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ABSTRACT: To optimize the quality of large scale mass-spectrometry based
metabolomics data obtained from semiquantitative profiling measurements, it is
important to use a strategy in which dedicated measurement designs are
combined with a strict statistical quality control regime. This assures consistently
high-quality results across measurements from individual studies, but semi-
quantitative data have been so far only comparable for samples measured within
the same study. To enable comparability and integration of semiquantitative
profiling data from different large scale studies over the time course of years, the
measurement and quality control strategy has to be extended. We introduce a
strategy to allow the integration of semiquantitative profiling data from different
studies. We demonstrate that lipidomics data generated in samples from three
different large biobanks acquired in the time course of 3 years can be effectively
combined when using an appropriate measurement design and transfer model.
This strategy paves the way toward an integrative usage of semiquantitative
metabolomics data sets of multiple studies to validate biological findings in another study and/or to increase the statistical power
for discovery of biomarkers or pathways by combining studies.

The application of metabolomics technology in large
(epidemiological) studies is becoming common practice.

The quest for biomarkers or pathways associated with certain
diseases or traits has broadened from genomic to metabolomics
measurements, with the metabolome being closer to the
studied phenotype. In many cases, the metabolome is linked via
genome-wide association studies (GWAS) to genetic markers,
the metabolites acting as a quantitative intermediate phenotype.
In addition, the metabolome is associated with phenotypic
characteristics such as clinical end-point markers, disease
subtypes, and the like. The number of subjects in such
epidemiological or association studies is as a rule quite large;
usually thousands of samples have to be measured to guarantee
sufficient power to discover statistically significant associations.
Metabolomics data can be classified as either quantitative

when absolute concentrations are provided or as semi-
quantitative when no absolute concentrations can be reported.
The distinction is especially important for mass-spectrometry
based metabolomics measurements, as when suitable reference
compounds are unavailable no absolute concentrations can be
obtained. It should be added that the sample preparation
procedure has to be taken into account too as it determines
whether metabolites are extracted in a quantitative manner.

Quantitative and semiquantitative metabolomics studies have
demonstrated to provide the required quality to analyze large
cohort studies. NMR-based metabolomics was applied in a
large GWAS study on more than 8000 Finnish individuals,1

while the 3000 samples of the Husermet project were analyzed
with gas chromatography/mass spectrometry (GC/MS) and
liquid chromatography−mass spectrometry (LC−MS) profiling
platforms.2 Commercial quantitative and semiquantitative LC−
MS platforms have also been used in large scale metabolomics
studies, such as the Metabolon platform in the GWAS analysis
of the KORA and the TwinsUK cohorts.3

If these dedicated standardized platforms deliver quantitative
metabolomics data, data obtained for a certain cohort in one
study can directly be combined with metabolomics data from
the same platform for another cohort and study. In most cases,
however, the quantitative platforms comprise a limited set of
metabolites. Contrary to the quantitative metabolomics
measurements, semiquantitative metabolic mass spectrometry
based platforms provide a broader coverage of the metabolome.
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However, these metabolic profiling methods do not provide
absolute quantitative data for all metabolites measured. With an
appropriate measurement design and an adequate quality
control and correction strategy, the within-study data are of
high quality, with a high reproducibility. As the semi-
quantitation is not absolute, additional between-studies
variation is introduced. In this paper, we show that the use of
an adequate within-studies measurement design and quality
control procedure also serves as the basis of controlling and
reducing the between-studies variability. Extending the
measurement design with so-called transfer samples and adding
a transfer procedure to the within-studies quality control and
correction process enables matching and integration of
semiquantitative profiling data between different studies and
cohorts measured in different time periods.
In the Leiden Longevity Study (LLS4), a large biobanking

cohort consisting of middle-aged offspring of nonagenarians
and their spouses acting as controls, novel lipid markers were
found to associate with familial longevity.5 This observation
encouraged the use of the same lipidomics profiling platform to
enrich other existing Dutch biobanks. All was done as a
subproject of the European Biobanking and BioMolecular
Resources Research Infrastructure (BBMRI), where Dutch
biobanks are collaborating to harmonize and further enrich
their repositories. At this point in the project two additional
large scale epidemiological cohorts are profiled, The Nether-
lands Twin Register (NTR6) and the Erasmus Rucphen Family
(ERF7) cohort. For a short description of the cohorts see the
Supporting Information.
Vaughan8 presents a methodology for fusing metabolomics

data of the same samples from different ultra performance
liquid chromatography−mass spectrometry (UPLC−MS) plat-
forms, but to our knowledge the combination of metabolomics
profiling data of (different) samples from multiple large-scale
studies using a proper study design and algorithms has not yet
been described. In this letter we illustrate the integration of
semiquantitative profiling data for different large-scale studies,
measured over the time course of 3 years on the lipidomics
profiling data generated in this project that was aimed at
enriching existing biobanks with metabolomics data. The major
challenge of combining profiling data measured over a large
period of time is the introduction of variation due to changing
experimental circumstances in sample preparation, data
acquisition, and data processing. These circumstances are not
always controllable, especially in the case when the
combination of multiple studies was not intended from the
start. We show that with a proper workflow, including the
appropriate measurement design and quality control, com-
parability of studies can be achieved.

■ METHODS

Measurements, Processing, and Quality Control. The
lipidomics LC−MS measurement platform used is a full-scan,
global profiling method with targeted processing of the data
(see ref 5 for a description of the platform). Relative
quantification is obtained by using a limited set of internal
standards that can roughly account for sample-to-sample
variation caused by, e.g., differences in sample preparation
and variation in the response. Only very few lipid standards are
commercially available making absolute quantification of these
lipid measurements using reference lipids unfeasible. This
quantification problem is seen with most global profiling

methods, even more so if the processing of the data is
untargeted.
The measurement design follows a standard in-house

strategy providing means for correction of between and within
(run order) batch variation using quality control samples, study
samples randomization and blocking (if necessary), validation
and evaluation of measurements, preprocessing, and (relative)
quantification procedures with analytical and technical
replicates. Calibration samples are added to assess linear
ranges, while blank samples are added to (eventually) correct
for the (constant) background signal. Data on lipids were
processed using MassHunter Quantitative Analysis Software.9

Relative quantification is obtained following an in-house
developed procedure, largely similar to the workflow described
in ref 2. After background subtraction (the background
obtained from blank samples), internal standard corrected
relative lipid peak area ratios were calculated and corrected for
intra- and interbatch variation using QC samples according to
ref 10. A short description of this single study workflow is given
in the Supporting Information. We intend to publish this
workflow in more detail soon and a software tool will be made
available to the community. In total, 15% of the study samples
were prepared in duplicate and included and distributed over
the various batches to assess the quality of the obtained
corrected lipidomics data. Following the Standard Operating
Procedures of the Biomedical Metabolomics Facility Leiden,
data were visually inspected. Data were reported when the
relative standard deviation (RSD) of QC corrected samples as
well as the relative standard deviation of the QC corrected
replicate samples was smaller than 20%. The in-house
developed software tool automatically takes care of the whole
correction and the quality control workflow, starting from the
MassHunter integrated data. In the remainder of this paper we
will use the term IS ratios when addressing the response values
that are calculated from the integrated peak areas after the
whole correction workflow.
Lipid profiles in citrate plasma from the three studies were

measured in positive ion mode using the same protocol, apart
from a change that was made in the extraction method between
the first and the last two studies. The LLS lipidomics
measurements were performed after two-phase liquid−liquid
extraction of the citrate plasma samples. This favors the most
nonpolar lipids, the triglycerides, since the extraction solvents
are stronger. Since the two-phase liquid−liquid extraction was
considered to be too time-consuming, for the other studies a
change was made to the single-phase liquid−liquid extraction,
using the more polar solvent isopropylalcohol of the citrate
plasma samples. This gave better results for the more polar
phospholipids but gave a poorer recovery for the triglycerides.

Combining Studies. Combining studies is challenging
since multiple sources of variation introduce changes in the
measured lipid abundances. These sources of variation include
differences in sampling procedures, sample preparation
procedures, instrumental settings, and environmental circum-
stances. The studies, that were to be combined, consisted of 27,
35, and 36 batches respectively, taking approximately 3−6
months per study to measure each. See the Supporting
Information Table S1 for some statistics on the number of
samples analyzed.
To be able to combine studies, the measurement design was

extended by adding at the end of each batch so-called transfer
samples. A transfer sample is a sample from an earlier measured
study that is added to a newer study to make the first and
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second study comparable allowing integration of the two
studies. In our strategy, approximately 6−7% of the total
number of samples of the first study was added to the
measurements of the second study. The added transfer samples
from (older) studies are treated in the same way in the sample
preparation, measurement, preprocessing, and correction
procedures. In our case we have a third study to which both
transfer samples of the first and of the second study were
added. A large number (128 of the 149 and 163 transfer
samples) of the first study (LLS) transfer samples were added
both to the NTR and ERF measurements. The corrected data
of all the transfer samples used in this manuscript can be
obtained on request from the corresponding author.
Description of the Transfer Model. The relation between

the concentration of a metabolite and its recorded response is
assumed to be linear and is defined by the response factor. The
assumption underlying the transfer model is that what changes
between studies is this response factor. In preliminary
calculations we confirmed that this assumption was true for
blank corrected data and that we could do satisfactory data
transfer without including an offset in the model. The transfer
samples are used to calculate this change in response factor
(using simple linear regression). Since metabolite abundance
data are usually heteroscedastic, meaning that there is a
nonconstant relation between the variance and the mean or
expected abundance, the data were first transformed using
square root transformation (a square root transformation is
preferred over a logarithmic transformation since the first can
handle zeros). A simple transfer model remains:

= +y y edrf1 2

Here y1 and y2 are the response values (IS ratios) of a specific
metabolite in a certain transfer sample in, respectively, the
reference study (ERF in this case) and the original study, e is
the error representing the part of the variation in y1 that cannot
be described by y2. In this formula drf represents the change in
response factor and has to be estimated from the transfer
samples, by means of linear regression. The estimated
differential response factor is then applied on all samples by
multiplying all responses with the factor drf squared to make
the studies comparable:

̂ =y ydrf2
2

2

In this formula y2̂ represents the adjusted response value (IS
ratio) for a certain metabolite in a certain sample. This transfer
model is fitted and the factor drf is estimated independently for
each metabolite.

■ RESULTS

The three studies that were included, LLS, NTR, and ERF,
consist of approximately 2500 samples each. In this paper we
chose to take the most recently measured study, ERF as the
reference study, meaning that all other studies are projected
onto ERF.
In the Supporting Information variation in lipid measure-

ments of transfer samples in the original study and the
reference study are presented for all lipids. Validation of the
transferred data was assessed by evaluating the reproducibility
that was defined as the relative standard deviation (RSDt) of all
metabolites obtained from the transfer samples. The reprodu-
cibility after transfer is only slightly lowered as compared to the

within study reproducibility for most of the lipids (for detailed
information see the Supporting Information).
Figures 1 and 2 represent principal component analysis

(PCA) scores plots of the three studies, both before and after

application of the transfer models to the LLS and NTR data.
Although this is a very global representation of the data, it
illustrates that studies are more comparable, e.g., cover the
same lipid space after the transfer.
The difference in the centers of the clouds of the NTR and

LLS study samples as compared to the centers of the ERF
samples represents the combined effect of the changes in
response factor between studies (Figures 1 and 2, top panels).
After application of the transfer model to the LLS data, the ERF
and LLS transfer and study samples are nicely on top of each
other (Figure 1, bottom panel).
In the second set of PCA scores plots (Figure 2), the study

samples of ERF and NTR (after transfer, bottom panel)
describe a slightly different part of the PCA scores space, as can
be deduced from the observation that the blue and red clouds
of scores are not fully overlapping. However, in the before-
transfer scores plot, the green NTR transfer samples as

Figure 1. Principal component analysis of IS ratios of combined data
sets (LLS with the ERF reference data set) illustrates the transfer
process. (a) The top panel shows the spacing of samples before
transfer, and (b) the bottom panel shows spacing of samples after the
transfer.
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measured in the ERF study are found in a noncentric subspace
of the blue ERF sample-scores cloud. Pairwise PCA (PCA after
per paired sample and per metabolite mean centering of the
data) revealed that IS ratios of the NTR transfer samples alone,
as measured in the ERF study, and the transferred IS ratios of
the same samples as measured in the NTR study cover the
same sample subspace (see the Supporting Information). These
observations indicate that the transfer itself was adequate. Need
for more complex transfer models, for instance including an
offset, would have resulted in nonoverlapping clouds in the
PCA plot. Therefore, we conclude that the variation caused by
the difference in response factors is removed. The difference
that is still observed (e.g., NTR and ERF sample clouds not
fully overlapping in the PCA space) represents differences
between the ERF and NTR samples themselves.
Two possible explanations can be given for this non-

centralized positioning of the NTR transfer samples and the
nonoverlapping scores clouds of the NTR and ERF samples
after transfer of the first. A first explanation may be a difference
of storage and sampling conditions of the biobanking samples.
It is known that sample handling differences between clinics
may introduce dissimilarities in measurement results in
otherwise similar samples. In our case, for instance, we know

that the NTR samples were stored at −30 °C, while the other
studies’ samples were stored at −80 °C. A second explanation
may be found in the difference of the study populations of the
two studies. Small differences in demographic and clinical
characteristics exist in the three study populations (see Table
S2 in the Supporting Information), as well as differences in time
of sample taking, etc. In both cases, the differences should
express themselves in nonlinear changes in lipid abundances or
the need for an offset, since if the changes would be linear it can
be corrected for by the transfer function. To investigate if the
data can reveal which of the two explanations is most plausible
a PLS-DA (see among many others ref 11) model was built to
investigate which lipids are mostly responsible for the difference
between the two studies, ERF on the one hand and NTR after
transfer to the ERF domain on the other. The PLS-DA results
could not reveal any systematic difference in lipid abundances
between ERF and the transferred NTR data that could refer to
sample acquisition and storage (see the Supporting Informa-
tion).
Comparing the LLS transfer samples as measured during the

LLS study, transferred to the ERF domain, with the responses
of the same samples in the ERF study, shows that the difference
in response induced by the difference in extraction method can
fully be compensated for by the linear transfer function.

■ CONCLUDING REMARKS
This letter illustrates how the quality of a well-designed
lipidomics data acquisition strategy can be assessed and
illustrates how comparability and integration of studies
measured over time can be obtained. The quality of the
resultant lipidomics data is presented and varies among lipid
classes. Apart from the TGs, the transfer RSDs are only a few
percentages larger than the within study RSDs. For the TGs we
see that some of the transfer RSDs are quite high, compared to
the within study RSD. However, this is mainly due to only a
few bad performing samples (see the Supporting Information
for a visual representation of the data and a more thorough
discussion).
For NMR-based and quantitative metabolomics (e.g., the

Biocrates platform), combination of studies and comparability
of studies is resolved by either using standards or by utilizing
the actual concentrations. We showed that for a profiling
method, where absolute concentrations are not being reported,
combining studies results in metabolomics data of similar
quality as the data of single studies.
Additionally, we showed that this procedure also works when

combining studies was not foreseen from the start. This is
especially valuable when interesting biomarkers are found in
one study, and the aim is to validate these biomarkers in a new
independent study (a so-called replicate cohort). Remarkably,
even with a distinct change in extraction solvent such as
occurred in this case, this procedure enables valid combination
of data obtained from multiple studies.
We used 6−7% of the samples as transfer samples. These

transfer samples are a random draw from all the study samples.
Theoretically, drf could be estimated from a single transfer
sample. This would, however, result in a very inaccurate
estimate of drf. The minimal number of samples needed to get
accurate estimates of drf is the subject of a future study. The
principal requirement of the set of transfer samples is that they
cover a considerable part of the total range of abundances of
every metabolite measured. For large studies with many
metabolites measured, this will in most cases imply that the

Figure 2. Principal component analysis of IS ratios of combined data
sets (NTR with ERF reference data set) illustrates the transfer process.
(a) The top panel shows the spacing of samples before transfer, and
(b) the bottom panel shows the spacing of samples after the transfer.
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number of transfer samples when using only a limited set of
samples will have to be well chosen, to keep the number
relatively low. The question then rises what the number of
transfer samples at least should be. This, however, depends very
much on the diversity and number of metabolites included and
the heterogeneity of the study samples.
In this manuscript we describe the use of remeasuring a

subset of samples from different studies to obtain correct
transfer models. As far as we know, this approach was not
described before in the literature. When the addition of this
type of transfer samples is a problem, for instance due to
limited sample volume, alternatives may be found in using
nonrelated but similar transfer samples. Also in this case, the
transfer samples have to fulfill the requirements that the
abundances of the measured compounds cover the same
concentration range as in the study samples. Reference samples
such as the recently introduced NIST sample12 may serve this
purpose to some extent. However, as discussed before, to
warrant high quality transfer models, a whole set of samples is
needed. The use of such reference sample sets will allow for
community-wide comparison of semiquantitative metabolomics
data and obviously also for quantitative data.

■ ASSOCIATED CONTENT
*S Supporting Information
Additional information as noted in text. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: hankemeier@lacdr.leidenuniv.nl.

Author Contributions
#A.D.D. and M.M.W.B.H. are shared first authors of this work.
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Kettunen, J.; Tukiainen, T.; Sarin, A.-P.; Ortega-Alonso, A.;
Tikkanen, E.; Lyytikainen, L.-P.; Kangas, A. J.; Soininen, P.; Wurtz, P.;
Silander, K.; Dick, E. M.; Rose, R. J.; et al. Nat. Genet. 2012, 44, 269−
276.
(2) Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-
McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J. D.; et al. Nat.
Protoc. 2011, 6, 1060−1083.
(3) Suhre, K.; Shin, S.-Y.; Petersen, A.-K.; Mohney, R. P.; Meredith,
D.; Wagele, B.; Altmaier, E.; CARDIoGRAM; Deloukas, P.; Erdmann,
J.; Grundberg, E.; Hammond, C. J.; et al. Nature 2011, 477, 54−60.
(4) Schoenmaker, M.; de Craen, A. J. M.; de Meijer, P. H. E. M.; et al.
Eur. J. Human Genet. 2005, 14, 79−84.
(5) Gonzalez-Covarrubias, V.; Beekman, M.; Uh, H.-W; Dane, A.;
Troost, J.; Paliukhovich, I.; van der Kloet, F. M.; Houwing-
Duistermaat, J.; Vreeken, R. J.; Hankemeier, T.; Slagboom, E. P.
Aging Cell 2013, 12, 426−434.
(6) Willemsen, G.; de Geus, E. J. C.; Bartels, M. Twin Res. Human
Genet. 2010, 13, 231−245.
(7) Hofman, A.; van Duijn, C. M.; Franco, O. H. Eur. J. Epidemiol.
2011, 26, 657−686.
(8) Vaughan, A. A.; Dunn, W. B.; Allwood, J. W.; Wedge, D. C.;
Blackhall, F. H.; Whetton, A. D.; Dive, C.; Goodacre, R. Anal. Chem.
2012, 84, 9848−9857.
(9) MassHunter Quantitative Analysis; Agilent Technologies: Santa
Clara, CA, http://www.agilent.com.
(10) van der Kloet, F. M.; Bobeldijk, I.; Verheij, E. R.; Jellema, R. H.
J. Proteome Res. 2009, 8, 5132−5141.

(11) van Velzen, E. J. J.; Westerhuis, J. A.; van Duynhoven, J. P. M.;
van Dorsten, F. A.; Hoefsloot, H. C. J.; Jacob, D. M.; Smit, S.; Draijer,
R.; Kroner, C. I.; Smilde, A. K. J. Proteome Res. 2008, 7, 4483−4491.
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