used to identify the co-twin among a sample MZ twin pairs. MZ twins arise from a single fertilized 
egg and share all their genetic material, i.e. have the same genetic background13. We therefore aimed to test the 
similarity on the FCFs and effective connectivity fingerprints (ECFs) using magnetoencephalography (MEG).

Previous studies in twins support the genetic influence on whole-brain summary statistics such as the average 
functional connectivity across all brain regions or measures of functional brain network topology as assessed 
by electroencephalography (EEG), MEG and fMRI14–21 with estimates of heritability varying between 42 and 
72%. Importantly, twin studies analyzing the contribution of genetics, shared environment, and unique environ-
ment to functional connectivity by comparing overlap in connectivity within MZ and dizygotic (DZ) twin pairs 
concluded that the concordance between twins was mainly due to genetic factors and not the shared environ-
ment14–16. This indicates that resemblance in brain connectivity within MZ twins can be attributed to genetics, 
rather than a shared environment.
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Here, we investigated the resemblance between MZ twin pairs in functional and effective connectivity, i.e. 
going beyond whole-brain summary statistics14–22. If genes indeed have a major effect on connectivity profiles, 
then MZ twin pairs should be identifiable from these profiles. Furthermore, to better understand the genetic effect 
on the subject-specific connectivity profiles, we extended our analysis by removing the connectivity patterns that 
are shared between individuals (‘functional or effective connectivity backbone’), and attempted to identify MZ 
twin pairs on the basis of only their unique functional or effective connectivity patterns. The functional or effec-
tive connectivity backbone most likely underlies highly conserved functions23, whereas the residual functional 
or effective connectivity patterns express the inter-individual variability and the influence of genetic and shared 
environmental factors on this latter is still unknown.

We hypothesized that source-level MEG FCFs and ECFs, computed from resting-state data, enable reliable 
identification of MZ twin pairs and can therefore be regarded as fingerprints. We assessed the discriminative 
effectiveness of MEG fingerprints computed with three functional connectivity measures (phase lag index24, 
amplitude envelope correlation25–27 with and without signal-leakage correction) and one effective connectivity 
estimate (directed phase transfer entropy28, 29) in order to capture different coupling modes30: phase relations, 
amplitude envelope relations, and directed interactions, respectively.

Results
We analyzed data from 32 monozygotic twin pairs (64 subjects in total) from the Netherlands Twin Register 
(NTR31) who take part in the EMIF-AD preclinAD study (see methods section) on predictors for Alzheimer’s 
disease biomarkers in cognitively healthy elderly subjects. MEG data consisting of 5 minutes no-task eyes-closed 
resting-state recordings were source-reconstructed to 78 cortical regions (regions of interest, ROIs) of the auto-
mated anatomical labeling (AAL) atlas32. Functional (FC) and effective (EC) connectivity was assessed between 
all pairs of regions with Amplitude Envelope Correlation (AEC), Amplitude Envelope Correlation with leakage 
correction (AEC-c), Phase Lag Index (PLI) and directed Phase Transfer Entropy (dPTE) in 5 frequency bands 
(delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and lower gamma (30–48 Hz)). For every 
subject we obtained an average FC or EC matrix for every FC or EC measure in every frequency band, resulting 
in FCFs and a ECF for every frequency band (see Fig. 1a).

In order to combine the information from different bands, for every FC and EC measure we pooled the FCF 
or ECF of the different frequency bands in one global FCF or ECF (see Fig. 1b), which was used for the identifi-
cation analysis. The similarities between FCFs or ECFs were quantified with Spearman’s correlation coefficients 
that were subsequently converted into distance scores. The identification analysis consisted of an iterative process, 
in which at every step a subject was selected and his or her FCF or ECF was compared with the FCFs or ECFs of 
all other subjects. If the lowest distance score was obtained for the subject’s co-twin we considered it a successful 
outcome (a match), otherwise a miss. The rate of successful identification across all individuals was calculated as 
the ratio between the number of successful outcomes and the total number of subjects. Statistical significance of 
the observed success rate was assessed by means of permutation testing33.

Conventionally, statistical inference of functional connectivity patterns are performed at group level, which 
has shown reliable connectivity patterns6, 9, 25, 26, 34, 35. However, within these patterns it is possible to identify at 
least two components: a common pattern that is shared among subjects (low variance across subjects) and unique 
patterns (high variance across subjects) representing the individual connectivity patterns that contribute to the 
inter-subject variability36, 37. We applied singular value decomposition (SVD) to the individual FCFs and ECFs 
(independently for every FC or EC measure) in order to disentangle these two components and repeated the 
identification analysis using the pooled FCFs and ECFs from which the shared pattern was removed.

In order to understand the relative contribution of each frequency band to the identification performances 
we repeated the identification analyses using the FCFs or ECFs of each band separately, again with and without 
the shared pattern.

Subject characteristics.  Thirty-two monozygotic twin pairs (21 female pairs) with a mean age of 68.13 
(±7.93 standard deviation) years participated in the study. All participants were cognitively normal and scored 
25 or higher on the Mini Mental State Examination (mean and standard deviation 28.84 ± 1.16). The mean dura-
tion of education was 15.08 years (±4.43 standard deviation). Mean education score was 5.16 (±0.95 standard 
deviation) based on the Dutch Classification System by Verhage (1964) consisting of a 7-point scale, ranging from 
primary education not finished (1) to master degree (7).

Identification analyses using FCFs or ECFs.  Identification success rates obtained combining the infor-
mation from all frequency bands are shown in Table 1 for both the original data and after removal of the common 
pattern. For every measure, the highest significant success rate was obtained after removal of the common pat-
tern: dPTE success rate was over 75% ( p49/64 76 6%, 0 001)= . = . ,  AEC was higher than 50% 
( = . = .p34/64 53 1%, 0 001), AEC-c was close to 40% ( = . = .p24/64 37 5%, 0 001) and PLI was around 9% 
( = . = .p6/64 9 4%, 0 002). Success rates obtained with the common pattern included were lower, namely: dPTE 
( = . = .p37/64 57 8%, 0 001), AEC ( = . = .p23/64 35 9%, 0 001) and AEC-c ( = . = .p15/64 23 4%, 0 001), with 
the PLI result not being significant. Figure 2 shows distance score histograms for MZ twin pair and genetically 
unrelated subjects for the case where the common pattern was removed. Note that for the dPTE the score distri-
butions for twin pairs and unrelated pairs (identification rate 76.6%,) were further apart compared to the distri-
butions obtained when using other FC measure metrics (see Figure S1 in the supplementary information file for 
all the fingerprint comparisons).

For every FC and EC measure, twin pair identification was also performed using the FCF or ECF for each indi-
vidual frequency band in order to assess the discriminative power of every frequency band alone. Results are shown 
in Table 2 both for the original data and after the removal of the common pattern. Identification success rates varied 
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Figure 1.  Example of functional connectivity fingerprints. For every subject, and for every frequency band, a 
FC matrix was computed using a FC measure (a). Every matrix contains ranked values for visualization 
purposes. From every FC matrix the lower triangular entries, consisting of the pair-wise connectivity between 
all possible combinations of ROIs (i.e. =∗( ) 300378 77

2
), were extracted. These entries correspond to the FCF for 

a frequency band. An example of a FCF in the delta band is shown in the bottom plot in (a) where the y-axis 
shows FC values and the x-axis are the ROI pairs. A FCF was computed for every frequency band and these 
were pooled together (delta FCF in blue, theta FCF in magenta, alpha FCF in green, beta FCF in red and gamma 
FCF profile in yellow) to obtain a single global FCF (b), which was used for the identification analysis. An 
example of global FCFs for two different twin pairs ((A-A′) and (B-B′)) is shown in (c). Visual comparison of 
the FCFs suggest that within a twin pair FCFs are more similar than between unrelated subjects (see green 
ellipsoids in (c)). The same strategy was used to obtain ECFs.



www.nature.com/scientificreports/

4SCieNTifiC REPorTS | 7: 9685  | DOI:10.1038/s41598-017-10235-y

across FC and EC measures and frequency bands: with the original data the highest significant success rate, 
although moderate, was obtained for dPTE in the alpha band ( = . = .p23/64 35 9%, 0 001). Success rates higher 
than 25% were observed for dPTE in the beta ( p17/64 26 6%, 0 001)= . = .  and theta ( = . = .p16/64 25 0%, 0 001) 
bands, and for AEC without correction in the beta band ( p17/64 26 6%, 0 001)= . = . .

FC profile pooled across bands

FC original SVD

AEC 35.9%*** 53.1%***

AEC-c 23.4%*** 37.5%***

PLI 3.1% 9.4%**

dPTE 57.8%*** 76.6%***

Table 1.  Twin identification success rate using the global FCF or ECF based on different measures. For every 
subject the global FCF or ECF was obtained combining the subject’s FCF or ECF computed for the individual 
frequency band. The success rate for every FC and EC connectivity measure is reported: Amplitude Envelope 
Correlation without (AEC) and with correction (AEC-c), directed Phase Transfer Entropy (dPTE) and Phase 
Lag Index (PLI). Success rate based on the original data, as well as after removal of the common pattern 
across subjects (using SVD), are given. The asterisks represent the significant values after permutation testing: 
p-value ≤ 0.05(*), p-value ≤ 0.01(**) and p-value ≤ 0.001(***).

Figure 2.  Distance score histograms for MZ twin pairs and for genetically unrelated subjects. For every 
connectivity measure (AEC, AEC-c, PLI and dPTE) the distance score distributions are displayed. These 
distance scores were computed using the global FCFs or ECFs after the removal of the shared pattern. Note the 
differences in scales for the x-axes. Also note that score distributions obtained with dPTE were further apart 
compared to the distributions obtained when using other connectivity metrics.

FC

Delta Theta Alpha Beta Gamma

original SVD original SVD original SVD original SVD original SVD

AEC 6.2%* 23.4%*** 12.5%*** 29.7%*** 15.6%*** 40.6%*** 26.6%*** 48.4%*** 14.1%*** 29.7%***

AEC-c 4.7% 9.4%** 4.7% 10.9%*** 14.1%*** 31.2%*** 18.8%*** 26.6%*** 4.7% 6.2%*

PLI 1.6% 3.1% 4.7% 1.6% 7.8%** 4.7% 4.7% 6.2%* 4.7% 9.4%**

dPTE 3.1% 1.6% 25.0%*** 21.9%*** 35.9%*** 40.6%*** 26.6%*** 37.5%*** 12.5%*** 15.6%***

Table 2.  Twin identification success rates for different FC or EC measures in individual frequency bands: 
Amplitude Envelope Correlation without (AEC) and with correction (AEC-c), directed Phase Transfer Entropy 
(dPTE) and Phase Lag Index (PLI). The success rate based on the original data, as well as after removal of the 
common pattern across subjects (using SVD), are given. The asterisks represent the significant values after 
permutation testing: p-value ≤ 0.05(*), p-value ≤ 0.01(**) and p-value ≤ 0.001(***).
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Although we also observed significant identification rates for the corrected AEC (alpha and beta bands), these 
rates were lower compared to when using AEC without leakage correction. The only significant success rate for 
PLI was in the alpha band ( = . = .p5/64 7 8%, 0 004).

Across measures and frequency bands the identification performances generally increased after removal of the 
common pattern. The best results for most measures were observed in theta, alpha and beta bands. For AEC without 
correction the success rate improved for all the frequency bands, with the highest value ( = . = .p31/64 48 4%, 0 001) 
in the beta band and the lowest value ( = . = .p15/64 23 4%, 0 001) in the delta band. Likewise, the success rates for 
AEC with leakage correction, with highest and lowest value in the alpha ( p20/64 31 2%, 0 001)= . = .  and gamma 
band (4/64 = 6.2%, p = 0.018), respectively. Again, PLI success rates were generally low compared to the other FC 
and EC measures, with significant, yet low, success rates only in the beta ( p4/64 6 2%, 0 014)= . = .  and gamma 
( = . = .p6/64 9 4%, 0 002) band. The significant success rates for dPTE increased especially for the alpha 
( p26/64 40 6%, 0 001)= . = .  and beta ( p24/64 37 5%, 0 001)= . = .  bands.

In summary, the best identification was obtained for the alpha and beta band after removal of the common 
pattern, especially for the dPTE and uncorrected AEC.

Discussion
In this study, we investigated the resemblance between twins from 32 monozygotic pairs using MEG FC and EC 
patterns. We showed that it is possible to identify which MZ twins belong to the same pair from a pool of subjects 
exploiting the EC patterns. The high success rate obtained (over 75%) indicated that MEG EC patterns act as a func-
tional fingerprint. Despite the observation that resting-state FC patterns are shared between subjects6, 9, 25, 26, 34, 35,  
we observed, on top of this common pattern, that they also provided reliable information to identify MZ twin 
pairs from unrelated pairs. These observations indicated that MEG EC patterns are genetic traits.

Although previous studies (see refs 38 and 39 for reviews) have demonstrated high heritability of FC, such 
analyses were performed on summary whole-brain statistics and not on the full FC or EC patterns and so it was 
unclear whether this would allow for MZ twin pair identification.

Heritability of FC during a resting-state paradigm has been previously assessed with fMRI in specific 
sub-networks such as default-mode network19 (h2~40%) and extended to other resting-state networks20. 
Moreover network topology has also been shown to be heritable18, 21, 22 (h2 42%-60%). Heritability of FC has been 
observed in EEG studies14–17, however these studies adopted either a whole-brain statistic (i.e. averaging across all 
pair-wise connectivity values or an overall network topological measure) or per-electrode statistic (i.e. averaging 
connectivity per recording site). Here we showed that EC patterns carried sufficient heritable information to allow 
for an ~75% correct identification.

FC and EC can be measured in different ways, which is likely to influence results. Therefore, we investigated 
the influence of different FC and EC measures on twin identification. Envelope correlation measures (like AEC 
and AEC-c) and phase-based measures (like PLI) are related to distinct coupling mechanisms30, characterized 
by different dynamics and possibly involved in different cognitive processes30. We further extended the study of 
neuronal synchronization considering causal relationships (effective connectivity) between neuronal populations. 
Understanding what is the influence that a neuronal population exerts on another one is crucial to decipher 
cognitive processes12. The use of a directed measure such as dPTE28, 29 allowed the estimation of such causal rela-
tionships (in Granger and Wiener terms).

The best identification rates using the pooled FCFs or ECFs (both with the original data and after the removal 
of the shared pattern, identification rates 57.8% and 76.6% respectively) were obtained with dPTE suggesting 
that the directionality of interactions provided reliable information for the identification. We speculate that both 
structural and functional aspects play a role in these results. Recently, the mesoscale structural connectome of 
the mouse was disclosed40 and a striking finding was the asymmetry in the connectivity profile (i.e. difference in 
in- and out-going connections). This asymmetry was a key concept exploited by Henriksen colleagues41 to build a 
growing model that successfully reproduces the mouse connectome with its directed connectivity. We argue that 
asymmetry of connections may be a fundamental property of mammalian connectome42, 43 even though a com-
prehensive blue-print about afferent and efferent connections is lacking in humans44. Measures such as dPTE may 
be more prone to detect the influence of such anatomical asymmetries than undirected measures and this extra 
information is beneficial for identification. Indeed, structural connections influence FC and EC patterns however 
they do not coincide. Different complex dynamical phenomena can arise on top of a fixed structural network 
and there is theoretical evidence45 that effective connectivity12 may result from self-organization of brain rhythm 
activity. In addition, the advantages of transfer entropy (TE) measures in detecting the complex dynamics has 
recently been reported46. Estimates of connectivity patterns through the dPTE probably have richer information 
content that allow outperforming undirected FC measures (i.e. AEC, AEC-c and PLI) for identification.

Each measure has different strengths and weaknesses. Specifically, the activity coming from a neuronal 
source can be detected by different sensors (field spread), resulting in spurious estimates of FC between sen-
sors. This problem is mitigated, yet not completely solved47, in source-space, where it is commonly referred as 
signal-leakage48, 49. Interpretation of FC estimates is therefore problematic if metrics are used that do not address 
this problem. AEC does not correct for such spurious estimates of functional connectivity, while AEC-c, PLI and 
dPTE do address this problem directly24, 25, 28, 50. Although handling this problem aids interpretation, our results 
showed that identification rate is generally lower when correcting for field spread. For example, we observed a 
decrease from an identification rate of 53.1% using AEC without correction to 37.5% after the correction (AEC-c) 
using the FC profiles without the shared patterns. The same it is true for the original data: identification rate 
decreased from 35.9% with AEC to 23.4% with AEC-c. Moreover, PLI showed only one significant result with 
a success rate of 9.4%. Together, these findings for AEC, AEC-c and PLI suggested that zero-lag interactions 
provide valuable information for identification. The drop in performance for AEC after leakage correction and 
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the poor results for PLI could be caused by ignoring the zero-lag interactions, which might have included true 
interactions. Conversely, as reported by Colclough and colleagues51, the higher performance for uncorrected 
connectivity metrics could be related to the fact that these measures may reflect trivial properties arising from the 
spatial configuration of sources, which hinder interpretability.

Moreover, the decrease in performance for AEC after correction could be related to the signal to noise level: 
power in orthogonalized time-series is an order of magnitude lower than before orthogonalization50, 51. Furthermore, 
part of the success of uncorrected AEC could be due to the fact that band power itself is highly heritable52.

In Table 2, it can be observed that uncorrected AEC (after removal of the shared pattern) shows higher (or 
equal) identification rate compared to dPTE for all frequency bands, however when all bands are combined 
dPTE outperforms AEC (76,6% vs 53,1%). An explanation for this result may be found in the observation that 
dPTE contains potentially more independent information in different frequency bands than uncorrected AEC. 
Figure S2 shows that the connectivity matrices for uncorrected AEC are fairly similar across frequency bands, 
whereas for the dPTE matrices differ more across the frequency bands. This may influence the overall identifica-
tion rate when pooling the bands together: in the case of AEC redundant information is pooled together, whereas 
potentially independent information is pooled when using dPTE, leading to a better identification rate.

The removal of the shared pattern across subjects from the individual FCFs or ECFs improved the identifica-
tion rates for each connectivity measures. Recently, Hawrylycz23 and colleagues demonstrated that a shared FC 
pattern across individuals relate to consistent gene expression signatures. Likely, this FC pattern underlies highly 
conserved functions. Since we aimed to analyze at individual level data, we decided to discard this shared FC or 
EC pattern across individuals in order to assess the influence of familial factors on the residual FC or EC patterns. 
It might be argued that the removal of the shared pattern across subjects from individual functional connectivity 
profiles reduces the generalizability of the results because this transformation is group-dependent. However, the 
recent literature on the consistency and repeatability of MEG functional connectivity patterns at group-level9, 37, 51  
supports the use of this approach in our study. We showed that also the FC and EC patterns that are specific to the 
individual are strongly influenced by familial factors.

Recently, Finn and colleagues10 reported high identification rates with fMRI fingerprints (~95% and ~99% 
using whole brain and sub-network fingerprints respectively in resting-state condition) without performing any 
removal of a shared FC pattern. However, our results support that the removal of this common pattern enhances 
identification rate. The high identification rate without removal of a shared pattern in Finn’s study may be related 
to two main differences with the present study: first, they matched the same subject while we aimed to identify 
one subject using the fingerprint of its twin; second, the higher dimension of their fingerprint (35778 entries 
in the feature vector obtained from 268 ROIs) compared to our fingerprint (15015 entries in the feature vec-
tor obtained from 78 ROIs times 5 frequency bands). The effect of the fingerprint size is confirmed by a result 
reported as well in Finn’s study. They recomputed the identification rates using a different parcellation scheme 
with fewer ROIs (68 ROIs, 2278 entries in the feature vector) and the identification rates dropped (~89% and 
~75% using whole brain and sub-network fingerprints respectively in resting-state condition). We recomputed as 
well the identification rates using a parcellation scheme with a higher resolution (see Tables S3 and S4). By using a 
higher resolution atlas, the identification rates for both the original data and after the removal of a shared pattern 
improved or remained stable for every connectivity measure (compared to using the AAL atlas).

Although the identification rate generally improved with the high resolution parcellation scheme, the best identi-
fication rate (dPTE after removal of the shared pattern, pooled across frequency bands) did not improve (76.6%). This 
observation can probably be ascribed to the resolution of the beamformer approach in combination with resting-state 
MEG data, which represents an upper bound on the independent information that can be reconstructed.

Other than for PLI, using the frequency-specific FCFs independently for the identification analysis gave the 
best results for the alpha and beta band (both with and without the shared patterns). These results are in accord-
ance with previous EEG studies on heritability15–17, 52 and a recent study in which the high reliability of FC in 
these bands was reported37. In addition, although the whole power spectrum was reported to be heritable52, 53, 
power in alpha and beta bands exhibited higher values of heritability. We speculate that this could be related to a 
distinct genetic origin of different brain rhythms54. A recent work by Richiardi et al.55 emphasizes the relationship 
between FC patterns and genes, showing how genes associated to ion channels and synaptic function control the 
spatial organization of functional resting-state networks in fMRI.

Limitations.  In our study we could not disentangle genetic from shared environment sources of variance56 
because the study included MZ twins only. However, previous research14–16 has shown that shared environmental 
factors are negligible in FC estimates.

Our results are related to an elderly population and so future studies should investigate how these results 
would generalize to younger individuals.

Another limitation of this study is the small number of subjects, which could have inflated identification 
rates. Even though the best identification rate (~75%) may seem low compared to other studies10 we would like 
to emphasize that in our study we matched different subjects, which is a harder problem than identifying the 
same subject between different observations (i.e. recordings), as was the case in these previous reports. We did 
not consider different source reconstruction strategies for the solution of the inverse problem. Recently, it has 
been shown57 that results in source space are affected by different choices during the analysis pipeline (i.e. inverse 
model, type of connectivity measure and different software implementations). Hence, although our results were 
obtained using a tried-and-tested analysis pipeline29, 47, 58–61 that has also been implemented by other groups62, 63 
future studies should reproduce our findings using alternative approaches.

Finally, it would be interesting to further investigate to what extent different resting-state networks6–8 are 
related to either the shared pattern across individuals or the residual connectivity patterns. This would help 
to understand which connectivity patterns are related to conserved functions23 or inter-individual variability. 
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Recently, it was shown that fronto-parietal networks are mostly related to inter-individual variability, and this 
improved the identification rate compared to a whole brain approach10. However, our main goal was to show, at a 
global level, if MZ twin identification was feasible using MEG effective and functional connectivity fingerprints. 
Further studies focusing on the relative influence of different sub-network on the identification rates are desirable.

Conclusion
We conclude that MEG-based effective connectivity patterns can be considered as fingerprints that are highly spe-
cific to individuals, under strong genetic influence, and might be good candidates to study the influence of genetic 
variation on brain functioning and ultimately inter individual differences in behavior and/or psychopathology.

Material and Methods
Subject Information.  No table of contents entries found.  The sample for this study comes from the 
Netherlands Twin Register and takes part in an ongoing study on heritability of Alzheimer’s disease risk fac-
tors in cognitively healthy elderly subjects, which is part of the Innovative Medicine Initiative (IMI) European 
Information Framework for Alzheimer Disease project (EMIF-AD). The aim of the PreclinAD study is to collect 
300 cognitively normal elderly participants with ages ranging from 60 to 100 years. Subjects are recruited from 
the Manchester and Newcastle Aging Study (MNAS) (n = 100) and, as a twin sub-study, from the Netherlands 
Twin Register (NTR) (n = 200; 100 monozygotic twin pairs).

Inclusion criteria.  In this study data from the first 32 NTR monozygotic twin pairs enrolled in the PreclinAD 
study were analyzed. This subset was used because these subjects had an MEG recording available at the time 
when analysis was performed.

Inclusion criteria were age 60 years and older, Telephone Interview for Cognitive Status modified 
(TICS-m) > 2264; Geriatric Depression Scale (GDS) (15 item) < 1165; Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) 10 word list immediate and delayed recall (>−1.5 SD of age adjusted normative 
data)66; Clinical Dementia Rating (CDR) scale of 0 with a score on the memory sub-domain of 067.

Exclusion criteria included neurological and psychiatric diseases such as mild cognitive impairment, brain 
tumor, brain infection, schizophrenia, bipolar disorder, Parkinson’s disease, epilepsy; other systemic illness/
co-morbidity (e.g. thyroid disease, uncontrolled diabetes mellitus, cancer), recreational drug use, alcohol con-
sumption (>35 units per week), and use of medication that may influence cognition (e.g. benzodiazepine, lithium 
carbonate, antipsychotics including atypical agents, antidepressants, or Parkinson’s disease medicines).

This study and all procedures were carried out in accordance with a protocol approved by the ethical board of 
the VUmc (Medische Ethische Toetsingscommissie VUmc, project number 2014.210, approval date 2014-11-27). 
All subjects provided written informed consent.

Data acquisition.  Neuropsychological assessment.  Subjects underwent extensive neuropsychological testing 
and questionnaires. The Mini-Mental State Examination was administered to assess cognitive status68.

MRI acquisition.  Anatomical whole brain scans were obtained using a 3.0T MR scanner (Philips Achieva). 
Isotropic structural 3D T1-weighted images were acquired using a sagittal fast field echo sequence (repetition 
time = 7.9 ms, echo time = 4.5 ms, flip angle = 8°, 1 mm × 1 mm × 1 mm voxels).

MEG acquisition.  MEG data were recorded using a 306-channel whole-head MEG system (Elekta Neuromag 
Oy, Helsinki, Finland) while participants were in supine position inside a magnetically shielded room 
(Vacuumschmelze, Hanau, Germany). MEG recordings were performed before the MRI scan. Magnetic fields 
were recorded at a sample frequency of 1250 Hz, with an anti-aliasing filter of 410 Hz and a high-pass filter of 
0.1 Hz. The protocol consisted of 5 minutes in a eyes-closed resting-state condition (i.e. not performing any task), 
followed by 2 minutes in an eyes-open condition, and then again 5 minutes in an eyes-closed condition. Only the 
first 5 minutes of eyes-closed data were used for the analysis.

The head position relative to the MEG sensors was recorded continuously using the signals from five 
head-localization coils. The head-localization coil positions were digitized, as well as the outline of the partici-
pants scalp (~500 points), using a 3D digitizer (Fastrak, Polhemus, Colchester, VT, USA).

Channels that were malfunctioning during the recording, for example due to excessive noise, were identified 
by visual inspection of the data, and removed (median = 9, range 2–13) before applying the temporal extension 
of Signal Space Separation (tSSS) in MaxFilter software (Elekta Neuromag Oy, version 2.2.15)69–71. The tSSS fil-
ter was used to remove artifacts that SSS without temporal extension would fail to discard, typically from noise 
sources near the head, using a subspace correlation limit of 0.9 and a sliding window of 10 seconds.

The digitized scalp surfaces of all subjects were co-registered to their structural MRIs using a surface-matching 
procedure, with an estimated resulting accuracy of 4 mm72. A single sphere was fitted to the outline of the scalp 
as obtained from the co-registered MRI, which was used as a volume conductor model for the beamformer 
approach described below.

Beamforming.  An atlas-based beamforming approach47 was used to project the MEG data to 78 regions of inter-
est (ROIs) in source-space, using the AAL atlas32. For a detailed description we refer the reader to (Hillebrand et 
al. 2016). The broadband (0.5–48 Hz) time-series at sensor level were projected through the normalized broad-
band beamformer weights for each ROI’s centroid in order to obtain a time-series for each ROI. From these 
time-series, the first 18 epochs each containing 16384 samples (13.10s), were selected73, 74.
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These time-series were then downsampled to a sample frequency of 312 Hz (yielding epochs of 4096 samples 
each) and filtered in classical EEG/MEG frequency bands (delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 
(13–30 Hz), and lower gamma (30–48 Hz)), using an offline discrete FFT filter that does not distort the phases75.

Functional and effective connectivity.  Pairwise FC and EC was estimated between each of the 78 ROIs for each 
frequency band using three FC and one EC measure listed below. All four measures are based on the computation 
on the Hilbert transform to obtain the analytic signal which was used estimate the envelope or the instantaneous 
phase. The measures used to estimate FC and EC are (see supplementary information file for details):

•	 Amplitude Envelope Correlation (AEC), which detects amplitude-based coupling among brain signals. AEC 
captures interactions between two time-series computing the correlation between their envelopes27.

•	 The leakage-corrected Amplitude Envelope Correlation (AEC-c), where time-series were orthogonalized by 
means of linear regression analysis before estimating functional connectivity with AEC50. This correction was 
performed on the band-filtered time series in time domain with the aim to reduce trivial spurious correlations 
induced by signal leakage. Orthogonalization of two time series can be done in two directions (i.e. given X 
and Y as time series, X can be regressed out from Y, and Y can be regressed out from X). For every pair of time 
series we computed the orthogonalization in both directions, and then we averaged the AEC values computed 
on the orthogonalized time series for the two directions.

•	 Phase Lag Index (PLI)24 is a measure of the asymmetry of the distribution of phase differences between two 
time series. It reflects the consistency of phase relations between two time series, avoiding zero-lag (mod π) 
phase coupling and thereby minimizing the influence of spurious correlation induced by leakage.

•	 Phase Transfer Entropy (PTE) is a directional phase-based measure that estimates information flow on the 
basis of the transfer entropy between the time series of the instantaneous phases28, 76. We used the implemen-
tation of dPTE as described in29, which is bounded in the range 0.5 < dPTExy ≤ 1 when information flows 
preferentially from a time series X to time series Y. However when information flows preferentially toward X 
from Y, 0 ≤ dPTExy < 0.5. In the case of no preferential direction of information flow, dPTExy = 0.5.

Subsequent analysis steps were performed independently for every FC and EC measure and for all frequency 
bands.

The calculation of FC and EC measures resulted in 18 (one for each epoch) FC or EC matrices for each subject, 
which were then averaged per subject. No threshold was applied to the connectivity matrices.

For each subject, a FCF and ECF was extracted from the average FC or EC matrix by vectorizing its lower 
triangular part not including the diagonal. This vector therefore has 3003 entries ∗( )78 77

2
, which represent the FC 

or EC values between every pair of ROIs. Usually a directed connectivity matrix will not be symmetrical; however, 
due to the way dPTE is defined the two triangular parts are trivially related: the dPTE for a pair of regions is com-
puted by normalizing the PTE values by the sum of the PTE values in both directions ( =

+
dPTE

PTE

PTE PTE
xy

xy yx
, see 

supplementary information for details), which forces the upper and lower triangular part of the dPTE matrix to 
add up to one = −dPTE dPTE( 1 )xy yx . Hence even for the dPTE matrix we considered only the lower triangular 
part like for the other FC matrices.

We combined for every subject the FCFs or ECFs for the individual frequency bands (independently for every 
functional connectivity measure). This resulted in a global FCFs or ECFs across bands (15015 entries = 3003 × 5 
frequency bands). The global FCF or ECF was then used for the identification analysis using either the FCFs (or 
ECFs) with or without the shared pattern, and statistical significance was assessed using permutation testing.

Twin pair identification using functional or effective connectivity.  Spearman’s rank correlation was used as a sim-
ilarity measure to compare two FCFs or ECFs. In order to deal with negative correlations, similarity scores were 
transformed into distance scores using the following formula (eq. 1):

= −
+

distance score
correlation coefficient

1
( 1)

2 (1)

The identification analysis consisted of an iterative process, in which at every step a subject was selected and 
its FCF or ECF was compared with the other subjects’ FCFs or ECFs, yielding 63 distance scores. If the lowest 
distance score was obtained for the subject’s co-twin we considered it a successful outcome (a match), otherwise 
a miss. We repeated this process for all 64 subjects and we calculated the success rate as the ratio between the 
number matches and total number of subjects.

In order to assess statistical significance of the observed success rate we used permutation testing. At each 
iteration we first randomly redefined the relatedness between subjects (i.e. subjects were randomly assigned to 
be twin pairs), next the identification analysis was performed and the success rate computed. This procedure was 
repeated 1000 times to build a permuted success rate distribution, and the observed success rate was compared 
against this distribution to determine the p-value.

Singular Value Decomposition.  Twin pair identification performances might improve by removing the contribu-
tion of the connectivity pattern shared among FC or EC profiles. To this end, all connectivity profiles were pooled 
in a matrix (M15015×64) and the singular value decomposition (SVD) of this matrix was computed (eq. 2):

=× × × ×M U S V (2)15015 64 15015 64 64 64
T

64 64
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where U is the matrix containing the left singular vectors, S contains the singular values, V is the matrix contain-
ing the right singular vectors, and T is the matrix transpose. The left singular vector is associated with the largest 
singular value and represents the dominant common pattern shared among the connectivity profiles. Projecting 
back the matrix of the connectivity profiles without the contribution of the largest singular value and its corre-
sponding left and right singular vectors yielded the connectivity profiles without the shared pattern.

The computation of the dPTE was performed using Brainwave software (BrainWave, version 0.9.150.6; 
home.kpn.nl/stam7883/brainwave.html), all the other analyses were performed using in-house MATLAB 
scripts (MATLAB Release 2012a, The MathWorks, Inc., Natick, Massachusetts, United States) and an additional 
MATLAB plotting script from http://www.mathworks.com/matlabcentral/fileexchange/ (tight_subplot.m).

Data availability.  The data that support the findings of this study are available from the corresponding 
author upon reasonable request.
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