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Consistent but indirect evidence has implicated genetic factors 
in smoking behavior1,2. We report meta-analyses of several 
smoking phenotypes within cohorts of the Tobacco and Genetics 
Consortium (n = 74,053). We also partnered with the European 
Network of Genetic and Genomic Epidemiology (ENGAGE)  
and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up 
the 15 most significant regions (n > 140,000). We identified 
three loci associated with number of cigarettes smoked  
per day. The strongest association was a synonymous 15q25  
SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], b = 
1.03, standard error (s.e.) = 0.053, P = 2.8 × 10−73). Two 10q25 
SNPs (rs1329650[G], b = 0.367, s.e. = 0.059, P = 5.7 × 10−10;  
and rs1028936[A], b = 0.446, s.e. = 0.074, P = 1.3 × 10−9)  
and one 9q13 SNP in EGLN2 (rs3733829[G], b = 0.333, 
s.e. = 0.058, P = 1.0 × 10−8) also exceeded genome-wide 
significance for cigarettes per day. For smoking initiation, eight 
SNPs exceeded genome-wide significance, with the strongest 
association at a nonsynonymous SNP in BDNF on chromosome 11  
(rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval 
(Cl) 1.04–1.08, P = 1.8 × 10−8). One SNP located near  
DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95%  
Cl 1.08–1.18, P = 3.6 × 10−8) was significantly associated  
with smoking cessation.

Previous genome-wide association studies (GWAS) for smoking 
behavior (Supplementary Table 1) have identified a chromosome-15 
nicotinic acetylcholine receptor gene cluster as being associated with 
smoking quantity3. The Tobacco and Genetics (TAG) Consortium 
conducted GWAS meta-analyses across 16 studies originally designed 
to evaluate other phenotypes (for example, cardiovascular disease and 
type 2 diabetes). We examined four carefully harmonized smoking 
phenotypes (see Online Methods)—smoking initiation (ever versus 
never been a regular smoker), age of smoking initiation, smoking 
quantity (number of cigarettes smoked per day, CPD) and smok-
ing cessation (former versus current smokers)—among people of 
European ancestry (Table 1). Smoking cessation contrasted former 
versus current smokers, where current smokers reported at interview 
that they presently smoked and former smokers had quit smoking at 
least 1 year before interview. Smokers who had quit smoking for less 
than 1 year at interview were excluded from the analysis to minimize 

misclassification, as relapse after initial smoking cessation occurs in 
70% to 80% of former smokers within the first year4.

The 16 TAG studies performed their own genotyping, quality con-
trol and imputation (see Supplementary Tables 2 and 3 and Online 
Methods). Studies ranged in size from n = 585 to n = 22,037 and were 
genotyped on six different platforms. Genotype imputation5 resulted 
in a common set of ~2.5 million SNPs (Supplementary Table 3). 
Imputed allele dosages for each SNP (that is, the number of copies 
of the minor allele) were tested for association with each smoking 
phenotype, using an additive model.

We performed a fixed-effect meta-analysis for each smoking pheno-
type by computing pooled inverse variance–weighted β coefficients, s.e. 
values and z-scores for each SNP6. Fixed-effects analyses are regarded 
as the most efficient method for discovery in the GWAS setting7,8. 
Heterogeneity across studies was investigated using the I2 statistic9.  
Random-effects analyses are presented in Supplementary Table 4.  
We used a significance threshold of P < 5 × 10−8 (refs. 10,11).

In the initial TAG meta-analysis, only one locus contained SNPs 
that exceeded genome-wide significance for one of the four pheno-
types (Fig. 1 and Supplementary Table 4). A total of 130 SNPs in the 
15q25.1 nicotinic receptor gene cluster were significantly associated 
with CPD (n = 38,181, minimum P = 4.2 × 10−35 at rs12914385 in 
CHRNA3). One SNP approached significance for smoking cessation 
(n = 41,278, minimum P = 5.5 × 10−8 for rs7872903, located ~17 kb 
5′ of DBH on chromosome 9). No SNPs were significantly associated  
with ever versus never regular smokers (n = 74,035, minimum  
P = 2.2 × 10−7 at rs16941640 in CDC27) or age of smoking initiation 
(n = 24,114, minimum P = 1.6 × 10−6 at rs2806464, located 3′ of 
DISC1) in the initial TAG meta-analysis.

To follow up associations identified in the TAG Consortium analyses,  
we partnered with the ENGAGE and Oxford-GlaxoSmithKline 
(Ox-GSK) consortia and conducted a reciprocal exchange of sum-
mary results for the 15 most significant genetic regions for three 
smoking phenotypes12,13. Our regions were defined by clusters of  
P values < 10−4 (that is, where the correlations (r2) were >0.5 and/or  
the SNPs were located <50 kb apart; Supplementary Table 5). Sample 
sizes across the three consortia were n = 143,023 for smoking initia
tion, n = 73,853 for CPD and n = 64,924 for smoking cessation 
(data on age of smoking initiation were not available in ENGAGE 
or Ox-GSK).

Genome-wide meta-analyses identify multiple loci 
associated with smoking behavior
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Results of the most significant SNPs for each smoking phenotype 
across the three consortia are summarized in Table 2. We identified 
three loci associated with CPD. The synonymous SNP rs1051730 
in CHRNA3 showed the strongest association: each copy of the  
A allele corresponded to an increase in smoking quantity of 1 CPD  

(β = 1.03, s.e. = 0.056, P = 2.8 × 10−73, I2 = 0.66; Fig. 2) and accounted 
for 0.5% of the variance in CPD. The SNP rs16969968[G], which 
has been proposed as a causal variant in this region14, was the sec-
ond most significant SNP associated with CPD (P = 5.57 × 10−72; 
Supplementary Fig. 1). In tests of association for SNPs within the 

Table 1  Descriptive characteristics of the 16 studies participating in the TAG Consortium

Study n (% female) Agea, mean (s.d.) Ever smokers (%) CPD, mean (s.d.)b
Age of initiation of smokinga,  

mean (s.d.)b Former smokers (%)b

Population-based cohort studies

Atherosclerosis Risk in Communities (ARIC) 8,330 (52.9) 54.3 (5.7) 60.4 21.0 (11.7) 18.6 (5.1) 57.4

Baltimore Longitudinal Study of Aging (BLSA) 856 (46.0) 48.1 (17.8) 54.0 NA 19.3 (5.9) NA

Cardiovascular Health Study (CHS) 3,236 (60.8) 72.3 (5.4) 52.3 17.8 (11.8) 19.6 (6.6) 77.8

Invecchiare in Chianti (InCHIANTI) 1,200 (55.2) 68.4 (15.5) 43.9 14.8 (9.4) 32.2 (16.7) 57.0

Rotterdam Study 5,610 (60.3) 69.1 (8.9) 59.2 15.8 (11.7) 20.4 (8.2) 62.6

Framingham Heart Study (FHS) 7,257 (53.7) 45.4 (10.9) 54.2 15.5 (10.8) 17.9 (4.2) 61.7

Women’s Genome Health Study (WGHS) 22,037 (100) 54.7 (7.1) 49.2 16.0 (11.0) NA 75.2

Case-control studies

Atherosclerotic Disease Vascular Function and Genetic  
Epidemiology (ADVANCE)

585 (58.8) 45.8 (5.9) 47.7 13.1 (14.2) 17.0 (4.6) 65.2

Atherosclerosis, Thrombosis and Vascular Biology Italian  
Study Group (ATVB)

3,260 (11.6) 39.6 (4.9) 68.1 23.4 (14.7) 17.4 (4.0) 21.3

Diabetes Genetic Initiative (DGI) 2,504 (50.0) 61.6 (10.6) 37.7 NA 19.0 (5.5) NA

Finland-United States Investigation of NIDDM Genetics  
(FUSION)

1,055 (52.8) 64.0 (7.5) 46.8 16.3 (12.4) 21.0 (7.0) 65.0

International Agency for Research on Cancer (IARC) 8,381 (24.7) 59.6 (10.1) 75.2 19.3 (12.9) 18.7 (5.6) 31.4

Myocardial Infarction Genetics Consortium (MIGen) 2,647 (38.5) 48.8 (8.2) 64.3 NA NA 41.1

Nurses’ Health Study (NHS) 2,249 (100) 70.5 (6.4) 53.8 18.5 (10.5) 19.6 (3.6) 88.7

Netherlands Twin Registry-Netherlands Study of Depression 
and Anxiety (NTR/NESDA)

3,438 (66.9) 43.8 (13.4) 64.9 14.5 (9.8) 16.4 (4.2) 52.6

MGS (GAIN):controls 1,390 (54.1) 51.1 (17) 55.9 19.3 (16.4) NA 62.9

aAge in years. bCalculated among ever regular smokers. NA, not available.
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Figure 1  Genome-wide association results for the TAG Consortium. Manhattan plots showing significance of association of all SNPs in the TAG 
Consortium meta-analyses for four smoking phenotypes. (a–d) Manhattan plots show SNPs plotted on the x axis according to their position on each 
chromosome against, on the y axis (shown as −log10 P value), the association with CPD (a), former versus current smoking (b), ever versus never 
smoking (c) and age of smoking initiation (d).
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15q25.1 region conditional on rs1051730, we observed residual asso-
ciations, with the most significant signals at rs684513[G] (P = 6.3 ×  
10−9), in CHRNA5, and rs9788682[G] (P = 1.06 × 10−8) and 
rs7163730[G] (P = 1.22 × 10−8), in LOC123688 (Supplementary 
Fig. 2 and Supplementary Table 6). Our results suggest that several 
markers within this region may influence CPD independently. Fine 

mapping and the use of the 1000 Genomes Project data should help 
refine these signals. We investigated whether the 15q25.1 region 
was associated with smoking initiation and smoking cessation as 
well, but no SNP in that region exceeded genome-wide signifi-
cance (smoking initiation minimum P = 0.98; smoking cessation  
minimum P = 1.75 × 10−5).

Table 2  Meta-analytic results from three GWAS smoking consortia

SNP Alleles

TAG meta-analysis Ox-GSK meta analysis ENGAGE meta analysis Combined results

Coded AF n β s.e. P value n β s.e. P value n β s.e. P value n β s.e. P value

CPDa: CHRNA3

rs1051730 G/A 0.65 38,181 −1.0207 0.086 8.00 × 10−33 14,952 −1.1593 0.139 8.88 × 10−17 20,720 −0.9648 0.089 2.15 × 10−27 73,853 −1.0209 0.056 2.75 × 10−73

rs16969968 G/A 0.65 38,181 −1.0150 0.085 4.48 × 10−33 14,952 −1.1153 0.137 3.72 × 10−16 20,720 −0.9426 0.089 2.07 × 10−26 73,853 −1.0029 0.056 5.57 × 10−72

CPDa: in LOC100188947

rs1329650 T/G 0.28 38,181 −0.4317 0.091 2.33 × 10−6 14,952 −0.2568 0.145 7.61 × 10−2 20,720 −0.3464 0.092 1.73 × 10−4 73,853 −0.3673 0.059 5.67 × 10−10

rs1028936 C/A 0.18 37,284 −0.5545 0.116 1.57 × 10−6 14,952 −0.2451 0.176 1.65 × 10−1 20,720 −0.4252 0.113 1.77 × 10−4 72,956 −0.4464 0.074 1.29 × 10−9

CPDa: EGLN2, near CYP2A6

rs3733829 G/A 0.36 38,181 0.3538 0.090 7.67 × 10−5 14,952 0.0477 0.145 7.43 × 10−1 20,720 0.4204 0.089 2.90 × 10−6 73,853 0.3328 0.058 1.04 × 10−8

Smoking initiation (ever versus never smokers): BDNF

rs6265 T/C 0.21 74,035 −0.0630 0.015 1.72 × 10−5 34,226 −0.0448 0.022 4.48 × 10−2 34,762 −0.0762 0.024 1.39 × 10−3 143,023 −0.0614 0.011 1.84 × 10−8

rs1013442 T/A 0.26 74,035 −0.0568 0.014 3.39 × 10−5 34,226 −0.0386 0.021 6.36 × 10−2 34,762 −0.0674 0.020 9.60 × 10−4 143,023 −0.0551 0.010 3.31 × 10−8

rs4923457 T/A 0.23 74,035 −0.0600 0.014 2.08 × 10−5 34,226 −0.0421 0.022 5.05 × 10−2 34,762 −0.0752 0.024 1.91 × 10−3 143,023 −0.0586 0.011 3.33 × 10−8

rs4923460 T/G 0.23 74,035 −0.0598 0.014 2.22 × 10−5 34,226 −0.0427 0.022 4.81 × 10−2 34,762 −0.0734 0.024 2.51 × 10−3 143,023 −0.0583 0.011 4.08 × 10−8

rs4074134 T/C 0.23 74,035 −0.0603 0.014 1.90 × 10−5 34,226 −0.0421 0.022 5.08 × 10−2 34,762 −0.0725 0.024 2.81 × 10−3 143,023 −0.0582 0.011 4.11 × 10−8

rs1304100 G/A 0.26 74,035 −0.0557 0.014 4.86 × 10−5 34,226 −0.0460 0.021 2.62 × 10−2 34,762 −0.0651 0.022 2.88 × 10−3 143,023 −0.0554 0.010 4.44 × 10−8

rs6484320 T/A 0.24 74,035 −0.0597 0.014 2.04 × 10−5 34,226 −0.0387 0.021 6.78 × 10−2 34,762 −0.0723 0.024 2.13 × 10−3 143,023 −0.0571 0.010 4.91 × 10−8

rs879048 C/A 0.23 74,035 −0.0598 0.014 2.28 × 10−5 34,226 −0.0409 0.022 5.86 × 10−2 34,762 −0.0728 0.024 2.41 × 10−3 143,023 −0.0578 0.011 4.94 × 10−8

Smoking cessation (former versus current smokers): near DBH

rs3025343 G/A 0.84 41,278 0.1177 0.026 5.68 × 10−6 23,646 0.1295 0.041 1.76 × 10−3 NA NA NA NA 64,924 0.1210 0.022 3.56 × 10−8

All SNPs coded to NCBI Build 36/UCSC hg18 forward strand. Coded allele frequency refers to the allele analyzed as the predictor allele; it is not necessarily the minor allele. For CPD, 174 SNPs followed up across three consortia; 
130 exceeded genome-wide significance and the two top SNPs are presented. NA, not available.  
aCPD was analyzed as a continuous variable representing the number of cigarettes smoked per day. Smoking initiation and smoking cessation were analyzed as dichotomous variables, contrasting ever versus never and former versus current 
smokers, respectively.
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Figure 2  Forest and regional plots of significant associations for CPD from meta-analyses of the TAG, Ox-GSK and ENGAGE consortia. (a–f) Regional 
association plots show SNPs plotted by position on chromosome against −log10 P value with each smoking phenotype. Estimated recombination rates 
(from HapMap-CEU) are plotted in light blue to reflect the local LD structure on a secondary y axis. The SNPs surrounding the most significant SNP  
(red diamond) are color coded to reflect their LD with this SNP (using pairwise r 2 values from HapMap-CEU): blue, r 2 ≥ 0.8–1.0; green, 0.5–0.8, 
orange, 0.2–0.5; gray, <0.2. The gray bars at the bottom of the plot represent the relative size and location of genes in the region.
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In addition, markers within regions on 
chromosomes 10q23 and 19q13 were sig-
nificantly associated with CPD. The SNPs 
rs1329650[G] (β = 0.367, s.e. = 0.059,  
P = 5.7 × 10−10; Fig. 2) and rs1028936[A] 
(β = 0.446, s.e. = 0.074, P = 1.3 × 10−9; 
Supplementary Fig. 1) are located in a non-
coding RNA (LOC100188947), where each 
additional copy of a risk allele corresponded 
to an increase in smoking quantity of ~0.5 
CPD. Linkage disequilibrium (LD) between 
these SNPs is moderate (r 2 = 0.46), suggest-
ing that they may represent one signal. To 
our knowledge, this region has not been previously investigated in 
relation to smoking behavior or other addiction phenotypes.

The third locus identified for CPD lies in the first intron of EGLN2 
on chromosome 19q13, 40 kb from the 3′ end of CYP2A6. One SNP, 
rs3733829, exceeded genome-wide significance, and each copy of the 
G allele corresponded to an increase in smoking quantity of <0.5 
CPD (β = 0.333, s.e. = 0.058, P = 1.0 × 10−8; Fig. 2). CYP2A6 is an 
established candidate gene for smoking, as it encodes for an enzyme 
involved in the metabolic inactivation of nicotine to cotinine15. 
Many allelic variants of CYP2A6 result in slower metabolism of 
nicotine16 and are associated with lower prevalence of smoking and 
lower amounts of cigarette use16,17. We interpret this finding with 
caution, as only one SNP upstream of CYP2A6 was observed and the 
strength of its association was moderate. However, the 19q13 region 
merits continued investigation given its biological plausibility as 
involved in nicotine metabolism and because several markers within 
this region were identified in the ENGAGE Consortium12. The SNP 
identified in our study (rs3733829) lies directly between, and shows 
moderate LD with, the two most significant markers identified  
in ENGAGE.

Eight SNPs around BDNF exceeded genome-wide significance for 
smoking initiation analyses across the three consortia (Fig. 3). The 
minimum P value was at the missense variant rs6265 (P = 1.8 × 10−8) 
located in the first exon of BDNF on chromosome 11. Each copy 
of rs6265[C] conferred a 6% increase in the relative risk of regular 
smoking (OR = 1.06, 95% c.i. 1.04–1.08); rs6265 accounted for 0.03% 
of the variance. BDNF belongs to a family of neurotrophins that  
regulate synaptic plasticity and survival of cholinergic and dopamin-
ergic neurons18. The eight SNPs overlap an antisense transcript 
(BDNFos). BDNF is expressed at high levels in the prefrontal cortex  
and hippocampus, which are brain regions implicated in the  

cognitive-enhancing effects of nicotine19. Although the molecular 
mechanisms underlying this association have yet to be elucidated, it 
is plausible that genetic variation at BDNF could alter the rewarding 
effects of nicotine through modulation of dopamine reward circuits 
and could contribute to the salience of nicotine’s effects by altering 
formation of drug-related memories that promote continued use 
after initial exposure. The SNP rs6265 has been found to be associ-
ated with substance-related disorders, eating disorders and schizo-
phrenia20. Most recently, it was identified in a GWAS for body mass 
index21; the allele associated with a greater body mass index was the 
same allele associated with regular smoking in our study.

For smoking cessation, one SNP, located 23 kb 5′ of DBH on 
chromosome 9, achieved genome-wide significance: rs3025343[G] 
was associated with former smoking status (OR = 1.12, 95%  
c.i. 1.08–1.18, P = 3.6 × 10−8; Fig. 3) and accounted for 0.19% of the 
variance in smoking cessation. Because DBH catalyzes conversion 
of dopamine to norepinephrine, there has been interest in DBH as a 
candidate gene for various psychiatric phenotypes, including smoking 
behavior22. Although the SNP identified in this study does not cause 
amino acid residue changes in DBH, gene expression may be modified 
either directly or through other variant(s) in strong LD. This view is 
supported by evidence that a genetic variant (C1021T or rs1611115), 
located upstream of the DBH translational start site, accounts for 51% 
of the variation in plasma-DBH activity in European-Americans22. 
Alternatively, the SNP identified in our study or a variant in LD may 
influence expression of other genes nearby (ADAMTSL2, FAM163B 
or SARDH), which would introduce new pathways to our current 
understanding of addiction biology.

To our knowledge, the sample sizes for the TAG Consortium 
alone and combined with the ENGAGE and Ox-GSK consortia are  
among the largest genetic meta-analyses yet conducted23. Notably, 
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Figure 3  Forest and regional plots of significant 
associations for smoking behavior. (a–d) Shown 
are plots for smoking initiation (a,b) and smoking 
cessation (c,d) from meta-analyses of the TAG, 
Ox-GSK and ENGAGE consortia. Regional 
association plots show SNPs plotted by position 
on the chromosome against −log10 P value 
with each smoking phenotype. Estimated 
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surrounding the most significant SNP (red 
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most of the loci identified in this study reside in or near known can-
didate genes involved in the neurobiology of smoking, which dif-
fers from the results of previous GWAS, in which variants identified 
have generally not been in regions previously suspected. The lack of 
findings for smoking initiation and cessation is noteworthy in light 
of considerable genetic epidemiological data suggesting a role for 
genetic factors in different aspects of smoking behavior (for exam-
ple, heritability estimates are often >0.50)1, and we note that the loci 
identified do not of themselves account for more than small fractions 
of the phenotypic heritability. Additional smoking behavior loci may 
be identified with improved genomic coverage and analysis of gene-
gene and gene-environment interaction, copy number variation or 
epigenetic effects. We acknowledge that imprecision in phenotypic 
assessment and differences across studies could have added noise suf-
ficient to blur all but the most prominent genetic signals. Smoking 
behavior obtained by questionnaires may be subject to phenotypic 
misclassification. Recent work24 has shown that genetic variation at 
15q25.1 influences cotinine (the main and long-lived metabolite of 
nicotine) measurements more strongly than it influences CPD values 
obtained by means of a questionnaire. Future smoking GWAS that 
use biomarkers or longitudinal assessments that refine phenotypic 
assessments by incorporating time to quitting or relapsing to smoking 
may be required. In addition, inclusion of multiple ethnic groups will 
enhance the investigation of the genetics of smoking.

Notably, the five significant loci identified in these meta-analyses 
were each associated with only one specific smoking phenotype. Our 
findings suggests that separate genetic loci contribute modestly to 
phenotypic variability in each aspect of smoking behavior, which, in 
turn, may have implications for the way in which smoking cessation 
therapies and tobacco control efforts are designed and targeted.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.

Acknowledgments
This work was funded by the University of North Carolina Lineberger 
Comprehensive Cancer Center University Cancer Research Fund Award and by  
US National Cancer Institute K07 CA118412 to H.F. Statistical analyses were 
carried out on the Genetic Cluster Computer (see URLs), which is supported by 
the Netherlands Scientific Organization (NWO 480-05-003). Acknowledgments  
for studies included in TAG are listed in the Supplementary Note.

AUTHOR CONTRIBUTIONS
TAG: study conception, design, management: H.F., P.F.S., Y.K., J. Dackor; TAG 
Statistical Working Group: D.-Y.L., P.K., J.P.A.I., D.P., H.F., Y.K., J. Dackor, S.P.F., N.F., 
E.H.L., J.D.M., J.M.V., D.I.B., D.L., B.M.E., E.L.T., B. McKnight, P.F.S., D. Absher; 
TAG Phenotype Working Group: C. Lerman, J.K., H.H.M., L.M.T., J.A.-M., E.H.L., 
J.E.R., M.D.L., J.M.V., H.F., Y.K., J. Dackor, S.P.F., P.F.S., E.L.T.; data analysis: Y.K., 
D.M.A., F.G., E.H.L., J.D.M., J.M.V., A.U.J., L. Bernardinelli, S.R.P., S.-J.H., B.M.E., 
C. Ladenvall, J.R.B.P., T.T., E.L.T., J.C.B., G.L., S.W.; TAG Manuscript Writing Group: 
H.F., Y.K., J. Dackor, P.F.S., C. Lerman, M.D.L., J.K., J.A.-M., P.K. All authors reviewed 
and approved the final version of the manuscript. The corresponding authors had 
access to the full data set of summary results contributed by each study.
ARIC: study conception, design, management: E.B.; phenotype collection,  
data management: N.F.; sample processing and genotyping: N.F.; data  
analysis: Y.K., N.F.

Atherosclerosis Thrombosis and Vascular Biology Italian Study Group:  
study conception, design, management: L. Bernardinelli, P.M.M., P.A.M.,  
D. Ardissino; phenotype collection, data management: F.M., L. Bernandinelli; 
data analysis: L. Bernandinelli.
ADVANCE: study conception, design, management: S.P.F., D. Absher, T.Q., C.I., 
T.L.A., J.W.K.; phenotype collection, data management: S.P.F., T.Q., C.I., T.L.A., 
J.W.K.; sample processing and genotyping: D. Absher, T.Q.; data analysis: S.P.F.,  
D. Absher, T.L.A., J.W.K.

Baltimore Longitudinal Study of Aging: study conception, design, management: 
L. Ferrucci; phenotype collection, data management: L. Ferrucci; data analysis: T.T.
CHS: study conception, design, management: B.M.P., J.C.B., C.D.F.; phenotype 
collection, data management: B.M.P.; sample processing and genotyping: T.H.,  
K.D.T.; data analysis: B.M.P., E.L.T., J.C.B., B. McKnight.
DGI: study conception, design, management: L.G.; phenotype collection, data 
management: P.A.; data analysis: P.A., C. Ladenvall.
FUSION: study conception, design, management: K.L.M., M.B.; phenotype 
collection, data management: H.M.S., J.T.; data analysis: H.M.S., A.U.J.

Framingham Heart Study: study conception, design, management: R.S.V., E.J.B., 
D.L.; phenotype collection, data management: S.R.P., R.S.V., S.-J.H., E.J.B., D.L.; 
data analysis: S.R.P., S.-J.H.
GAIN: study conception, design, management: D.F.L., P.V.G.; phenotype collection, 
data management: A.R.S., D.F.L., J. Duan, J.S., P.V.G.; sample processing and 
genotyping: J. Duan, P.V.G.; data analysis: A.R.S., D.F.L., J. Duan, J.S., P.V.G.
IARC/ARCAGE/Central European GWAS: phenotype collection, data 
management: D.Z., N.S.-D., J.L., P.R., E.F., D.M., V.B., L. Foretova, V.J., S. Benhamou,  
P.L., I.H., L.R., K.K., A.A., X.C., T.V.M., L. Barzan, C.C., R.L., D.I. Conway,  
A.Z., C.M.H., P.B.; sample processing and genotyping: J.D.M., M.L., P.B.; data 
analysis: E.H.L., J.D.M.
InCHIANTI: study conception, design, management: T.M.F., J.M.G., S. Bandinelli;  
phenotype collection, data management: Y.M.; data analysis: J.R.B.P.
MIGEN: study conception, design, management: R.E., V.S., O.M., C.J.O., D. 
Altshuler; phenotype collection, data management: G.L., S.M.S., R.E., V.S., B.F.V., 
O.M., S.K., C.J.O.; sample processing and genotyping: S.K., D. Altshuler; data 
analysis: G.L., B.F.V., D. Altshuler
NESDA: study conception, design, management: B.W.P., J.H.S.; phenotype 
collection, data management: B.W.P., J.H.S., N.V.; sample processing and 
genotyping: B.W.P., J.H.S.; data analysis: N.V.
NTR: study conception, design, management: D.I.B., G.W., E.J.C.d.G.; phenotype 
collection, data management: D.I.B., G.W., E.J.C.d.G., J.M.V.; sample processing 
and genotyping: D.I.B., G.W., E.J.C.d.G.; data analysis: J.M.V.
NHS: phenotype collection, data management: S.E.H., D.J.H., P.K., F.G.; sample 
processing and genotyping: S.J.C., S.E.H., D.J.H., P.K.; data analysis: S.J.C., F.G., P.K.
Rotterdam: study conception, design, management: A.H.; phenotype collection, 
data management: H.T., A.G.U.; sample processing and genotyping: H.T., A.G.U.; 
data analysis: H.T., A.G.U., S.W., C.M.v.D.
WGHS: study conception, design, management: B.M.E., G.P., D.I. Chasman, 
P.M.R.; phenotype collection, data management: B.M.E.,  
G.P., D.I. Chasman, P.M.R.; sample processing and genotyping: G.P.,  
D.I. Chasman; data analysis: B.M.E., G.P., D.I. Chasman.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests. 

Published online at http://www.nature.com/naturegenetics/.	  
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/.

1.	 Rose, R.J., Broms, U., Korhonen, T., Dick, D.M. & Kaprio, J. Genetics of Smoking 
Behavior. in Handbook of Behavior Genetics, 1 (ed. Kim, Y.-K.) 411–432 (Springer, 
New York, 2009).

2.	 Li, M.D. Identifying susceptibility loci for nicotine dependence: 2008 update based 
on recent genome-wide linkage analyses. Hum. Genet. 123, 119–131 (2008).

3.	 Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer 
and peripheral arterial disease. Nature 452, 638–642 (2008).

4.	 Fiore, M.C., Smith, S.S., Jorenby, D.E. & Baker, T.B. The effectiveness of the 
nicotine patch for smoking cessation. A meta-analysis. J. Am. Med. Assoc. 271, 
1940–1947 (1994).

5.	 Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. 
Genomics Hum. Genet. 10, 387–406 (2009).

6.	 de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-
wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

7.	 Kraft, P., Zeggini, E. & Ioannidis, J.P.A. Replication in genome-wide association 
studies. Stat. Sci. published online, doi:10.1214/09-STS290 (2010).

8.	 Pereira, T.V., Patsopoulos, N.A., Salanti, G. & Ioannidis, J.P. Discovery properties 
of genome-wide association signals from cumulatively combined data sets. Am. J. 
Epidemiol. 170, 1197–1206 (2009).

9.	 Ioannidis, J.P., Patsopoulos, N.A. & Evangelou, E. Heterogeneity in meta-analyses 
of genome-wide association investigations. PLoS One 2, e841 (2007).

10.	Pe’er, I. et al. Evaluating and improving power in whole-genome association studies 
using fixed marker sets. Nat. Genet. 38, 663–667 (2006).

11.	Pe’er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing 
burden for genomewide association studies of nearly all common variants. Genet. 
Epidemiol. 32, 381–385 (2008).

12.	Thorgeirsson, T. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect 
smoking behavior. Nat. Genet. 42, 448–453 (2010).

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

http://www.nature.com/naturegenetics/


446	 VOLUME 42 | NUMBER 5 | MAY 2010  Nature Genetics

l e t t e r s

13.	Liu, J. et al. Meta-analysis and imputation refines the association of 15q25 with smoking 
quantity. Nat. Genet. 42, 436–440 (2010).

14.	Saccone, N.L. et al. Multiple distinct risk loci for nicotine dependence identified by 
dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. 
Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 453–466 (2009).

15.	Nakajima, M. et al. Role of human cytochrome P4502A6 in C-oxidation of nicotine. 
Drug Metab. Dispos. 24, 1212–1217 (1996).

16.	Mwenifumbo, J.C. & Tyndale, R.F. Molecular genetics of nicotine metabolism. 
Handb. Exp. Pharmacol. 192, 235–259 (2009).

17.	Ray, R., Tyndale, R.F. & Lerman, C. Nicotine dependence pharmacogenetics: role of genetic 
variation in nicotine-metabolizing enzymes. J. Neurogenet. 23, 252–261 (2009).

18.	Zhang, L.I. & Poo, M.M. Electrical activity and development of neural circuits.  
Nat. Neurosci. 4 Suppl, 1207–1214 (2001).

19.	Levin, E.D., McClernon, F.J. & Rezvani, A.H. Nicotinic effects on cognitive function: 
behavioral characterization, pharmacological specification, and anatomic localization. 
Psychopharmacology (Berl.) 184, 523–539 (2006).

20.	Gratacòs, M. et al. Brain-derived neurotrophic factor Val66Met and psychiatric 
disorders: meta-analysis of case-control studies confirm association to substance-
related disorders, eating disorders, and schizophrenia. Biol. Psychiatry 61,  
911–922 (2007).

21.	Thorleifsson, G. et al. Genome-wide association yields new sequence variants at 
seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 
(2009).

22.	Zabetian, C.P. et al. A quantitative-trait analysis of human plasma-dopamine beta-
hydroxylase activity: evidence for a major functional polymorphism at the DBH 
locus. Am. J. Hum. Genet. 68, 515–522 (2001).

23.	Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide 
association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 
9362–9367 (2009).

24.	Keskitalo, K. et al. Association of serum cotinine level with a cluster of three 
nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 
15. Hum. Mol. Genet. 18, 4007–4012 (2009).

Helena Furberg1,2, YunJung Kim1, Jennifer Dackor1, Eric Boerwinkle3, Nora Franceschini4, Diego Ardissino5,  
Luisa Bernardinelli6,7, Pier M Mannucci8, Francesco Mauri9, Piera A Merlini9, Devin Absher10,  
Themistocles L Assimes11, Stephen P Fortmann12, Carlos Iribarren13, Joshua W Knowles11,  
Thomas Quertermous11, Luigi Ferrucci14, Toshiko Tanaka15, Joshua C Bis16,17, Curt D Furberg18,  
Talin Haritunians19, Barbara McKnight16,20, Bruce M Psaty16,17,21,22, Kent D Taylor19, Evan L Thacker16,23,  
Peter Almgren24, Leif Groop24, Claes Ladenvall24, Michael Boehnke25, Anne U Jackson25, Karen L Mohlke1,2, 
Heather M Stringham25, Jaakko Tuomilehto26–28, Emelia J Benjamin29,30, Shih-Jen Hwang31, Daniel Levy32,  
Sarah Rosner Preis31, Ramachandran S Vasan29,32, Jubao Duan33, Pablo V Gejman33, Douglas F Levinson34,  
Alan R Sanders33, Jianxin Shi35, Esther H Lips36, James D McKay36, Antonio Agudo37, Luigi Barzan38,  
Vladimir Bencko39, Simone Benhamou40,41, Xavier Castellsagué37, Cristina Canova42, David I Conway43,  
Eleonora Fabianova44, Lenka Foretova45, Vladimir Janout46, Claire M Healy47, Ivana Holcátová39,  
Kristina Kjaerheim48, Pagona Lagiou49, Jolanta Lissowska50, Ray Lowry51, Tatiana V Macfarlane52, Dana Mates53, 
Lorenzo Richiardi54, Peter Rudnai55, Neonilia Szeszenia-Dabrowska56, David Zaridze57, Ariana Znaor58,  
Mark Lathrop59,60, Paul Brennan36, Stefania Bandinelli61, Timothy M Frayling62, Jack M Guralnik63,  
Yuri Milaneschi64, John R B Perry62, David Altshuler65–70, Roberto Elosua71, Sek Kathiresan65,68,72, Gavin Lucas71, 
Olle Melander73, Christopher J O’Donnell74, Veikko Salomaa75, Stephen M Schwartz16, Benjamin F Voight76, 
Brenda W Penninx77,78, Johannes H Smit77,78, Nicole Vogelzangs77,78, Dorret I Boomsma79, Eco J C de Geus79, 
Jacqueline M Vink79, Gonneke Willemsen79, Stephen J Chanock80, Fangyi Gu81, Susan E Hankinson82,  
David J Hunter81, Albert Hofman83, Henning Tiemeier83,84, Andre G Uitterlinden83,85, Cornelia M van Duijn83,86, 
Stefan Walter83,87, Daniel I Chasman88, Brendan M Everett88,89, Guillaume Paré88, Paul M Ridker88,89,  
Ming D Li90, Hermine H Maes91,92, Janet Audrain-McGovern93, Danielle Posthuma94,95, Laura M Thornton96, 
Caryn Lerman93,97, Jaakko Kaprio26,75,98, Jed E Rose99, John P A Ioannidis100–102, Peter Kraft81, Dan-Yu Lin103 & 
Patrick F Sullivan1,2

1Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. 2University of North Carolina Lineberger Comprehensive Cancer Center, 
University of North Carolina, Chapel Hill, North Carolina, USA. 3Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science 
Center, Houston, Texas, USA. 4Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA. 5Division of Cardiology, Azienda 
Ospedaliero-Universitaria di Parma, Parma, Italy. 6Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK. 7Department  
of Applied Health Sciences, University of Pavia, Pavia, Italy. 8Department of Internal Medicine and Medical Specialties, Fondazione Istituto di Ricovero e Cura a 
Carattere Scientifico, Ospedale Maggiore, Mangiagalli e Regina Elena, University of Milan, Milan, Italy. 9Department of Cardiology, Azienda Ospedaliera Niguarda Ca’ 
Granda, Milan, Italy. 10HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA. 11Cardiovascular Medicine, Stanford University, Stanford, California, USA. 
12Stanford Prevention Research Center, Stanford University, Stanford, California, USA. 13Kaiser Permanente Northern California Division of Research, Oakland, 
California, USA. 14National Institute on Aging, Baltimore, Maryland, USA. 15Medstart Research Institute, National Institute on Aging, Baltimore, Maryland, USA. 
16Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA. 17Department of Medicine, University of Washington, Seattle, 
Washington, USA. 18Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA. 19Medical Genetics Institute, 
Cedars-Sinai Medical Center, Los Angeles, California, USA. 20Department of Biostatistics, University of Washington, Seattle, Washington, USA. 21Department of 
Epidemiology and Health Services, University of Washington, Seattle, Washington, USA. 22Group Health Research Institute, Seattle, Washington, USA. 23Department 
of Epidemiology, University of Washington, Seattle, Washington, USA. 24Department of Clinical Sciences, Diabetes and Endocrinology Unit, Lund University, Malmö, 
Sweden. 25Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA. 26Hjelt Institute, Department of Public Health, 
University of Helsinki, Helsinki, Finland. 27Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland. 28Finland South Ostrobothnia 
Central Hospital, Seinäjoki, Finland. 29Boston University School of Medicine, Boston, Massachusetts, USA. 30Boston University School of Public Health, Boston, 
Massachusetts, USA. 31Center for Population Studies, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA. 32Department of Medicine, Sections of 
Preventive Medicine and Cardiology, Boston University School of Medicine, Boston, Massachusetts, USA. 33Center for Psychiatric Genetics, NorthShore University 
HealthSystem Research Institute, Evanston, Illinois, USA. 34Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 
35Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 36International Agency for Research on 
Cancer (IARC), Lyon, France. 37Institut Català d’Oncologia, Barcelona, Spain. 38General Hospital, Pordenone, Italy. 39Institute of Hygiene and Epidemiology,  

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Nature Genetics  VOLUME 42 | NUMBER 5 | MAY 2010	 447

l e t t e r s

First Faculty of Medicine, Charles University, Prague, Czech Republic. 40Institut National de la santé et de la Recherche Medicalé (INSERM) U794, Paris, France. 
41Institut Gustave Roussy, Villejuif, France. 42Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 43University of Glasgow 
Medical Faculty Dental School, Glasgow, UK. 44Specialized Institute of Hygiene and Epidemiology, Banska Bystrica, Slovakia. 45Department of Cancer Epidemiology 
and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 46Palacky University, Olomouc, Czech Republic. 47Trinity College School of Dental Science, 
Dublin, Ireland. 48Cancer Registry of Norway, Oslo, Norway. 49University of Athens School of Medicine, Athens, Greece. 50Department of Cancer Epidemiology and 
Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 51University of Newcastle Dental School, Newcastle, UK. 52University 
of Aberdeen School of Medicine, Aberdeen, UK. 53Institute of Public Health, Bucharest, Romania. 54Center for Experimental Research and Medical Studies, 
University of Turin, Turin, Italy. 55National Institute of Environmental Health, Budapest, Hungary. 56Department of Epidemiology, Institute of Occupational Medicine, 
Lodz, Poland. 57Institute of Carcinogenesis, Cancer Research Centre, Moscow, Russia. 58Croatian National Cancer Registry, Zagreb, Croatia. 59Centre National de 
Genotypage, Institut Genomique, Comissariat à l’énergie Atomique, Evry, France. 60Fondation Jean Dausset-Centre d‘Étude du Polymorphisme Humain (CEPH), Paris, 
France. 61Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy. 62Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 
63Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 64Tuscany Health Regional Agency, Florence, Italy. 
65Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 66Department of Molecular Biology, Massachusetts General 
Hospital, Boston, Massachusetts, USA. 67Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 68Center for Human Genetics Research, 
Massachusetts General Hospital, Boston, Massachusetts, USA. 69Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 70Department of 
Medicine, Harvard Medical School, Boston, Massachusetts, USA. 71Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacio Medica, Barcelona, 
Spain. 72Harvard Medical School, Boston, Massachusetts, USA. 73Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital 
Malmö, Lund University, Malmö, Sweden. 74National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA. 75National 
Institute for Health and Welfare (THL), Helsinki, Finland. 76Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of 
Technology, Cambridge, Massachusetts, USA. 77EMGO Institute, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. 78Department of Psychiatry, VU 
University Medical Center, Amsterdam, The Netherlands. 79Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 80Division of Cancer 
Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 81Program in Molecular and Genetic Epidemiology, Department of Epidemiology, 
Harvard University, Boston, Massachusetts, USA. 82Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 
Boston, Massachusetts, USA. 83Department of Epidemiology, Erasmus Medical Center, Member of the Netherlands Consortium on Healthy Aging, Rotterdam,  
The Netherlands. 84Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands. 85Department of Internal Medicine, Erasmus 
Medical Center, Rotterdam, The Netherlands. 86Centre for Medical Systems Biology, Erasmus Medical Center, Rotterdam, The Netherlands. 87Department of Public 
Health, Erasmus Medical Center, Rotterdam, The Netherlands. 88Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard 
Medical School, Boston, Massachusetts, USA. 89Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, Massachusetts, USA. 90Department of Psychiatry and Neurobehavioural Sciences, University of Virginia, Charlottesville, Virginia, USA. 91Virginia 
Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 92Massey Cancer Center, Virginia Commonwealth 
University, Richmond, Virginia, USA. 93Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 94Department of Functional Genomics, 
VU Amsterdam, Amsterdam, The Netherlands. 95Department of Medical Genomics, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 
96Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 97Abramson Cancer Center, University of Pennsylvania, Philadelphia, 
Pennsylvania, USA. 98Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. 99Department of Psychiatry and Behavioral Sciences, Duke University 
Medical Center, Durham, North Carolina, USA. 100Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. 101Tufts 
Clinical and Translational Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA. 102Center for Genetic Epidemiology and Modeling, 
Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA. 103Department of Biostatistics, University of North 
Carolina, Chapel Hill, North Carolina, USA. Correspondence should be addressed to H.F. (helena_furberg@med.unc.edu) or P.F.S. (pfsulliv@med.unc.edu).

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Nature Genetics doi:10.1038/ng.571

ONLINE METHODS
Phenotype harmonization and selection. We spent substantial effort harmo
nizing the smoking phenotypes across studies. Briefly, first, we created the 
Phenotype Working Group (PWG) to address these crucial issues. Second, we 
obtained English versions of the exact smoking-related questions, responses 
and summary data from each study. These were entered into a master database 
and examined for completeness, outliers and distributions of all smoking vari-
ables. Third, we produced a list of candidate smoking phenotypes available from 
each study. Fourth, as has been recommended25, we calculated heritabilities and 
intercorrelations between the candidate smoking variables using data from the 
Swedish Twin Registry26,27 and the Finnish Twin Cohort Study28,29, two popula-
tion-based twin registries containing extensive smoking data. Finally, the PWG 
integrated all these data to derive the operational phenotypes to be used in the 
meta-analyses.

The central criteria were that a candidate phenotype had to (i) be exactly 
or nearly exactly assessed in nearly all studies, (ii) have distributional proper-
ties similar across studies and conducive to meta-analyses (for example, suf-
ficiently prevalent to allow reasonable statistical power), (iii) have reasonable 
heritability so that genetic analysis was suitable and (iv) have face validity to 
senior researchers in the field.

These analyses yielded unexpected results. For example, the Fagerström Test 
for Nicotine Dependence is commonly used in the field, as either a continu-
ous or dichotomized variable. However, item-level twin analyses showed it to 
be a composite measure of some items with high heritability (for example, 
CPD) but some items with heritability near zero and with important common 
environmental effects (unpublished data).

We examined three elements of smoking behavior: smoking initiation, 
smoking heaviness and smoking cessation. Smoking initiation was assessed 
in two ways: by contrasting individuals who reported having ever versus never 
smoked regularly, and age of smoking initiation.

Ever versus never regular smokers. Regular smokers were defined as those 
who reported having smoked ≥100 cigarettes during their lifetime and never 
regular smokers were defined as those who reported having smoked between 
0 and 99 cigarettes during their lifetime. This definition is consistent with the 
Centers for Disease Control classification of “ever smoker”30.

Age of smoking initiation. Age of smoking initiation was the reported age 
the participant started smoking cigarettes. Some studies collected the age at 
which the participant first tried smoking, whereas others collected the age 
the participant began smoking regularly. As both variables (age first tried and 
age began smoking regularly) were available in the Swedish Twin Registry, 
we calculated the univariate heritabilities for each variable and the genetic 
correlation between them. We studied only females due to the confounding 
effects of prevalent smokeless tobacco (‘snus’) use in Swedish males31. The 
heritabilities for the two variables were similar and the genetic correlation 
was 0.97, which suggested a great deal of overlap in the genetic contributors to 
each trait and supported the idea of using either value in a general assessment 
of age of smoking initiation in the meta-analysis.

Cigarettes per day. Smoking quantity was assessed as the CPD value. Some 
studies collected the average CPD, whereas other studies collected the maximum 
CPD. Longitudinal data from the Finnish Twin Cohort Study revealed a high 
correlation (>0.71) between these variables over time and supported the idea of 
using either value in a general assessment of CPD in the meta-analysis.

Smoking cessation. Smoking cessation contrasted former versus current 
smokers, where current smokers reported that they smoked at the time of the 
interview and former smokers had quit smoking at least 1 year before the inter-
view. As relapse to smoking is highest within the first year of quitting smoking, 
smokers who had quit smoking for less than 1 year at interview were excluded  
from the analysis. Descriptive characteristics of the 16 studies participating in 
the TAG Consortium are presented in Table 1.

Genotyping and imputation. The 16 TAG studies performed their own geno
typing, quality control and imputation (Supplementary Tables 2 and 3). Studies 
ranged in size from n = 585 to n = 22,037 and were genotyped on six different  

GWAS platforms. Each study applied its own set of quality control filters, 
which were comparable among studies. Each study excluded SNPs with a call 
rate <89%, <1% minor allele frequency or departure from Hardy-Weinberg 
equilibrium. Subjects were excluded for non-European ancestry using PLINK 
multidimensional scaling32, STRUCTURE33 or EigenSoft principal component 
analysis34. In addition, subjects were excluded for <90% call rate, excess auto-
somal heterozygosity, mismatch between reported and genetically determined 
sex or first- or second-degree relatedness. Genotype imputation5 was used to 
harmonize genotyping across different studies, as well as to infer genotypes for 
SNPs that were not genotyped directly on the platforms but that were genotyped 
on the HapMap-2 CEU samples32. SNP imputation was performed using either 
MACH35, IMPUTE36 or BIMBAM10 v0.9937 and resulted in a common set of 
~2.5 million SNPs after removal of SNPs with minor allele frequency <1% or 
poor imputation performance (Supplementary Table 3). Imputed allele dosages 
for each SNP (that is, the number of copies of the minor allele) were tested for 
association with each smoking phenotype using an additive model.

Study-specific GWAS analysis. Each study conducted uniform cross- 
sectional analyses for each smoking phenotype using an additive genetic model. 
Linear regression was used for quantitative traits (CPD and age of smoking 
initiation), and logistic regression was used for discrete traits (ever versus 
never smokers and former versus current smokers). Age of smoking initiation 
was transformed using the natural logarithm owing to heavy tails and non- 
normality. The dependent variables were the smoking phenotypes and the 
independent variables were the imputed allele dosage for a SNP plus an indica-
tor variable for whether a subject was classified as a case in the primary study. If 
the primary study was case-control in design and the phenotype being studied 
was known to be associated with smoking, we adjusted for case status to reduce 
potential confounding38. Individual study results were corrected for residual 
inflation of the test statistic using genomic control39.

Due to the known differences in the prevalences of the smoking phenotypes 
between the two sexes40, all TAG Consortium analyses were run separately for 
males and females. We then tested whether associations between ~2.5 million 
SNPs and each smoking phenotype differed by sex by meta-analyzing males 
and females separately and performing a t-test of their parameter estimates for 
each SNP using a significance threshold of P < 5 × 10−8 (ref. 41).

Meta-analysis of GWAS results. We performed fixed-effect meta-analysis for 
each smoking phenotype by computing pooled inverse-variance–weighted  
β coefficients, standard errors and z-scores for each SNP6. Fixed effects analyses 
were chosen because they are regarded as the most efficient method for discovery  
in the GWAS setting7,8. Meta-analyses were performed using METAL (see 
URLs). Heterogeneity across studies was investigated using the I2 statistic9. 
We used a significance threshold of P < 5 × 10−8 (refs. 10,11).

In silico follow-up of top regions. To validate potential associations identified 
in the TAG Consortium analyses, we partnered with two other smoking GWAS 
consortia and conducted a reciprocal exchange of the 15 most significant 
genetic regions for each smoking phenotype in each study12,13. Regions were 
defined by SNPs with P values <10−4 that clustered together (r2 > 0.5 and/or 
locations <50 kb apart). The ENGAGE Smoking GWAS Consortium consisted 
of 34,762 individuals and the Ox-GSK Smoking GWAS Consortium consisted 
of 34,226 individuals, making the final sample size across the three consortia 
n = 143,023. Studies that participated in multiple consortia were only repre-
sented once in the final analyses.

URLs. Genetic Computing Cluster, http://www.geneticcluster.org/; METAL, 
http://www.sph.umich.edu/csg/abecasis/metal/.
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