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Introduction 
Genome-wide association (GWA) studies have a history of mixed 

successes. Although the investigation of numerous phenotypes has led 
to the detection of relevant single-nucleotide polymorphisms (SNPs), 
results of GWA studies fall short in explaining the genetic variance 
in phenotypes that is expected from twin and family studies [1-3]. 
Detection is challenging due to the fact that most effects are expected 
to be small. As Park et al. [4] have shown recently, the distribution of 
effect sizes might be best described by a mixture of two exponentials, 
which implies that the number of SNPs with small effect sizes is even 
higher than expected under a simple exponential relation between 
numbers of SNPs and effect size [4,5].

Furthermore, in a typical GWA study, a univariate phenotype is 
regressed on each SNP separately. Although simple statistical models 
are convenient in terms of computational ease and interpretability, 
these advantages are countered by potential loss of information. Most 
commonly only the additive genetic model is tested, and only few (if 
any) covariate main effects are included to maintain computational 
feasibility. This approach decreases the power to detect recessive or 
dominant effects, and excludes exploration of SNP-SNP and SNP-
covariate interactions [6-10]. It is well-known that inclusion of relevant 
covariates in a regression analysis reduces error variance and thereby 
increases power. Furthermore, it might be of interest to include 
measures of comorbid disorders in GWAS of psychiatric disorders 
in order to assess genetic effects unique to the disorder, or to include 
proxies of environmental variables in order to assess conditional effects 
[11]. However, it is desirable to explore these effects without the need of 
formulating a specific model (e.g., additive and/or interaction effects).

Genome-wide detection studies might benefit from a two-step 
approach where the first step consists of substantially reducing the 
number of SNPs such that more complex models, or models permitting 

significance testing, can be applied in a second step. Desiderata for a first 
step filtering method include [1] methods have to be computationally 
attractive when applied to large, imputed data sets while providing 
sufficient sensitivity to detect small effects, [2] methods used in this 
step should be agnostic with respect to the genetic model relating a 
SNP to the phenotype, and [3] should permit the inclusion of multiple 
covariates, again preferably without the need to a priori specify the 
interrelations between covariates, or between covariates and SNPs. If 
the two steps, SNP selection and multivariate analysis with the selected 
SNPs, are carried out in separate samples, then the significance level in 
the second step depends on the number of selected SNPs corrected for 
the fact that tests are correlated [12,13]. A substantial reduction of the 
number of SNPs opens the door to fitting models in the second step 
that can be more complex both on the phenotype side (e.g., models 
that take into account interrelations between questionnaire items or 
symptom endorsements), and/or on the genotype side (e.g., interaction 
terms).

Statistical learning methods

Statistical learning (SL) methods are designed to find important 
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Abstract
Typically, genome-wide association studies consist of regressing the phenotype on each SNP separately using an 

additive genetic model. Although statistical models for recessive, dominant, SNP-SNP, or SNP-environment interactions 
exist, the testing burden makes an evaluation of all possible effects impractical for genome-wide data.

We advocate a two-step approach where the first step consists of a filter that is sensitive to different types of SNP 
main and interactions effects. The aim is to substantially reduce the number of SNPs such that more specific modeling 
becomes feasible in a second step. We provide an evaluation of a statistical learning method called “gradient boosting 
machine” (GBM) that can be used as a filter. GBM does not require an a priori specification of a genetic model, and 
permits inclusion of large numbers of covariates. GBM can therefore be used to explore multiple GxE interactions, which 
would not be feasible within the parametric framework used in GWAS. We show in a simulation that GBM performs well 
even under conditions favorable to the standard additive regression model commonly used in GWAS, and is sensitive 
to the detection of interaction effects even if one of the interacting variables has a zero main effect. The latter would not 
be detected in GWAS. Our evaluation is accompanied by an analysis of empirical data concerning hair morphology. We 
estimate the phenotypic variance explained by increasing numbers of highest ranked SNPs, and show that it is sufficient 
to select 10K-20K SNPs in the first step of a two-step approach.
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predictors in large data sets, and can be applied in cases where the 
number of predictors is much larger than the number of subjects. 
Different learning methods such as Random Forests and Bayesian 
Lasso have recently been applied to genome-wide data [14-19].

The three main differences between standard GWA studies and 
SL approaches are (1) that in the regression model commonly used 
in GWAS the association between a SNP and the phenotype is tested 
separately for each SNP whereas in SL all SNPs are analysed jointly,(2) 
in standard GWAS a specific genetic model is specified a priori that 
relates a SNP to the phenotype (e.g., additive, dominant, recessive) 
whereas SL models are built iteratively in a data driven fashion, and (3) 
the regression model used in standard GWAS is limited to SNP main 
effects whereas SL methods can capture SNP-SNP and SNP-covariate 
interactions.

We propose to use a statistical learning method called Gradient 
Boosting Machine (GBM) as the first step filter. The focus on the 
current paper is to provide an evaluation of GBM. GBM is a statistical 
learning method that fulfills the desiderata of a SNP selection method 
listed above. Previous research has shown that GBM performs as well 
or better than Random Forests (RF), a more well-known learning 
method [20]. We choose GBM as it has a much lower computational 
burden compared to RF, and is therefore more feasible in a genome-
wide context. In pilot simulations RF took up to 10 times more time 
to complete without providing better detection rates in any of the 
settings. Different boosting algorithms have been proposed that utilize 
different optimization strategies [20-23]. In the current study we apply 
GBM which is implemented in the freely available R package gbm [24]. 
GBM builds a predictive model iteratively by adding “weak learners” 
[21-23]. The “weak learners” can be small regression or classification 
trees that are grown to a user- specified, usually small, number of splits. 
Figure 1 illustrates such a small regression tree. At each split a single 
SNP is selected to split the sample into two parts called “daughter 
nodes”. Given that SNPs can take values 0, 1, and 2, each SNP has two 
possible split points. The criterion to select a SNP and its split point 
is to achieve the best increase in homogeneity in the daughter nodes. 
At each iteration of the GBM algorithm, such a small tree is added 
to the model as a predictor, followed by searching for the next tree 
that optimally reduces misclassification (case/control phenotype) or 
residual (continuous phenotype). If trees consist of only a single split, 

then the resulting model is limited to main effects. Models where trees 
are grown to k splits can capture k-order interactions. All variables are 
considered at each step of the tree building algorithm in the search for 
the “best predictor”, that is, the variable that best increases homogeneity 
in the daughter nodes. If trees are grown to k splits, then the inclusion 
of covariates (e.g., environmental variables) results in an automatic 
search for conditional effects of SNPs and covariates.

GBM can be used to rank-order SNPs according to their cumulative 
predictive performance. The variable importance measure (VIM) used 
in GBM is similar to the Gini importance commonly used in Random 
Forests [25] VIMs for Random Forest have been reported to be biased 
for SNPs in LD [26-29]. Our own work showed a similar bias for the 
VIM used for GBM [30]. To correct for this bias, we have developed a 
sliding window algorithm that creates a large number of overlapping 
subsets of SNPs from a genome-wide data set [30]. For this study, the 
correlation between SNPs within subsets was set to not exceed 0.1, 
meaning that SNPs in higher LD were assigned to different subsets. The 
subsets were analyzed in parallel on a grid, followed by an aggregation 
of results over the subsets. The algorithm and its performance have 
been described in Walters et al. [30]. In addition to removing bias 
in importance measures due to LD, the algorithm makes statistical 
learning methods such as GBM computationally more feasible for 
genome-wide analyses. For instance, in the empirical analysis described 
below individual subsets comprise on average only 25K SNPs, which can 
be analyzed in approximately 3.5 hours. The computation time of the 
complete analysis depends on the number of available nodes in the grid. 

Evaluation of GBM

The main goal of the study is to evaluate the performance of GBM 
as a filter. We compare the sensitivity of ranking SNPs by p-value 
resulting from fitting the standard additive GWA model to Manolio 
et al. [1] ranking SNPs by p value resulting from a model that takes 
into account possible recessive and dominant effects [7], and Eichler et 
al. [2] to ranking SNPs using GBM. The comparison is carried out for 
simulated additive effects as well as interaction effects.

Empirical study of hair morphology

Previous GWA studies of hair morphology have shown large as 
well as small and suggestive effects, making hair morphology a highly 
suitable phenotype for a comparison of GBM and standard GWA 
using empirical data. Hair curliness in Europeans varies widely, with 
45% of northern populations having straight hair compared to 40% 
with wavy and 15% with curly hair [31]. A previous GWAS showed 
a robust effect of four single nucleotide polymorphisms (SNPs, 
rs17646946, rs11803731, rs4845418, rs12130862) in high LD (r2>.95) 
on chromosome 1 that explained approximately 6% of the variance of 
a normally distributed liability underlying the observed 3-category hair 
curliness (straight, wavy, curly) [32]. This large effect was replicated in a 
second adult and an adolescent family sample, and it was also found in 
an independent study examining a range of different phenotypes [33] 
Rs11803731 is located in the TCHH region (1q21). TCHH is expressed 
at high levels in the hair follicle, and mutations in rs11803731 might 
be related to structural variation of the trichohyalin protein [34-37]. 
In addition to the signal in the TCHH region, rs7349332 located in an 
intron of WNT10A on chromosome 2 (2q35) reached genome-wide 
significance in the study by Eriksson et al. [33] and was reported as a 
suggestive effect in Medland et al. [32] (p-value 1.36×10-6). Mutations 
in WNT10A are related to odonto-onycho-dermal dysplasia, 
characterized by symptoms including dry and misformed hair.

sample

Snp A = 0 Snp A > 0

sub 1 sub 2

Snp B <= 1 Snp B = 2

sub 1.1 sub 1.2

Figure 1: Results of GBM and additive GWA methods applied to hair morphology. 
At each split the sample is divided into subgroups based on an optimal cut point 
on the SNP with the best predictive performance.
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Estimating a cutoff to select top ranked SNPs

We illustrate the SNP selection step using the empirical data of hair 
morphology by comparing GBM to GWA. To obtain an indication of 
how many SNPs to select in the first step, we use the program Genome-
Wide Complex Analysis (GCTA) to estimate the phenotype variance 
that is explained by increasing percentiles of ranked SNPs compared 
to using all SNPs [38]. Again, we compare results based on rankings 
resulting from GBM and the standard GWA analysis.

Materials and Methods
Simulation study 

Parametric models such as the regression model commonly 
used in GWA studies are unlikely to be outperformed by alternative 
methods if the parametric model is the correct model for the data. The 
weakness of fitting an a priori specified model lies in the potential for 
misspecifications and omissions of effects (e.g. recessive, dominant, 
SNP- SNP, and/or SNP-environment effects). However, since twin 
and family studies indicate that for many phenotypes a large part of 
the genetic effects are in fact additive (but see [10]), filtering methods 
aiming at reducing the number of SNPs should not underperform 
a selection based on ranking SNPs by p-value resulting from a 
standard GWA approach. Therefore, our simulations include data 
generated under the best-case scenario for standard GWA methods, 
as well as settings that we expect GBM to outperform other methods. 
The simulation consisted of two parts. For both parts we embedded 
simulated SNPs with specified minor allele frequency and effect size 
in a set of empirical genetic data consisting of 3000 SNPs observed 
in N=2000 subjects. The advantage of embedding simulated SNPs in 
empirical genetic noise is that the linkage disequilibrium (LD) structure 
is not simulated but observed in real data, while characteristics of the 
simulated SNPs are fully controlled. The first part of the simulation 
aimed at evaluating the performance of GBM to detect additive genetic 
effects. Here, data were generated under the additive genetic model that 
is commonly fitted in a GWAS. One hundred phenotype data sets were 
generated for all scenarios. For the first part of the simulation only main 
effects were evaluated. A simulated SNP explained on average either 
0.15%, 0.2%, or 0.3% of the phenotypic variance. The SNP had either 
MAF=0.5, or MAF=0.1. For the second part of the simulation, the 
data contained interaction effects. We included 2 different scenarios: 
(1) two SNPs interact, have MAF=0.5, and both main effects and the 
interaction explain 0.3% of the variance, (2) same as (1), but one of the 
SNPs had a zero main effect. In both parts of the simulation, the data 
sets were analyzed with three methods, (1) GWA using the standard 
additive genetic model, which provides p-values for additive effects, 
(2) GWA using Robust SNP, which provides p-values that account for 
additive as well as potential recessive or dominant effects [7], and (3) 
GBM, which provides variable importance rankings that account for 
additive, recessive, dominant, and interaction effects. The performance 
of Robust SNP is described by the developers [7], and is included here 
as an intermediate option to illustrate the effect of permitting additive, 
recessive, and dominant effects on statistical power.

The main meta-parameters of GBM were chosen based on cross 
validation that was carried out in a small number of cells of the 
simulation design. The specific settings were (1) number of trees=3000, 
interaction depth=5, and shrinkage=0.0001. To evaluate simulation 
results, SNPs were ranked according to p-value (methods 1 and 2), or 
VIM (method 3). We then calculated the median rank of the simulated 
SNPs across data sets, and transform the median ranks into percentiles.

Empirical example 

The main sample in the empirical illustration consisted of unrelated 
individuals selected at random from two adult family samples that 
comprised a total of 3894 individuals from 2447 families. Genotype 
data were collected in several waves on different platforms, requiring 
imputation to combine samples. The data collection, genotyping, 
and imputation are described in Medland et al. [32]. Quality control 
(QC) was carried out using Plink closely following steps and criteria 
described in Anderson et al. [40] Subjects were removed if expected 
proportion of alleles shared IBS was >0.185, and if the proportion of 
missing alleles was >0.01. The criteria for excluding SNPs were MAF 
<0.01, SNP missingness proportion >0.01, and deviation from Hardy-
Weinberg Equilibrium with p-value <10-6. In addition, following 
the example of the International Schizophrenia Consortium [41], 
we performed a haplotype-based test for missingness of SNPs. We 
excluded any SNP with missingness that was significantly predicted by 
the two neighboring SNPs on either side using p<10-10. QC resulted in 
selecting 2,359,291 SNPs and N=2235 subjects for our main analyses.

Results
Simulation results

In the first part of the simulation, we applied GBM, Robust SNP, 
and a standard additive GWA model to a simulated SNP embedded in 
3000 empirical SNPs unassociated with the phenotype. The simulated 
SNPs explained 0.15, 0.20, or 0.30% of the phenotypic variance, 
respectively, and had either MAF=0.5 or MAF=0.1.

Table 1 shows the results of the first part of the simulation that 
evaluated detection of main effects. Results are presented as median 
rankings of the three simulated SNPs across simulation repetitions. 
Note that the phenotype data were generated under the additive GWAS 
model. As can be seen in Table 1, there are no differences between the 
three methods when MAF=0.5, showing that even under conditions 
that are optimal for additive GWAS, the GBM does not underperform. 

MAF=0.5 MAF=0.1
0.15% 0.20% 0.30% 0.15% 0.20% 0.30%

GBM 5.6 (8.0) 3.6 (5.2) 1.6 (2.4) 19.6 (28.2) 9.8 (14.2) 2.0 (2.9)
RobustSNP 6.7 (9.4) 4.1 (6.1) 1.7 (2.4) 13.2 (18.9) 4.9 (7.2) 1.2 (1.8)
GWA 5.2 (7.6) 5.2 (7.7) 1.6 (2.3) 11.0 (14.3) 3.2 (4.8) 1.1 (1.5)

Note: Results are presented as percentile median ranks. For instance, averaged 
over Monte Carlo replications, 50% of the time a SNP explaining 0.15% of 
phenotypic variance is ranked within the 5.6 percentile. A robust measure of 
variability (Median Absolute Deviation, MAD) is given between brackets 
Table 1: Results of three simulated SNPs using GBM, Robust SNP, and a standard 
additive GWA model.

Scenario1
0.30/0.30

Scenario2
0.30/0

SNP 1 SNP 2 SNP 1 SNP 2
GBM 1.3 (1.9) 0.8 (1.2) 1.1 (1.7) 19.0 (19.9)
RobustSNP 3.0 (4.2) 2.2 (3.3) 1.1 (1.6) 56.9 (33.7)
AdditiveGWA 1.7 (2.5) 1.8 (2.7) 0.8 (1.1) 52.1 (35.3)

Note: Results are presented as percentile median ranks of detecting SNP. A 
robust measure of variability (Median Absolute Deviation, MAD) is given between 
brackets. SNP1 always explains 0.3% of the variance, SNP2 either explains 
0.3% (scenario1) or zero% (scenario2). Using GBM, a SNP with a zero main 
effect (SNP2, scenario2) is within the19th percentile in 50% of the Monte Carlo 
replications. Robust SNP and additive GWAS perform (as expected) only at 
chance level (i.e., median percentile rank around 50). 
Table 2: Results of two interacting simulated SNPs using GBM, Robust SNP, and 
a standard additive GWA model.
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For MAF=0.1, there is trend for a decrease in performance of GBM as 
effect size decreases. Methods described in Walters et al. reduce the 
effect of MAF on GBM performance, and are currently investigated in 
a separate study.

The second part of the simulation demonstrates the advantage 
of GBM in the presence of SNP-SNP interaction effects (Table 2). 
The results demonstrate that GBM can detect SNPs with zero main 
effects in case the interacting variable has a small main effect. The zero 
effect SNP had a median rank within the 19th percentile when using 
GBM. As expected, fitting an additive GWA model resulted in chance 
detection for this SNP. Although in our simulation the interacting 
variable had the characteristics of a SNP (i.e., a random variable valued 
{0,1,2}, with MAF 0.5), these results can be generalized to interactions 
between SNPs with zero main effect and covariates such as for instance 
an items or scales measuring comorbid disorders, or proxies of 
environmental variables. Our simulation shows that GBM can detect 
interacting variables even if they have zero main effect as long as one 
of the interacting variables has a small main effect. Clearly, such effects 
can only be detected in a standard regression if they are explicitly 
included in the tested model, which is not feasible when exploring a 
larger number of covariates in a genome-wide analysis.

Empirical illustration

In the empirical illustration using the hair morphology data, we 
compare top ranked SNPs resulting from additive GWAS and GBM. 
To address the question what proportion of SNPs should be selected in 
a first step, we estimated the variance in hair curliness that is explained 
by increasing proportions of SNPs ranked by VIM compared to 
SNPs ranked by p-value. Using an additive genetic model in a GWAS 
reproduced previous results concerning rs17646946, rs11803731, 
rs4845418, and rs12130862 on chromosome 1. The four SNPs reached 
genome-wide significance with p-values 3.47×10-13, 2.97×10-13, 
1.63×10-11, and 1.24×10-11, respectively. No other SNP passed the 
threshold of 5×10-8.

We applied GBM to the hair curliness data using settings that 
had cross validated adequately in previous analyses of empirical and 
simulated data of comparable size. The settings are (1) number of trees 
in prediction model=3000, (2) shrinkage=0.001, and (3) bag fraction=.5, 
and (4) interaction depth=1. GBM successfully reproduced the GWAS 
results of the large effects of rs17646946, rs11803731, rs4845418, and 
rs12130862 in the 1q21 region on chromosome 1. These four SNPs had 
the highest VIMs. Rs7349332 located in WNT10A on chromosome 2, 
which reached genome-wide significance in the study by Eriksson et al. 
[33] and was reported as a suggestive effect in Medland et al. [32] was 
ranked in the upper 0.012 percentile in the GBM results. The ranking 
for this SNP was 284.

The GBM results deviated from the additive genetic model results 
concerning the second largest signal detected with GBM (Figure 2). 
GBM implicated several SNPs in high LD on chromosome 9. These 
SNPs were ranked 5th-9th, that is, within the 0.000375th percentile. 
To investigate whether the divergence between the additive genetic 
model and GBM regarding the signal on chromosome 9 was due to 
limiting the GWAS to an additive model, we tested rs2784081, which 
had the highest rank, in a dominant and a recessive genetic model. 
The recessive model resulted in β=0.89 (se=0.18), with associated 
p-value 5.89×10-07, whereas the dominant model was not significant 
(p-value 0.068). The additive model tested in the GWAS had a 
p-value of 5.08×10-4. Rs2784081 tags the tumor necrosis factor 
receptor-associated factor 2 gene, TRAF2, located at 9q34. TRAF2 
is mainly known for its role in regulating programmed cell death 
(apoptosis). 

Apoptosis in the hair follicle is described in detail in Botchkareva 
et al. [42]. The activity of the hair follicle is cyclic, and moves through 
phases of hair growth (anagen), apoptosis and hair loss (catagen), and a 
period of rest (telagen). Although TRAF2 plays a role in regulating the 
extrinsic apoptotic pathway in the hair follicle, no specific function of 
TRAF2 has been described that would more precisely help understand 
the association between TRAF2 and hair morphology.

Figure 2: Manhattan plots for GBM, and GWAS. The green horizontal line marks the genome-wide significance level. Relevant SNPs on 
chromosomes 1, 2, and 8 are marked in blue.
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We attempted to replicate the results concerning rs2784081 using 
two different independent data sets. The first data set was a sample 
of N=23,458 unrelated European individuals. The data stem from an 
ongoing web-based data collection, which is described in detail in 
Eriksson et al. [33] and which includes the data used in the Eriksson 
study as a subset. “European” in that sample is broadly defined, and 
includes individuals from multiple ethnic groups. Using the first 4 
principal components to correct for stratification, rs2811761, which 
is in high LD (r2>.9) with rs2784081 was tested in an additive as well 
as a recessive model. Neither model resulted in statistical significance 
(Wald statistics<1.0, p values>.5). Narrowing the sample to Northern 
Europeans (N=13,605) in order to match population characteristics 
more closely to our original sample was equally unsuccessful.

The second data set used in our attempt to replicate the effect 
of rs2784081 consisted of participants of the Twins UK adult twin 
registry, which is a volunteer cohort of over 10,000 twins from the 
general population. The part of Twins UK with available genotype data 
is described in more detail in Hysi et al. [43]. We randomly selected 
one individual from each MZ pair (N=199), and included all non-
MZ sibling pairs (N=192 pairs) and unrelated individuals (N=2049), 
resulting in a sample of N=2632 individuals. To account for clustering 
due to family structure caused by the non-MZ sib pairs we used 
Generalized Estimating Equations (GEE) to test for the association of 
rs2784081with binary hair curliness [44-46]. The recessive effect was 
estimated at β=0.417 with a standard error of se=0.210, resulting in a 
Wald statistic of 3.96 associated with p=0.047, thereby replicating the 
results of the main analysis. Additionally, we tested the additive genetic 
model. The allelic effect was smaller, β=0.143, but was associated with 
a smaller standard error, se=0.0696, thus producing a larger Wald 
statistic equaling 4.25, p=0.040.

Estimating a cutoff for the selection of top SNPs

Selecting a proportion of top ranked SNPs in a first step filter 
provides the possibility of fitting more complex models in a second 
step. To obtain an indication which proportion of SNPs to select, and 
to further evaluate GBM as a first step filter we estimated how much 
variance in hair curliness was explained by the top 1k, 5k, 10k, and 
20k of the ranked SNPs. The main objective of this part of our analysis 
was to obtain an indication of how many top ranked SNPs would be 
necessary to match the estimate of variance explained by all SNPs. This 
analysis was done using GCTA [38,47]. We compared the variance in 
hair curliness explained by the top ranked SNPs resulting from GBM 
to the same numbers of SNPs rank ordered by p-values resulting from 
the additive GWA model. The method implemented in GCTA consists 
of first computing the genetic similarity between all pairs of subjects 
using the observed SNP data. The second step of the method involves 
using the genetic similarity as a random effect to predict the phenotype 
in a linear mixed model. GCTA can be used for subsets of SNPs or 
all SNPs. Note that GCTA evaluates variance explained by additive 
effects. GCTA requires stringent QC especially when applied to case/
control phenotypes [47]. In addition to an adaptation of the two-locus 
test to remove SNPs that controls for differential case/control calling 
errors, we included the first 4 principal component as covariates when 
estimating the phenotypic variance that is due to SNPs [48] Figure 3 
shows point estimates and 95% confidence intervals corresponding 
to selecting increasing numbers of top ranked SNPs resulting from 
applying GBM and additive GWAS. In our analysis, the top 20K SNPs 
detected by GBM explain approximately the same variance as all SNPs 
in the data set. Furthermore, when comparing point estimates of SNPs 
ranked by GWAS and GBM, Figure 3 shows that these are very similar 

for 1000 SNPs, and higher for GBM than those of standard GWAS 
when considering the top 5K, 10K, and 20K. Confidence intervals 
overlap, however, and therefore results should be interpreted with 
caution. Obviously, both the ranking obtained through GBM, and the 
precision of the estimates of explained variance are, among others, 
dependent on sample size. The result that the top 20K of ~2,4 million 
SNPs explain about the same variance in hair curliness highlights the 
potential of GBM as a first stage filter of genome-wide SNPs.

Discussion
One of the advantages of GBM is that it is not necessary to specify a 

genetic model a priori. As noted by Lettre et al. [6], limiting a GWA study 
to the additive genetic model performs poorly in case the correct model 
is recessive. Furthermore, testing all possible genetic models requires 
appropriate adjustments for multiple testing [7]. A second advantage 
is the detection of interaction effects, not only between SNPs, but also 
between SNPs and included covariates, without the need to specify 
exactly which main or interactions effects to include in the model. 
The simulations showed the advantage of boosting over conventional 
methods is especially clear if one of the interacting variables has no 
main effect. Gradient boosting might therefore be especially interesting 
for the exploration of GxE interactions. As mentioned by Walters et al., 
adding several hundred variables in a GBM analysis of genome-wide 
SNPs does not noticeably increase the computation time [30].

Note that it is possible to fit GBM models that differ with respect to 
the order of interaction (e.g., up to kth order interactions). In practice, 
complex phenotypes are often measured with multiple items. It is 
easy to show that using a sum score as a proxy of a multidimensional 
phenotype can entail a considerable loss of information, and therefore 
loss of statistical power to detect genetic effects [49-51]. Current 
methods that permit flexible modeling of multivariate phenotypes 
while accounting for potential interactions between SNPs or SNPs 
and covariates are limited by computational demands. GBM could be 
used to obtain scale specific SNP selections by carrying out analyses on 
multiple items or scales while including the other scales as predictors. 
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Figure 3: GCTA results: Comparison of variance in hair curliness explained by 
top 1 k, 5 k, 10 k, and 20 k SNPs resulting from standard GWAS and GBM. Bars 
represent point estimates, whiskers 95% confidence intervals.
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The selected lists can then be combined in second step analyses that 
permit more complex modeling of multivariate phenotypes.

The empirical illustration showed that GBM is not limited to the 
detection of additive effects, however, the lack of a solid replication is 
a reminder that the selected top SNPs will include false positives. It is 
therefore important to carry out the second step analyses of a two-step 
genome-wide analysis in an independent sample. The advantages of a 
2-step procedure are that more complex modeling is computationally 
feasible, and that the significance level of the second step depends 
on the much smaller number of SNPs included in the second step, 
corrected for LD between the selected SNPs.

In conclusion, our simulation showed that GBM performs well 
even under conditions that are optimally favorable for additive 
genetic GWA methods, and outperforms standard methods in case 
interactions are present. Furthermore, the illustration showed that 
GBM replicated previous GWAS results concerning large effects of 
four SNPs in Trichohyalin gene in the 1q21 region. Also, SNPs tagging 
WNT10A that had reached genome-wide significance or were reported 
as suggestive effects in previous studies ranked in the upper 0.01 
percentile when ranking SNPs according to predictive importance. 
While an alternative first step filter could use test all three univariate 
genetic models (additive, dominant, recessive) and correct for Type I 
error as described in So and Sham, GBM has the additional advantage 
of providing SNP rankings that do not exclude epistatic effects, and 
that can include main and interaction effects involving large numbers 
of potentially interesting covariates.
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