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General introduction

For decades the structure of human mental abilities has been the main subject of
discussion among psychologists. Contemporary theories of intelligence can be
generalized in a hierarchical structure with general intellectual ability, Spearman’s
g at its apex, derivable from the relationships that exist among group (second
order) factors and more specific abilities represented at a lower level of abstraction
in the hierarchy (Gustafsson, 1988). However, information about underlying
reasoning processes, measured by different tests, is not provided by such a
taxonomy. Psychometric studies provide little insight into the causes of individual
differences in performance on mental abilities (Brody, 1992). Understanding the
nature of psychometric intelligence may benefit from knowledge of the underlying
neurophysiological processes that contribute to this trait and to its variation. The
search for biological determinants of individual differences in intelligence, has long
been a subject of experimental psychology, and in the last 15 years many psychol-
ogists have developed theories of individual differences in intellectual processes
based on experimental research (Brody, 1992; Deary & Stough, 1996).

One approach explores the association between psychometric intelligence and
physiological measures. Several physiological variables have been studied as
possible biological determinants of individual differences in intelligence. These
include averaged brain evoked potentials, regional cerebral bloodflow, cortical
glucose metabolic rate as measured by positron emission tomography (see for
extensive reviews, Vernon, 1993) and peripheral nerve conduction velocity.
Peripheral nerve conduction velocity (PNCV), reflects the speed with which
electrical impulses are transmitted along nerve fibers and across synapses. This
variable is related to the *neural efficiency model of intelligence’ (Vernon, 1993).
In this model individual differences in performance on intelligence tests are
attributed to differences in the speed and efficiency with which acquired neurophy-
siological processes are executed. The greater efficiency of the neural system of
individuals with higher IQ might come to expression in the peripheral nerves as
well, which makes individual differences in PNCV a promising measure for indivi-
dual differences in intelligence. In two independent studies of Vernon and Mori
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(1992), higher PNCV (measured in the median nerve of the arm) was associated
with higher intelligence scores. Vernon and Mori concluded that a general factor
of neural efficiency or neural speed is a major aspect and biological determinant
of individual differences in psychometric intelligence.

A second approach to studies of individual differences in intellectual abilities
is based on the ideas of Galton (1883). This approach relates general intelligence
to relatively simple information-processing abilities. Indexes for these basic
cognitive processes involve the speed of execution of simple tasks. Psychologists
in these traditions share the theoretical assumptions that individual differences in
intelligence are determined biologically, and may be influenced by genetic factors.
These biological determinants influence the structure and function of the nervous
system, and can indirectly be measured by experimental tasks that measure proces-
sing speed or accuracy. Individual differences in these basic parameters of infor-
mation processing influence the complex intellectual skills assessed by intelligence
tests (Brody, 1992). Speed-of-information-processing, as measured by Reaction
Times on elementary cognitive tasks, can be considered a behavioral manifestation
of ’neural efficiency’ (Vernon, 1993) and the well established relation between
speed of information processing and psychometric intelligence provides additional
evidence for the neural efficiency model of intelligence.

Theories, claiming a biological basis for individual differences in intelligence,
gain much evidence from the widely observed heritable influences on individual
differences in cognitive psychometric abilities as indicated by twin, family and
adoption data. If the observed phenotypic association between biological para-
meters and intelligence is highly determined by genetic rather than environmental
factors this parameter may, to some extent, explain the heritable differences in
intelligence. Decomposition of the observed (phenotypic) variance of a trait and
decomposition of observed covariances between traits into a genetic and environ-
mental component can be accomplished by quantitative genetic methods that
require data from relatives such as twin data. Twins are commonly used in quanti-
tative behavior genetic research to examine the contribution of genes and environ-
ment to inter-individual variability in traits. Analyses of twin data enables one to
distinguish between three classes of influences: heritable influences which have
their origin in DNA; environmental influences shared by individuals reared
together (often parental and social in origin); and environmental influences which
relate more to unique, individual experiences. With twin data the contributions of
genetic and environmental influences to individual differences in behaviour can
be revealed without intervention in actual genotype and environment. Heritability
is an index for the relative contribution of genetic influences to individual
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differences of a trait. Environmentality summarizes the relative contribution of
environmental factors (Plomin, DeFries & McClearn, 1990).

This dissertation reports the results from a Dutch twin study on the relation-
ship between peripheral nerve conduction velocity (PNCV), reaction times and
intelligence. The thesis was inspired by the original findings of the Vernon and
Mori (1992) studies, on the association between PNCV, IQ and Reaction Times
in which it was concluded that a general factor of neural efficiency is a major
aspect of individual differences in intelligence. The present study is the first to
investigate to what extent the variation in psychometric intelligence can be attri-
buted to variation in PNCV and Reaction Times and to what extent these variations
and covariations are mediated by genetic and/or environmental factors. This is also
the first study to investigate the genetic architecture of peripheral nerve conduction
velocity in humans. Data were longitudinally collected in a sample of 213 adoles-
cent twin pairs. The first test occasion was at age 16 and the second 1.5 years
later.

Psychometric intelligence is the most widely studied trait in human behavior
genetics and some genetic studies have examined the IQ-RT association. To
summarize the evidence for heritable influences on IQ, the first section of this
chapter is devoted to a review of genetic studies on adolescent and adult IQ (the
group of interest in this study), followed by a section on the biological basis of
individual differences in IQ and peripheral nerve conduction velocity as a potential
biological determinant of intelligence. Because, up to now, no studies on the
genetics of PNCV in humans were performed, this section also includes some
information about the genetic determination of PNCV in animals. Next, a section
is provided with a review of IQ-RT studies and studies investigating the genetic
basis of this relationship. This is followed by a summary of the few (non-genetic)
studies in which the relationship between PNCV, Reaction Times and Intelligence
was simultaneously examined. In the final section the twin method and the uni-
and multivariate genetic analyses techniques are outlined.

The genetic basis of individual differences in intelligence

Twin, family and adoption data of psychometric intelligence support the
existence of genetic influences upon human cognitive abilities. Approximately
50%-60% of the phenotypic variance in adult IQ is associated with genetic differ-
ences among individuals. Bouchard and McGue (1981), have summarized the
world literature on IQ correlations obtained in relatives between 1963 and 1980.
The authors conclude that the pattern of parent-offspring and twin correlations and
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the absence of consistent sex effects strongly suggests polygenic inheritance of
intelligence. Average weighted correlations in identical or monozygotic (MZ) twin
pairs (N = 4672) and fraternal or dizygotic (DZ) twin pairs (N = 5546) were
estimated to be .86 and .60, respectively. By doubling the difference between MZ
and DZ correlations a first impression is obtained of the heritability estimate of
IQ (see for other reviews Plomin, 1988; Plomin & Rende, 1991; Boomsma, 1993;
Bouchard, 1993).

Data on pairs of genetically identical individuals reared in uncorrelated
environments directly estimate the contribution of heredity to behavioral variability.
Bouchard et al. (1990) reported correlations of .78 on the Raven’s Progressive
Matrices, .69 for the WAIS and .78 for a vocabulary test in 56 reared apart
identical or monozygotic (MZ) twins (mean age, 41 years). In contrast to studies
in separated MZ twins not many studies have examined reared apart DZ twins.
Because fraternal twins are genetically not more related than normal siblings,
correlations of separated fraternal twins are a good indication for correlations
between first-degree relatives. In a Swedish study of 34 pairs of separated fraternal
twins (mean age, 59 years), correlations on three factors extracted from 12 cogni-
tive tests implied substantial genetic influences (Pederson, McClearn, Plomin &
Friberg, 1985). A correlation of .52 was observed for the first principal component,
a measure of general intelligence.

The few studies on heritability in IQ in older twin pairs have not yielded a
very different picture. Pedersen, Plomin and McClearn (1994) reported results of
multivariate analysis using data on 13 cognitive ability tests from the Swedish
Adoption/Twin Study of Aging (SATSA). The adoption/twin design included 46
pairs MZ reared apart, matched with 67 MZ pairs reared together; 100 DZ pairs
reared apart and 89 DZ pairs reared together (mean age, 65.6 years). Pedersen et
al. reported Specific genetic in addition to General genetic influences. Genetic
influences accounted for 32 to 64% of the total variance in these tests.

Another adult IQ twin study of special cognitive abilities was conducted by
Tambs, Sundet and Magnus (1986). Results of a multivariate analysis of the WAIS
subtests in a Norwegian twin sample of 40 MZ and 40 DZ twin pairs (mean age,
41 years) were reported. The General genetic factor accounted for the predominant
part (46%) of the total variance. When subdivided, the General genetic factor
accounted for 60% of the Verbal subtests and 47% for the Perceptual Organisation
subtests. Common environmental factors specific to each subtest were also shown
to be significant and accounted for 11% of the total variance on average and were
most pronounced for the Perceptual Organisation subtests.
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The biological basis of individual differences in intelligence

The evidence, obtained from twin and family studies, of some genetic determi-
nation of individual differences in human cognitive ability is beyond any doubt.
As genes code for biological differences, these findings give strong evidence for
the existence of biological determinants responsible for individual differences in
intelligence. This biological basis of intelligence is influenced by genes which
code, via processes of protein synthesis, for neurophysiological and biochemical
factors and processes in the brain, but can also be modified by environmental
factors, such as education and nutrition.

Biological approaches to the study of human intelligence have attempted to
explore the underlying neurophysiological factors and processes that contribute to
variance in this trait (e.g. averaged brain evoked potentials, regional cerebral
bloodflow, cortical glucose metabolic rate). Peripheral nerve conduction velocity
has been investigated as a potential biological marker of intelligence. PNCV is a
pure physiological measure involving no cognitive activity. Reed (1984) hypothe-
sized that the heritability of IQ may be a result of genetic variability in the
structure and amount of ’transmission proteins’ which set limits on impulse speed
in peripheral and central nerves and consequently on information processing rates
and, thus, on intelligence. Transmission proteins include both enzymes involved
in myelin sheathing and neurotransmitters (which are synthesised by specific
enzymes). Genetic variability in the structure and amount of transmission proteins
may determine information processing rates and neural efficiency. Reed (1988)
suggested that PNCV as a quantitative genetic trait may model central nerve
conduction velocity. PNCV is a relatively easy obtainable measure of nerve
conduction speed.

Peripheral Nerve Conduction Velocity (PNCV)

PNCYV is an extensively studied neurological trait in humans for diagnosing
neuromuscular and neurological diseases (Desmedt, 1980; Oh, 1993). Three com-
ponents of nerve action potentials are typically distinguished. Onset PNCV and
peak PNCV measure the conduction speed in the fast-conducting (large diameter)
nerve axons and the average-conducting (average diameter) nerve axons, respec-
tively, while end PNCV involves slow-conducting (small diameter) axons (Ma
& Liveson, 1983; Oh, 1993). Onset PNCV is commonly used in studies examining
the relation between IQ and PNCV, because it reflects conduction of the fast nerve
fibres. A high IQ is suggested to be a consequence of faster speed of information
processing and, hence, of faster and more efficient central nervous functioning (e.g.

5



Chapter 1

Vernon, 1993). Reed (1988) suggested that genetic variation in PNCV might
account for heritable differences in IQ.

Untill recently, nothing was known about causes of variation in human PNCV.
The genetic background of PNCV variation was first studied in mice by Hegmann
et al. (1973), who observed low to median heritabilities in tail PNCV (narrow-
sense heritabilities of .1 to .2; broad-sense heritabilities of .2 to .3) in inbred strains
and their derived generations. Tail PNCV also correlated with certain behaviours
like open-field activity and defecation (Hegmann, 1979). Reed (1983) reported a
broad-sense heritability of .4 for tail PNCV in genetically heterogenous mice. Reed
(1988) found a significant narrow-sense heritability in mouse tail PNCV of .23.
He suggested that in large natural populations of mammals, including humans, the
heritability of PNCV could be considerably greater because the genetic variability
of randomly-bred laboratory mouse colonies derived from inbred strains is prob-
ably much less than that of natural populations. Body length in heterogenous strain
mice, for example, has a heritability of .21 + .05, which is much smaller than the
heritability of around .8 in humans. According to Reed, a heritability of .5 or more
for PNCV in humans may be a reasonable estimate. In this dissertation the first
results on heritability of human PNCV are reported.

Reaction Times and intelligence

In the search for biological determinants of human intelligence, the relationship
between measures of speed-of-information-processing (SIP) as obtained by timed
performance on experimental cognitive tasks and intelligence test scores is the
most extensively studied and well established. Galton (1883) was the first to
propose that Reaction Times (RTs) might be used as an index for intelligence.
Early investigators were not successful in proving RTs to be a correlate of intelli-
gence and it was not until the 1960s that RTs were seriously considered in theories
of intelligence. Thorndike (1927) formulated a model for the concept of
intelligence in which mental speed was one of the most fundamental components
in accounting for individual differences in intelligence. The other two components,
persistence (the continuation of assumed fundamental search processes) and error
checking were thought to be more related to personality. The importance of the
mental speed components to individual differences in intelligence was an item that
was picked up by for example Eysenck (1967) and Furneaux (1961). The early
history of the research on the relation between RTs and intelligence is extensively
reviewed in Vernon (1987). Based on research on simple and choice RTs in the
1970s, Jensen introduced the *Hick Paradigm’, in which RTs were examined as
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a function of response uncertainty. Response uncertainty was determined by the
number of ’bits’ of decision making information processing (see Jensen, 1987).
In the 1980s Vernon and co-workers regressed subjects’ IQ scores on a battery
of RT tests of varying complexity (Vernon, 1983; Vernon & Kantor 1986; Vernon,
Nador & Kantor 1985). One of the important findings in these studies was that
the relation between RT and IQ cannot be attributed to common content, nor by
the fact that some parts of IQ tests are timed. Typically, Reaction Time tests do
not require information and reasoning skills tapped by intelligence tests (Vernon,
1983). Vernon and Kantor (1986) also demonstrated that the Reaction Time
variables actually explain less of the variance of a timed intelligence test than that
of an untimed administration of the same test.

Reaction Times are suggested to measure basic cognitive operations which
are involved in many forms of intellectual behavior. Individual differences in
intelligence are suggested to be moderately attributable to variance in the speed
or efficiency with which individuals can execute these cognitive operations. A
theoretical explanation for this relationship was given by the 'neural efficiency
model’ (Jensen, 1982; Vernon, 1983, 1985) in terms of some characteristics of the
Short Term Memory ("Working Memory’) system (STM) in which the basic cogni-
tive operations are carried out. These characteristics are: the limited capacity to
store information, the rapid decay of information when there is no rehearsal and
the trade-off between the amount of information that can be stored and processed
simultaneously. Therefore, the speed or efficiency with which individuals can
execute the cognitive operations in a given task might be expected to have an
effect on the success of their performance of the task.

If individual differences in the speed with which cognitive operations can
be executed is attributable to individual differences in intelligence, the next
question is to what extent they are attributable to differences in neurophysiological
properties of the brain that may be hypothesized to underlie both the speed with
which persons can process information and performance on intelligence tests. One
approach to this question is to examine the heritabilities of individual differences
in reaction times and the extent to which the phenotypic correlation between intel-
ligence tests and information processing tasks are determined by underlying genetic
factors.

There is some evidence that performance on Reaction Time tasks is partly
determined by genetic factors. Rose, Miller and Fulker (1981) reported a herita-
bility of 76% for a Perceptual Speed measure in college-aged twins and genetic
half-siblings (MZ twin offspring). More recently, Boomsma and Somsen (1991)
measured RTs in a small twin sample of adolescent twins (age range, 15 - 18
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years). For Choice RT low heritabilities were observed (7 to 20%). Heritabilities
of almost 50% were observed for RT measured in double task trials where subjects
simultaneously performed mental arithmetic and the Choice RT task. Vernon
(1989) observed a heritability of 49% for a General Speed factor based on a
battery of 8 information processing tasks. The heritabilities of the speed-of-
information-processing measures were observed to be positively correlated with
a General intelligence factor (g). No homogeneous pattern of genetic and
environmental structures across the RT measures was observed in a younger twin
sample, aged 6 to 13 years (Petrill, Thompson & Detterman, 1995). Measures on
a Stimulus Discrimination task showed the highest heritabilities (42% on average)
and their composite score also showed the highest correlation with 1Q (r = .42).
A Simple and Choice RT tasks were totally under environmental control.

Only a few studies have examined the genetic and environmental basis of the
relationship between speed-of-information-processing tasks and IQ. McGue,
Bouchard, Lykken and Feuer (1984) observed that an overall speed component,
for which a heritability of 46% was estimated, showed a consistent pattern of
significant correlations with a General cognitive ability factor (g). McGue and
Bouchard (1989) estimated heritabilities of 54%, 58% and 27% for a Basic-, a
Spatial Speed factor and an Acquisition factor in a sample of reared apart twin
pairs (mean age, 39.9 years). General Speed was observed to be moderately related
to general intelligence (g). A genetic analysis of the relation between the Vernon
(1989) RT and IQ data conducted by Baker, Vernon and Ho (1991), showed that
phenotypic correlations between Verbal and Performance IQ and a General speed-
of-processing factor (heritability estimated to be 45%) were entirely mediated by
genetic factors. The same pattern of results were obtained by Ho, Baker and
Decker (1988) for a twin sample, aged 8 to 18 years. Heritabilities for a Rapid
Automatic Naming and Symbol Processing factor were estimated as .52 and .49
and the phenotypic correlation between IQ and speed of processing measures was
mainly due to genetic correlations. These findings all support the notion of some
common biological mechanism underlying both general intelligence and speed-of-
information-processing measures.

In contrast to these findings Petrill, Luo, Thompson and Detterman (1996)
found little genetic covariance between RTs and IQ scores of the Petrill, Thompson
and Detterman (1995) data. The genetic variance could be represented by a
General, Verbal, Performance, and Speed factor, whereas common environmental
influences could be supported by one General factor. Loadings of the speed
measures and all IQ subtests on the General genetic factor were modest compared
to their loadings on the General common environmental factor. These results

8
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suggest that covariance of speed-of-information-processing with IQ in this sample
is predominantly determined by common environment in this younger sample.

The phenotypic associations of peripheral nerve conduction, reaction times
and intelligence

There are only a few (non-genetic) studies which have investigated the rela-
tionship between PNCV, Reaction Times and IQ measures simultaneously. In two
independent studies, N = 85 (mean age, 24.5 years) and N = 88 (mean age, 23.1
years), of Canadian university students, Vernon and Mori (1992) measured
Reaction Times, PNCV and IQ. A psychometric test battery, the MAB [Multidime-
nsional Aptitude Battery (Jackson, 1984)], patterned after and highly correlated
with the Wechsler Adult Intelligence Scale was administered. A battery of 12 RT
tests was employed including: measures of Simple RT; measures of speed with
which subjects can scan information in Short Term Memory and the extent to
which subjects can store information in STM while simultaneously processing
other kind of information; and measures of the speed with which subjects can
retrieve information from Long Term Memory. In the first study eight PNCV
measures were obtained in three segments of the median nerve of the arm (wrist-
elbow, wrist-finger and elbow-axilla). In the second study PNCV measures were
obtained from the wrist-finger segment only. In both studies first unrotated factor
scores for each of the three sets of measures (IQ, RT and PNCV) were obtained,
yielding a General IQ, General RT and General PNCV measure. Vernon and Mori
reported correlations of .42 and .48 between General PNCV and General 1Q for
the first and second study, respectively. Correlations between General IQ and
General RT were -.44 and -.45. The correlations between General PNCV and
General RT were -.28 for the first, and -.18 for the second study. The authors
concluded that a General factor of neural efficiency is a major aspect of
psychometric IQ. However, these findings have not been replicated.

Barrett, Daum and Eysenck (1990) conducted a study in 44 British adults
(mean age, 26.47 years) on the correlation between PNCV in the median nerve
(finger-wrist segments), intelligence scores as measured by the Raven Advanced
Progressive Matrices test (administered in a 20-minute period) and a Choice RT
test using the Jensen test console. This is an apparatus consisting of a panel of 8
button lights in a semicircle, equidistant from a home button (Jensen, 1985). Barret
et al. only reported results that replicated on a second test occasions. IQ correlated
-.33 with the standard deviation of the movement time and -.25 with the decision
time. No correlation was found between PNCV and IQ and PNCV and RT. An
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important methodological difference with the Vernon and Mori (1992) study was
stimulation of the nerve below supramaximal level. Supramaximal stimulation is
stimulation at a current value beyond which no further increase in nerve action
potential is observed, and thus ensures activation of all nerve fibers (fast and slow)
of the nerve bundle.

Reed and Jensen (1991) also failed to find a relation between median
peripheral nerve conduction velocity (wrist-elbow segment) and IQ in 88
community college and 112 university male Californian students (mean age, 20.3
years). The Raven Standard Progressive Matrices was administered to the
community college group and the Advanced form to the university group (without
a time limit). Also, speed-of-information-processing tests were employed using the
Jensen test console: e.g. a Simple RT test and a Choice RT test. Several measures
of PNCV were correlated with Simple and Choice RTs (correlations between -.21
and -.34). Correlations between IQ and RTs were not reported. An important
methodological difference with the Vernon and Mori (1992) study concerned
temperature control of the arm. Temperature control, the key confounder of PNCV,
was conducted statistically rather then experimentally and might be a reason of
the contradictory findings in this study.

Rather surprising were the results of the Wickett and Vernon (1994) study,
who also failed to replicate the findings of the earlier two studies of Vernon and
Mori (1992), administering the same IQ test, PNCV procedure and 4 RT tests to
a smaller sample of 38 females (20 to 30 years of age). Two PNCV measure (wrist
to finger and wrist to elbow) were obtained and a composite RT measure was
calculated based on the z-scores of the individual reaction time tests. General
intelligence was obtained by submitting the MAB subtests to factor analysis and
computing factor scores on the first unrotated factor. PNCV did not correlate with
either General IQ or composite RT score. General IQ correlated negatively, but
not significantly, with the composite RT score (r = -.24). Based on these puzzling
findings, a reanalysis of the Vernon and Mori (1992) data was conducted, which
showed a lower PNCV-IQ correlation in females, although the difference was not
significant. In the first study: r = .62 for males (N = 40) and r = .28 (n.s.) for
females (N = 45); in the second study: r = .54 for males (N = 38) and r = .37 for
females. From the consistent pattern of lower correlations in females, Wicket and
Vernon suggested that males might rely more heavily on neuronal speed to perform
cognitive tasks, whereas in females other neural processes might play a
predominant role.

10
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Quantitative behavior genetics and the twin methodology

Quantitative behavior genetics investigates the relative contribution of genetic
and environmental influences to individual differences in traits (phenotypes).
Phenotypes are considered to be the total effect of genes and environment. A
polygenic model assumes that observed phenotypes are influenced by several
different loci on one or more chromosomes. The additive genetic influence, A,
represents the sum of the effects of alleles at all loci that influence the trait. Non-
additive genetic influences concern interactions between alleles on the same locus
(dominance, D) or on different loci, producing deviations from simple linear
addition. Environmental factors contributing to phenotypic variance can be
partitioned into: influences shared by family members, the common environment
( C), e.g. socio-economic status, rearing; and influences that are unique for each
individual ( E ), e.g. illnesses, accidents, differential parental treatment. The total
phenotypic variance (Vp) of a trait is the sum of the additive genetic, dominance
genetic, common environmental and unique environmental variance and can be
denoted with the equation:

Vp=V,+ Vp+ Ve + Vg (1)

To unravel these sources of variance, information from genetically informative
subjects is essential. Twins are very useful for this purpose. Because identical or
monozygotic (MZ) twins reared together are genetically identical, and share the
same family environment, differences in traits and behavior can, theoretically, only
be due to unique environmental factors. Resemblance between MZ twins on the
other hand is an effect of both their common genetic constitution and their
common environment. Because fraternal or dizygotic (DZ) twins, which are reared
together, share 50% of their genetical material on average, like other siblings, the
common environment contributes fully, but genetic factors only half to their
resemblance. Unique environmental influences, do not contribute to twin
resemblance.

Figure 1.1 depicts a path diagram of the usual twin model for both MZ and
DZ twin pairs. The figure represents an extention of equation (1) to a decom-
position of observed phenotypes for both members of a twin pair. This gives the
usual model denoted by the equation:

P, =aA, +dD; + cC, + eE,
P, = aA, + dD, + cC, + €E, 2

11
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where:

P is the observed trait or behavior (phenotype); A is the unobserved additive
genetic factor; D is the unobserved dominance genetic factor; C is the unobserved
shared environmental factor; E is the unobserved non-shared, unique environmental -
factor; a, d, c, and e, are the factor loadings from P on the unobserved (latent)
factors, subscript 1 refers to the first twin, subscript 2 refers to the second twin.
In MZ twins, the correlation between the twins for the additive genetic factors as
well as the dominance genetic factors is unity. In DZ twins these correlations are
0.5 and 0.25, respectively. No interaction is assumed between the genetic and
environmental factors within an individual.

Phenotype Twin 1 Phenotype Twin 2

Figure 1.1 Path diagram of the quantitative genetic model. The sources of phenotypic variation
considered in this example: A, the additive genetic component; C, de environmental influences
shared by family members and E a random environmental deviation, unique to each family
member. a, ¢ and e are the path-coefficients representing the relative contributions of A, C and
E, respectively. Correlations between A, and A, is 1 for MZ twins and .5 for DZ twins. The
correlation between C, and C, is | when twins are reared together and 0 when not.

When latent factors are defined to have unit variance, a squared factor loading
represents the variance explained by that specific factor (V, = a? Vp = d? V¢ =

12
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c?, Vg = ¢€2). The indices of relative contribution of genetic and environmental
effects are regularly reported as a standardization in which the particular source
of variance is divided by the total phenotypic variance. Heritability (4?) is an index
of the relative contribution of genetic influences to the phenotype and is calculated
by dividing the genetic variance (V,) by the total variance (Vp):
h2=a?/a?+ d? + c? + é-

The effects of common environment and dominance genetic effects are con-
founded in twin studies and cannot be included simultaneously in one model. The
twin correlation pattern can reveal which of the two effects is more likely. When
the DZ twin correlation is less than half of the MZ correlation, dominance genetic
influences are more likely, whereas common environment tends to make the DZ
twin correlations greater than half the MZ correlations.

One of the assumptions in twin studies is that trait-relevant environments of
MZ twin pairs are not more correlated than that of DZ twin pairs. The extent to
which MZ wins are more alike than DZ twins, thus, reflects genetic influences.
This equal environment assumption has received some criticism (e.g. Phillips,
1993) because shared environment might be more alike for MZ twins because they
have experienced more similar environments as children (e.g. same dressing, same
friends) and therefore greater similarity also reflects environmental influences. This
issue can be explored by studying the effects of ’labeling’ twins as identical or
fraternal in misclasified groups. Performance on cognitive and personality tests
showed to be little effected by labeling (Scarr & Carter-Saltzman, 1979). Another
approach to address this issue is by investigating to what extent environmental
differences make a difference behaviorally. Differences in environmental variables
(like clothing, time spent togehther, parental treatment) did not correlate with
differences in for instance cognition and personality (Loehlin & Nichols, 1976).

In the classical twin method (Falconer, 1989), heritability estimates were
derived by doubling the differences between intraclass correlations for MZ twins
and those for DZ twins [ h2 =2 (ryz - 'pz) 1. This approach is not adequate for
testing explicit models for individual differences and ignores information available
in variances and covariances important for analyzing sex and generation differ-
ences. In the past years, this method was replaced by more advanced analysis
techniques in which genetic covariance structure models are employed to special
purpose software, in which data from a range of family grouping can be analyzed
by means of maximum likelihood (ML) techniques. Software packages used for
this modelling are LISREL (Joreskog & Sérbom, 1986) and Mx (Neale, 1995).
Some advantages were that assumptions could be made explicitly and could be
tested, that parameters can be estimated with their standard errors or confidence
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intervals and that the programs provide a chi-square test of the goodness-of-fit of
the tested model. In genetic model fitting a series of structural equations are
solved, which enables one to compare alternative models in order to estimate
genetic and environmental parameters that best fit the observed (familial) twin
covariations. Further, in genetic model fitting more than two groups of twins can
be analyzed simultaneously, sex differences in parameter estimates and significance
of parameters can be tested. Also, the univariate analysis can be extended to
multivariate (multiple variables) designs (see The Special Issue on Twin Methodo-
logy Using LISREL, 1989; Neale & Cardon, 1992).

Multivariate genetic analyses

Multivariate genetic modelling is perhaps the most important development in
behavior genetic research. In this dissertation multivariate genetic anlyses have
been employed to explore the genetic and environmental components of covariation
among Reaction Time variables, PNCV and IQ scores. Just as phenotypic factor
analysis has been used to simplify the representation of the relationships among
multiple variables, with multivariate genetic models the smallest number of genetic
and environmental factors that satisfies the correlation structure can be identified.
While most traits reflect both genetic and environmental influences, it is possible
that associations among traits may result solely from common genes or common
environment.

Outline of the thesis

Chapter 2 of this dissertation offers an introduction to the development of
multivariate genetic model fitting in behavior genetic research. The advantages of
structural equation modelling techniques as well as the powerful twin methodology
are demonstrated by application of exploratory factor models on the phenotypic
covariation among subtest scores of the Dutch translation (Stinissen et al., 1970)
of the Wechsler Adult Intelligence Scale (WAIS, Wechsler, 1955). This method
provides more insight into individual differences in performance on the WAIS by
decomposing the factor structure of the covariance of the WAIS subtests into
genetic and environmental factors.

The next two chapters deal with the relationship between PNCV data and IQ
measures. In chapter 3 the relation between PNCV and scores on the Raven
Standard Progressive Matrices test (Raven, 1958), collected at the first test
occasion, is examined. Also, the results of the first genetic study on human PNCV
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are reported. Chapter 4 reports on the genetic analysis of the observed relation
between PNCV and WAIS IQ scores of the data collected at the second test
occasion (one and a half years later). Chapter 4 also discusses the possibility of
ongoing maturation processes of PNCV, highly influenced by genetic factors, in
the age interval between test occasion one (mean age, 16.1 years) and test occasion
two (mean age, 17.5 years).

In chapter 5 results of multivariate analyses of reaction times and IQ measures
of both test occasions are presented as well as bivariate longitudinal analyses of
Reaction Times at two time points. The seventh chapter is an appendix which
provides additional phenotypic correlations between Reaction Times and PNCV
of test occasion I, between the WAIS subtests and PNCV and between WAIS 1Q
and Reaction Times of test occasion II.

Finally, chapter 8 provides an overall summary and discussion of the results
and a new theory for the PNCV-IQ relationship is suggested.
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Application of multivariate genetic models to
Raven and WAIS subtests: A Dutch twin study

F.V. Rijsdijk and D.I. Boomsma

ABSTRACT

An important development in behavior genetics has been the implementation of
multivariate models to explore the causes of trait covariation. The association
among traits may result from common genes or common environmental factors
influencing multiple traits. In a multivariate genetic analysis of the relationships
between multiple variables, genetical and environmental components of covariation
can be separated with structural equation modelling techniques. In this paper
Wechsler Adult Intelligence Scale (WAIS) subtest scores of 192 eighteen year-old
Dutch twin pairs were analyzed with such multivariate genetic models. Results
suggested the existence of common genetic variance for subtests loading on the
Verbal and Performance scales in addition to the predominant general genetic
variance for all subtests. Genetic variance not accounted for by these sources was
unique to each subtest. Shared family background was not significant in explaining
the environmental variance-covariance structure. Environmental effects, unique to
an individual, could sufficiently be represented by one General factor and Specific
factors for each subtest. Thus, the two typically observed phenotypic factors,
Verbal and Performance scales, are entirely determined by underlying genetic
influences. Covariance of the Raven with the WAIS subtests was solely accounted
for by the General genetic factor.
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INTRODUCTION

Behavior genetic research has witnessed a tremendous development. Since the
publication of the landmark paper by Jinks and Fulker (1970) on biometrical
methods, one of the most important developments has been the extension of single
trait analyses to multivariate designs. Just as phenotypic factor analysis has been
used to simplify the representation of the relationships among multiple variables,
multivariate genetic models have been employed to explore the genetic and
environmental components of covariation and to identify the smallest number of
genetic and environmental factors that explains a multivariate data structure.

One of the first multivariate extensions of genetic analysis was carried out on
covariations of cognitive abilities (Loehlin & Vandenberg, 1968). Initially Vanden-
berg (1965) analyzed covariation matrices of twin-pair differences for latent roots
in order to derive the number of independent hereditary components. Differences
between members of identical twin pairs are due only to within-family environ-
mental influences, whereas those between fraternal twins are due to genetic as well
as within-family environmental influences. Vandenberg found four significant roots
indicating at least four independent genetic dimensions. This method was
formalized by applying an algebraic solution to obtain estimates of within-family
genetic influences (Bock & Vandenberg, 1968). Loehlin and Vandenberg (1968)
reported factor analyses of the covariance matrix of within-family genetic
influences estimated by subtracting the within-pair identical twin covariance matrix
from a corresponding fraternal twin covariance matrix. Resulting factor loadings
were similar to those from the analysis of the within-pair identical twin correlation
matrix, suggesting that the environmental and genetic components of cognitive
abilities as measured by Thurstone’s Primary Mental Abilities (PMA) test, have
similar dimensions. These dimensions are manifested in the environmental co-
variation as a Verbal (educational) factor and in the genetic covariation as a
General factor.

Eaves and Gale (1974) carried out a more detailed analysis of the genetic
structure into additive and nonadditive components using the Loehlin and Vanden-
berg (1968) data on cognition. With a more appropriate manner of hypothesis
testing they found evidence for both General and Specific genetic factors. The
factor analytic formulation of genetical and environmental components of covariati-
on by Loehlin and Vandenberg was further explored by Martin and Eaves (1977).
Martin and Eaves provided a satisfacting general method based on Joreskog’s
structural modelling approach (Joreskog, 1973) to maximum likelihood estimation
of confirmatory factor analytic models. They provided the framework for simulta-
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neously fitting the genetic and the structural equation model to multivariate
observations from relatives. Application of this method to the PMA data yielded
a large, General genetic component but also at least three Specific genetic factors
(verbal-, spatial- and word fluency abilities) and a General shared- and unique
environmental source of variation. The genetic models of Martin and Eaves were,
in a later stage, implemented in the software package LISREL (Joreskog & Sor-
bom, 1986) by for example Fulker et al. (1983) and Boomsma et al. (1986). In
the last decade multiple specifications were developed (e.g. The Special Issue on
twin methodology using LISREL, 1989; Neale & Cardon, 1992). Recently, the
structural equation modelling program Mx (Neale, 1995) was designed to meet
specific demands of modelling genetical informative data.

There are many attractive features in exploring trait covariation rather than
analyzing single measurements. While most traits reflect both genetic and envi-
ronmental influences, it is very well possible that associations among traits may
result solely from common genes or common environment. The aim of this paper
is to demonstrate how multivariate genetic analyses of subtest scores of intelligence
tests, in our case the Wechsler Adult Intelligence Scale (WAIS) and the Raven,
can provide additional information about how individual differences are caused
by genetic and environmental influences. Firstly, a review of phenotypic, but more
important, of earlier genetic factor analytic studies of the WAIS and the Wechsler
Intelligence Scale for Children (WISC) is supplied.

Phenotypic factor analytic studies of the WAIS and the WISC have revealed
underlying factor patterns reflecting different cognitive constructs of intelligence.
Behavioral genetic research has reported the relative genetic and environmental
influences on the WAIS and WISC IQ scores, but the question to what extend the
same genes and environmental factors are involved in the different factors
comprised by typical subtest loadings, hence, in different aspects of intelligence,
has not been frequently addressed.

One of the first phenotypic factor analyses of the WAIS subtest scores (Cohen,
1957), was conducted in four age groups ranging from 18-19 to 60-75 years of
age, with large samples between 200 and 325 subjects per age group. In contrast
of what has frequently been reported, four (instead of three) factors were robustly
extracted across all age groups. Three of them became known as the Cohen
Factors: the Verbal Comprehension factor (VC), the Perceptual Organisation (PO)
factor and the Memory or Freedom from Distractibility factor (FD). The first
factor, a General factor (G) was found to be operating in all age groups and
accounted for almost 50% of the total variance. The factor structure : G, VC, PO
and FD were consistent across age groups, but for age 60-75, G decreased in
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favour of the Memory factor. The results observed for the youngest age group (18-
19 year-olds) were: a General Structure (G); a Verbal Comprehension factor, defin-
ed by Information, Comprehension Similarity Vocabulary; a Perceptual Organisa-
tion factor, defined by Block Design, Object Assembly and Picture Arrangement
and a Freedom from Distractibility factor, defined by Arithmetic and Digit Span.
The factor analysis also yielded quasi-specific factors, factor D: loaded by Picture
Completion, Similarity and factor E: loaded by Coding and Digit Span.

Phenotypic factor analyses of the Wechsler Intelligence Scale for Children-
Revised (WISC-R) were performed by Kaufman (1975) in eleven age groups,
ranging from 6.5 to 16.5 years of age, with 200 subjects for each age cohort.
Principal component analysis yielded two significant factors closely resembling
the Verbal scale and Performance scale at the first 6 age levels and three factors
at age levels 8.5 to 15.5 years. The third factor was in agreement with Cohen’s
Freedom from Distractibility factor, with the highest loadings on Coding subtest
at age 14.5. After rotation the three-factor solution was chosen as the most sensible
for 9 of the age groups and the four-factor solutions were chosen for age 6.5 and
14.5. Kaufman (1975) concluded that there was great consistency in the three-
factor structure: Verbal Comprehension (loaded by Information, Similarities,
Vocabulary and Comprehension), Perceptual Organisation (loaded by Picture
Arrangement, Picture Completion, Block Design and Object Assembly) and Free-
dom from Distractibility (Arithmetic, Digit Span and Coding) across the entire age
range. These results provided support for Wechsler’s subdivision of the test into
Verbal and Performance scales and for his combination of the various verbal and
nonverbal tests to obtain a Full-Scale IQ. No single factor was observed on which
all subtests had loadings above a critical value, thus no general intelligence factor
was identified.

The Wechsler intelligence scales have been analyzed in numerous other explo-
ratory factor analytic studies in order to describe the components of measurable
intelligence. Most of these studies analyzed data from the same standardization
samples. Results of these studies are inconsistent. Intelligence as measured by the
WAIS-R (Wechsler Adult Intelligence Scale-Revised) (Wechsler, 1970) in normal
samples was noted to be a unitary trait (g-factor), or composed of two group
factors VC and PO (Glass, 1982), or three group factors VC, PO and FD (Kauf-
man, 1975; Glass, 1982), or a composite of g and additional group factors: g and
2 factors (e.g. Blaha & Wallbrown, 1982; Silverstein, 1982; Gutkin, Reynolds &
Galvin, 1984); g and 2, 3 and 4 factors (Parker, 1983) (see for reviews Matarazzo,
1972 and Leckliter, Matarazzo & Silverstein, 1986). Statistical methods that were
most frequently applied for extracting the factor patterns were factor analyses with
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orthogonal rotation (Silverstein, 1982; Gutkin et al., 1984; Parker, 1983 and Glass
(1982) with an oblique solution as superior to an orthogonal solution). For extrac-
ting g with factor analyses, different statistical techniques have been applied. The
general factor was identified as: the loadings on the first unrotated principal factor
(e.g. Silverstein, 1982; Parker, 1983) or principal component (e.g. Silverstein,
1982; Gutskin et al., 1984), or on a primary level from a hierarchical factor
solution (Blaha & Wallbrown, 1982).

The inconsistency of the number of factors that were extracted from the same
data set in these factor analytic studies is basically due to the a priori restrictions
that were placed upon the number of factors to be extracted, the criteria of
specifying minimum eigenvalues and/or minimum residuals for factor extraction.
To overcome these problems, some studies applied more or less objective statistical
tests to ascertain the number of factors. For example, maximum likelihood confir-
matory factor analysis was used, which permits objective evaluation of alternative
models such as a different number of specified factors by means of goodness-of-fit
indices. However, this method has also provided inconsistent results (e.g. one
factor: O’Grady, 1983; two factors: Plake, Gutkin, Wise & Kroeten, 1987, three
factors: Waller & Waldman, 1990 and Burton, Ryan, Paolo & Mittenberg, 1994
in an elderly sample). Evidently, ambiguities regarding the factor structure of the
WAIS remains a fact even when the same normative sample was analyzed
(O’Grady; Waller & Waldman). Waller and Waldman argued that these discrepan-
cies may be explained by the fact that in the O’Grady study analyses were
performed simultaneously across the nine cohorts of the WAIS-R (standardization
sample and by the fact that a zero-correlation null model was used as baseline
instead of a one-factor model.

In the present paper the advantages of structural equation modelling techniques
as well as the powerful twin methodology are demonstrated. Multivariate genetic
analyses of the subtest scores provide additional information about how the indivi-
dual differences in WAIS IQ scores are composed by examining the factor
structure of genetic and environmental covariances among the subtests. Genetic
analyses of the WAIS-R and WISC-R subtests have been conducted in several
ways. One way was to specify predefined theoretically Cohen factors and
investigate the genetic and environmental influences on the subtests scores
comprising these predefined factors.

Casto, DeFries and Fulker (1995), used a different approach on WISC-R data
obtained from 574 twin pairs (7.7-16.6 years of age), pooled across control and
reading-disabled subjects. Firstly, a confirmatory factor model was fitted by
typically loading the subtests on the three Cohen factors and secondly, a factor
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score was computed for each factor VC, PO and FD by summing the scaled scores
of their component subtests. Genetic and environmental covariances among these
three computed WISC-R factor scores were then assessed. A model which
specified general genetic and general shared and non-shared (unique) environmen-
tal influences as well as genetic and environmental influences specific to the 3
factor scores, provided the best description of the data. Genetic variance accounted
for approximately 50% of the phenotypic variance and phenotypic covariance
among factors, with equal common and specific genetic influences. A similar
pattern was observed for shared environmental influences. In contrast, specific
factors accounted for most of the unique environmental variance.

A third approach is analyzing all subtests in a full multivariate design to explore
the genetic and environmental correlations among the subtests and subsequently
specifying and testing more parsimonious factor structures for the genetic and
environmental effects. The few multivariate genetic studies of the WAIS and the
WISC have used different approaches which hampers comparison.

The first full multivariate genetic analyses of the WAIS-R subtests was
conducted by Tambs, Sundet and Magnus (1986), who explored the structure of
genetic and environmental covariances among the WAIS subtest scores in a small
Norwegian sample of 40 identical and 40 sex-like fraternal twin pairs (mean age,
41 years). Parameter estimates were reported for a model in which all subtests
loaded on a general genetic and a shared and non-shared environmental factor as
well as on specific genetic and environmental factors. A model testing the variance
common to the subtests typically loading on the same phenotypical Cohen factors
(Cohen, 1957) improved the fit. The major part of the covariance between subtests
was due to common genetic effects. The FD factor seemed to be influenced by
specific genes wile the other two factors were not. Shared environmental influences
were predominantly common and modest for all subtests but Digit Span and the
PO factor.

There have been two other studies in which subtest scores of the WISC-R
have been analyzed with multivariate genetic techniques to explore the genetic and
environmental correlations and differential genetic and environmental covariance
structures among the subtests. LaBuda, DeFries and Fulker (1987) reported multi-
variate WISC-R results of data pooled across a reading-disabled twin sample (70
pairs) and a control twin sample (73 pairs), with an age range of 7.7 to 16.6 years.
A model hypothesizing a three-factor structure for the genetic covariance matrix
(with loadings constrained to the typical observed phenotypic Kaufman factor
structure) with specifics; a single factor for the common environmental matrix with
specifics; and a single factor plus specifics for the unique environmental matrix
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best fitted the data. They concluded that the three-factor phenotypic structure
typically observed in the WISC data (VC, PO and FD) may be due largely to
genetic influences.

In the present study WALIS subtests scores were analyzed for 194 twin pairs
with a multivariate genetic factor model in order to explore the genetic and
environmental factor structure underlying the observed phenotypic covariance
structure. In order to compare our results with earlier findings, models with a
factor loading pattern that conformed to the Cohen factor structure as in the Tambs
et al. (1986) and LaBuda et al. (1987) study were tested as well. The Raven
Standard Progressive Matrices test scores, also available for our twin sample
(Rijsdijk, Boomsma & Vernon, 1995) were included as a subtest in the best fitting
factor model to explore the nature of the covariance structure with the WAIS
subtests. The Raven (Raven, 1958) is a nonverbal test of reasoning, supposed to
be a good measure of g, and to have only negligible loadings on any other factors.

SUBJECTS AND METHODS

Subjects were 192 Dutch twin pairs who participated in a longitudinal project
which investigated variation in peripheral nerve conduction velocity and intelli-
gence (Rijsdijk et al., 1995) and genetic and environmental influences on brain
development (Van Beijsterveldt ez al., 1995, 1996). The Raven Standard Progres-
sive Matrices test scores were obtained at the first visit of the twins to the
laboratory (mean age, 16.13; SD, .56). The Raven score was simply the number
of correct answers (without a time limit). The Dutch version of the Wechsler
Intelligence Scale (Wechsler, 1955) was individually administered (Stinissen et al.,
1970) on the second visit, 1.5 years later (mean age, 17.6; SD, .54). Mean age was
equal for males and females. IQ data were available for 37 monozygotic (identical)
male twin pairs (MZM), 31 dizygotic (fraternal) male twin pairs (DZM), 46 mono-
zygotic female twin pairs (MZF), 36 dizygotic female twin pairs (DZF) and 44
dizygotic opposite sex twin pairs (DOS).

For 117 same-sex twin pairs zygosity was determined by bloodgroup and DNA
typing and for the others by using items from a questionnaire concerning physical
similarity and the frequency by which the twins get 74 confused by family mem-
bers and strangers. For the blood and DNA typed group questionnaire data were
available for 85 pairs. The percentage correctly classified zygosities based on the
questionnaire information compared with blood group polymorphisms and DNA
was 95%.
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STATISTICAL ANALYSES

Phenotypic analyses

Sex differences in means for the WAIS subtest scores, Verbal, Performance,
Full-Scale IQ and the Raven score were assessed by likelihood-ratio chi-square
(x?) tests using the computer program Mx (Neale, 1995). These tests compare the
fit of a model that constrained parameter estimates for mean scores to be equal
across sexes to one which allowed them to vary in males and females, while taking
into account the dependency that exists between observations from twins
(Boomsma et al., 1993). The difference between the 2 of a general model (M1)
and that of a submodel (M2) (Ax?) is itself a 2 with Adf (degrees of freedom) (Ax?
= 0z - X2 With Adf = dfyy, - dfy,).

Sex differences in phenotypic correlations among the WAIS subtests and the
Raven were also analyzed in Mx. To the variance-covariance matrices of males
and females a model was fitted in which maximum-likelihood correlations as well
as the standard deviations were obtained. Firstly, the standard deviations were
tested for sex differences by comparing the fit of models which constrained
standard deviations to be equal across groups with models in which they are
allowed to vary. With the same strategy correlations were tested for sex differences
in the next step. Significance of correlations was tested by evaluating the
significance of ¥2? changes of models in which correlations were constrained at
Zero.

Confirmatory phenotypic factor analysis was conducted on the variance-
covariance matrix of the whole sample by model fitting in Mx as well. Models
were fitted in which the phenotypic variance and covariance was accounted for
by a specified number of group factors and also by specific factors, accounting
for the variance unique to each subtest. In contrast with exploratory factor
analyses, the number of factors as well as the factor loading pattern of the subtests
can be specified with structural equation modelling. Significance of alternative
phenotypic factor models can be compared by changes in ¥2.

Univariate genetic analyses

Decomposition of the phenotypic variance of all IQ variables was carried out
by univariate genetic model fitting on variance-covariance matrices from the 5 sex-
by-zygosity groups. The basic quantitative genetic model that was employed can
be represented by a path model as shown in Figure 2.1, in which:
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P, =aA, + cC, + €E,
P, = aA, + cC, + ¢E,

where P, is the phenotype of the first twin and P, of the second twin.

1/0

Phenotype Twin 1 Phenotype Twin 2

Figure 2.1 Path diagram of the quantitative genetic model. The sources of phenotypic varation:
A, the additive genetic component; C, de environmental influences shared by family members
and E, a random environmental deviation, unique to each family member. a, ¢ and e are the path-
coefficients representing the relative contributions of A, C and E, respectively. The correlation
between A, and A, is 1 for MZ twins and .5 for DZ twins. The correlation between C, and C,
is 1 when twins are reared together and 0 when reared apart.

Sources of phenotypic variation considered were A, additive genetic variation (i.e.
the sum of the average effects of the individual alleles at all loci); C (common or
shared environmental variation) and E, a random environmental deviation that is
not shared by family members. The correlation between the genetic components
(A, and A,) is 1 for monozygotic twins because of their identical genetic makeup
and .5 for dizygotic twins because they share 50% of their genes on average. The
correlation between the shared environmental components (C, and C,) is 1 if the
twins are reared together (in our case) and 0 when not. The parameter estimates
of the model: a, ¢ and e are path-coefficients that represent the relative
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contributions of the genetic, shared (between-family) and non-shared (within-
family) factors, respectively. If A, C and E are standardized to have unit variance,
the total phenotypic variance (Vp) is given by the sum of the squared path-
coefficients:

Vp=a?+c?+ e
The relative contributions of the genetic factors is called the heritability (42):
h* = a? | Vp.

Parameters were estimated by maximum likelihood, using the Structural Equation
Modelling program Mx. Also, 80% Confidence Intervals for these heritability
estimates were computed (Neale & Miller, 1996). Goodness-of-fit was assessed
by likelihood-ratio 2 tests, alternative nested models were evaluated by changes
in 2. All WAIS subtests scores, Verbal, Performance, Full-Scale WAIS 1Q and
the Raven score were tested for sex differences in genetic architecture. Because
no sex differences were observed, the groups were pooled across sexes and
between and within mean cross-product matrices for MZ and DZ were used for
conducting multivariate genetic analyses.

Multivariate genetic analyses

In multivariate genetic analyses phenotypic covariances among subtests are
decomposed into a genetic, common and unique environmental part. Multivariate
analyses were conducted on the phenotypic mean-squares-between pairs (MSg) and
mean-squares-within pairs (MSy,) (v X v) covariance matrices (v = number of
variables). These matrices can be estimated by, for example, MANOVA. This
method is not frequently used any more because of the limitations in testing for
sex differences. The advantage of this method, however, is the input of much
smaller matrices, which becomes of great importance when a large number of
variables are tested multivariately.
The MS,, estimates the within-pairs covariance (0y?). The expectation for MSg
is twice the between-pairs variance plus the within-pairs variance (205%+ Gy/?).
Expected mean-squares-between and mean-squares-within pairs for MZ twin pairs
and DZ twin pairs can be translated into relative magnitudes of variance for
genetic and environmental influences that effect the phenotypic covariance.
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As MZ twins are genetically identical, genetic variance does not contribute to
phenotypic differences between members of a MZ twin pair. The MZ within-pair
variance, thus reflects only unique environmental differences (oy? = E). Variance
components that cause differences between MZ twin pairs (and make members
of one twin pair more alike) are the genetic and common environmental influences
(cg2=A + C).

As DZ twins share half of there genes on average, DZ within-pair covariances not
only reflect differences in unique environment but differences caused by a different
genotype as well (0y2 = .5 A + E). Variance components that cause differences
between DZ twin pairs are also the additive genetic and common environmental
influences (o2 = .5 A + C). Writing out the formulae for the expected MSyy (=
oy?) and MSg (= 2052 + Oy?) for MZs and DZs based on the expected variance
components leads to the following specification:

IMSyp = 2(A + C) + E + 2(A, + C) + E; 1)
IMS,py = E +E, @)
IMSpyp = 1.5A + 2C + E + L5(A) + 2(C) + E; 3)
SMSpyy = SA+ E + 5(A) +E; @)

Notice that the expected variance components of Specific A, C and E factors are
also included in the equations, according to the same previously outlined
principals.

Multivariate genetic analyses was conducted by applying the model:

Tyy = Ay ¥ Ay

simultaneously to the MZ and DZ between and within mean square matrices,
where T,y is the observed (v X v) mean square matrix. Ay is comprised of the
matrices A, C, and E common to all subtests and Ag, Cg, and Eg (v x v) diagonal
matrices specific to each subtest. The weighting of A, C, E, Ag, Cs, and Eg by
the coefficients specified in equations (1) through (4) is accomplished in the
diagonal (v x v) matrix ¥ (Psi). The dimensions of A, C, and E depend on the
specified model.
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Initially, a full Cholesky (or triangular) decomposition was imposed upon the

between and within mean cross-product matrices to provide a starting point in the
multivariate analyses of the eleven subtests. In a Cholesky decomposition the
number of factors equals the number of variables. The first factor influences all
variables (11 subtests). The second factor does not contribute to the first variable
but effects the subsequent (10) variables, and so on. The last factor is specific to
the last variable.
The genetic and environmental correlation matrices obtained from this analysis
were evaluated to specify more parsimonious, alternative models in which the
complexity of the genetic and environmental covariance structures were reduced
by a limited number of factors. In this case the dimensions of the common A, C
and E matrices in Ay are changed to (v x f) and their relative weight in ¥ to
(f x f), where f is the number of common factors. The dimensions of Ag, Cs, and
E are not changed. A three-factor structure was imposed upon A and E. In the
following steps the change in fit was assessed from the three-factor structure to
a two-factor structure and to even more restricted factor models for components
A and E individually. Also, factor models reported by Casto et al. (1995), LaBuda
et al. (1987) and Tambs et al. (1986) were examined. In the final analysis the
Raven test score was included as a subtest in the best fitting model to explore the
common variance with the WAIS subtests.

RESULTS

Phenotypic analyses

For subtest mean scores, sex differences were observed for: Arithmetic and
Picture Completion, for which males had a significant higher score than females
(6.98 versus 6.51 and 6.38 versus 5.95, respectively); and for Coding for which
females had a significant higher score than males (6.78 versus 7.72). However,
these sex differences were small and did not weigh heavily on the total subtest
scores which is reflected in the equality of means across sexes for the Verbal,
Performance and Full-Scale IQ scores (VIQ, PIQ and FSIQ) (Table 2.1).
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Table 2.1
Male and female estimates of means and standard deviations for the WAIS subtests, WAIS scales

and the Raven test score.

Males Females Sex
(N = 180) (N = 208) differences

Subtests M (SD) M (SD) Ax(1)
INF 6.09 (1.32) 5.84 (1.48) 2.51
CcoM 5.94 (1.67) 5.90 (1.66) 0.17
ARI 6.98 (1.90) 6.51 (1.84) 4.15%
SIM 7.07 (1.92) 7.29 (1.67) 0.56
DS 6.21 (1.87) 6.35 (1.53) 1.23
vocC 5.87 (1.65) 6.08 (1.64) 1.14
CODE 6.78 (1.84) 7.62 (1.61) 19.2%
PC 6.38 (1.68) 5.95 (1.78) 5.22%*
BLO 7.24 (1.91) 7.42 (1.96) 0.14
PA 7.02 (2.01) 7.01 (1.89) 0.02
OA 6.46 (1.96) 6.64 (1.81) 0.44
VIQ 109.9 (12.7) 109.6 (11.6) 0.06
PIQ 115.7 (11.9) 117.1 (11.9) 0.87
FSIQ 113.5 (11.8) 114.0 117 0.07
Raven 4.95 (0.64) 4.94 (0.56) 0.08

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. VIQ = Verbal IQ, PIQ = Performance IQ, FSIQ = Full-Scale IQ.
Raven = number of correct items devided by 10. N = number of individuals. * = Ax?(1) >3.84, and implies
a significant difference for 1 degree of freedom.

The mean WAIS Full-Scale IQ of 113.8 was higher and the standard deviation of
11.7 was lower than the population mean and standard deviation (M = 100; SD
= 15). In a recent validation study (N = 601) of 4 subtests of the Dutch translation
of the WAIS (Mulder et al., 1995) it appeared that scores on all 4 tests were
higher than the scores of the Dutch normative sample (Stinissen et al., 1970).
Bouma et al. (1996) suggested that this observation might be a consequence of
increasing population IQ and that WAIS IQ scores based on the 1970 norms might,
in fact, be somewhat overestimated.

For standard deviations of the subtests Similarity and Digit Span, higher
values were observed for males (1.87 versus 1.67 and 1.82 versus 1.56, respecti-
vely). Maximum-likelihood estimates of phenotypic correlations among subtests
are shown in Table 2.2.
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Table 2.2
Maximum-likelihood estimates of phenotypic correlations among WAIS subtests and the Raven
test score.

INF COM ARI SIM DS VOC CODE PC BLO PA OA Raven

INF -

COM .55 -

ARI 52 .48 -

SIM S5 59 B3 -

DS 39 34 46 38 -

voC 67 66 56 .67 43 -

CODE 21 16 26 .14 29" 21 -

PC 30 39 30 31 20 34 22 -

BLK 35 31 47 36 29 34 .19 .30 -

PA 28 36 .29 33 21 32 .08 33 .32 -
OA 20 25 25 25 .08® 21 .07 .28 49 .26 -
Raven 49 47 51 47 38 51 25 31 40 32 25 -

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. Number of individuals = 388. Mean correlation between subtests
comprising the Verbal scale = .52, Mean correlation between subtests comprising the Performance scale
= .25, Mean correlation between subtests from different scales = .27. ™ = nonsignificant correlation. A=
sex differences in correlation: .29 for males and .07 ™ for females.

Sex differences were only observed for the correlation between Coding and Digit
Span: .29 for males and .07 for females (ns). The mean correlation between sub-
tests comprising different scales was .27 for males and .27 for females. Correla-
tions between subtests loading on the Verbal scale and Performance scale averaged
.52 and .25, respectively. The coherence of the Performance scale subtests was
relatively weak, weaker than the relation among the subtests from different scales.
The phenotypic correlation of the Raven score with the Verbal and Performance
scale WAIS subtests was on average .47 and .30, respectively and with VIQ, PIQ
and Full-Scale IQ .63, .51 and .66, respectively. Vernon (1983) reported correla-
tions of .36 and .46 on average for the Raven with Verbal and Performance sub-
tests, respectively and .57, .70 and .72 with VIQ, PIQ and FSIQ, respectively. In
contrast with our results, the Raven test shared more variance with the performance
scale.

For the phenotypic factor analysis of the WAIS subtests a model with three
factors: a General factor (influencing all subtests), a Verbal factor (Information,
Comprehension, Similarities, Vocabulary), a Performance factor (Picture
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Completion, Block Design, Picture Arrangement, Object Assembly) and Specific
factors accounting for the unique phenotypic variance for each subtest had the best
fit to the data (Y% = 56.37, p = .017). The General factor accounted for 34% of
the phenotypic variance, the second factor for 18% and the third for 22%. The
subtests Arithmetic, Digit Span had insignificant loadings on the Verbal factor and
Coding on the Performance factor, thus, their variance was totally explained by
the General factor and by Specific subtests variance. For the subtest Coding, the
variance accounted for by the General factor was, though significant, very low
(9%).

Table 2.3
Twin correlations for the WAIS subtests, WAIS scales and the Raven test score.

Sex-by-zygosity groups Pooled groups
MZM DZM MZF DZF DOS MZ DZ

Subtests (N=37) (N=31) (N=46) (N=36) (N=44) (N=83) (N=111)
INF 73 43 .80 52 23 76 .36
COM .66 A7 73 .33 32 .70 27
ARI .63 20 .64 45 18 .64 27
SIM a2 A1 .58 .04 22 .66 .16
DS .65 .36 46 .00 37 .58 26
vocC .82 .16 77 27 27 .79 25
CODE .39 .30 47 A1 .30 44 29
PC 25 32 28 .05 .35 28 24
BLK .70 25 .65 57 44 .67 44
PA 43 26 S1 A1 -.11 46 .05
OA .69 46 33 40 21 .50 .36
VIQ .87 31 .87 .26 25 .89 27
PIQ 14 .23 .67 A7 26 .70 .34
FSIQ .86 .19 .84 44 24 .85 .30
RAVEN 7 24 .50 35 42 .66 .39

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. VIQ = Verbal IQ, PIQ = Performal IQ, FSIQ = Full-Scale IQ. N
= number of twin pairs.

Univariate genetic analyses
The twin correlations for subtest scores, VIQ, PIQ, FSIQ and Raven scores
for the 5 sex-by-zygosity as well as for the MZ and DZ group are given in Table
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2.3. Univariate genetic analyses showed an AE no-sex-differences model to be the
best for the IQ scores and for all but three subtests scores (Table 2.4). For the
subtests Coding, Picture Completion and Object Assembly there was no difference
in fit between an AE or CE no-sex-differences model (c2 = 32%, 25% and 42%,
respectively). Because of the consistency in absence of sex differences the 5 groups
were pooled over sexes.

Tabel 2.4
Model fit indices for the univariate analyses of the WAIS subtests, WAIS scales and the Raven,
fitted to the 5 different sex-by-zygosity covariance matrices.

ADEsd Model ACEsd Model ACEnsd Model  AEnsd Model CEnsd Model Variance h2
df =9 df=9 df =12 df =13 df =13 Components
Sub- x> p X* p X2 P ¥ p X p A E

tests

INF 12.55 .18 11.10 27 16.82 .16 16.82* 21 37.69 .00 1.502 0491 75%
COM 1530 .08 1534 .08 15.70 .21 157 27 2692 .01 0.775 0970 65%
ARI 639 .70 634 71 932 .68 9.32% 75 2139 .07 2.195 1313 63%
SIM 776 .56 9.85 36 14.68 .26 14.67* 33 28.06 .01 1.813 1319 58%
DS 1330 .15 1348 .14 2043 .06 2043* .09 27.85 .01 1.606 1.284 56%
voC 607 .73 7.84 55 830 .76 8.30* .82 3476 .00 2.005 0.681 75%
CODE 6.80 .66 6.72 .67 1138 .50 11.40 .58 14.14 .36 1.344 1.658 45%
PC 653 .07 503 8 606 91 705 90 6.14 .94 0.960 2.026 32%
BLK 594 75 2.68 98 464 97 6.02* 95 11.50 .57 2482 1.180 68%
PA 2.89 97 3.69 93 842 75 842* 82 14.61 .33 1471 2.232 40%
OA 9.88 36 699 .64 1254 40 1446 34 1337 42 1.751 1.745 50%
VIQ 784 55 958 39 11.19 .51 11.19%* .61 55.08 .00 1224 2393 84%
PIQ 284 97 233 99 384 99 384* 99 1787 .16 93.65 43.60 68%
FSIQ 637 .70 7.70 .57 9.13 .69 9.13* .76 47.80 .00 110.7 2423 82%
Raven 2648 .00 2422 .00 30.20 .00 31.53* .00 3433 .00 0.207 0.127 62%
Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. VIQ = Verbal IQ, PIQ = Performal IQ, FSIQ = Full-Scale IQ. *
= Best Fitting Model. For CODE, PC and OA the Additive genetic as well as the common environmental
structure could be omitted from the ACE model without deterioration of fit; the AE and CE model fitted
equally well: ¢? was 32%, 25% and 42%, respectively. (n)sd = (no-)sex-diferences. h? = heritability
estimate.

In Table 2.5 subsequent univariate genetic analyses results for the MZ and DZ
groups are shown: an AE model best fitted the data, but again, no difference in
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fit between an AE and CE model for Coding, Picture Completion and Object
Assembly was observed (c? = 34%, 26% and 42%, respectively). Also, the
heritability estimates were in close agreement with estimates for the first analyses.
The univariate estimates of heritability for the Verbal scale subtests show the
additive genetic factor to account for 58%-76% of the phenotypic variance (66%
on average). Subtests of the Performance scale exhibit a lower heritability on
average (47%) if Coding, Picture Completion and Object Assembly are regarded
as to be influenced by additive genetic rather than common environmental factors.
The lowest heritabilities were observed for Picture Completion and Picture
Arrangement (33% and 39%, respectively). Analyses of VIQ, PIQ and FSIQ
yielded heritabilities of 84%, 69% and 82%, respectively (Table 2.5).

Table 2.5
Model fit indices of univariate analyses of the WAIS subtests, WAIS scales and the Raven fitted
to pooled MZ and DZ covariance matrices.

ADE Model ACE Model AE Model CE Model Variance h?
df =3 df =3 df =4 df =4 Components

Sub- X p X P X P X P A E

tests

INF 9.14 .03 9.19 .03 9.19% .06 30.61 .00 1.502 0.496 75%
COM 7.96 .05 7.99 .05 7.99% .09 19.59 .00 1.747 0.968 64%
ARI 1.57 .67 1.86 .60 1.86* .76 13.74 .01 2203 1321 63%
SIM 6.60 .09 8.28 .04 8.28* .08 21.70 .00 1.870 1296 56%
DS 0.51 .92 0.59 .89 0.59* .96 8.18 .09 1.615 1272 59%

vocC 2.81 42 399 26 3.99*% 41 30.16 .00 2.008 0.678 75%
CODE 259 46 243 .49 2.59 .63 511 .28 1.520 1.628 48%

PC 14.71 .00 1.19 .76 206 .73 1.34 .86 0997 2.019 33%
BLK 223 .53 044 93 2.23*% .69 703 .13 2.506 1.167 68%
PA 1.75 .63 396 .27 3.96% 41 10.16 .04 1.457 2305 39%
OA 376 .29 1.48 .69 376 44 220 .70 1771 1.729 51%
VIQ 486 .18 6.43 .09 6.43* 17  50.97 .00 121.44 23.68 84%
PIQ 61 .89 0.61 .90 0.61* .96 13.65 .01 9538 4337 69%

FSIQ 2.64 45 3.54 32 3.54% 47 4214 .00 11096 24.12 82%
Raven 541 .14 3.65 .30 5.41*% 25 7.60 .11 211 25 63%

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span,VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. VIQ = Verbal IQ, PIQ = Performal IQ, FSIQ = Full-Scale IQ. For
the Raven, VIQ, PIQ and FSIQ a ADE rather than ACE Model was indicated, but the dominance structure
was not significant. * = Best fitting model. For CODE, PC and OA the Additive Genetic (A) as well as
the C structure could be omitted from the ACE model without deterioration of fit; the AE and CE model
fitted equally well: c2 was 34%, 26% and 42%, respectively. h? = heritability.
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Table 2.6
Fit indices for nested sequence of multivariate models fitted to between and within mean product
matrices of monozygotic and dizygotic pairs.

Model N2 df p Ay? Adf
1. Cholesky decomposition

imposed upon A, C & E. 109.9 33 .00 - -
2. Same as 1, without C. 127.9 110 117 18 77

3. Three-factor (General, Verbal
& Performal) structure imposed
upon A & E (Ag Ay Ap; Eg Ey Ep)
and Specifics (Agp; Egp). 198.6 198 A75 70.7 88

4. Two-factor structure imposed upon
A & E and Specifics
(Ay Ap Agp; By Bp Egp) 3626 220 .00 164% 22

5. Same as 3, but without Ey & Ep
(Ag Ay Ap Agp; Eg Egp). 208.5 209 497 9.9 11

6. Same as 3, but for E only Egp
(Ag Ay Ap Agp; Egp). 241.2 220 .156 42.6* 22

7. Same as 5, but One Factors for A
and Specifics
(Ag Agp; Eg Egp). 276.5 220 .006 68* 11

8. Same as 5, but without Agp
(Ag Ay Ap; Eg Egp). 284.9 220 .002 76.4% 11

9. Same as 5, without nonsigni-
ficant loadings: Ay: ARLDS;
Ap: CODE; Agp: ARILSIM,VOC,0A;
E;: INF,ARI,DS,CODE,BLK. 211.5 221 .666 3 12

10. Same as 9, with Raven score
loading on all factors
(Ag Ay Ap Agp; Eg Egp). 260.1 263 .54

11. Same as 10, without nonsigni-
ficant loadings for the Raven on:
Ay Ap; Eg. 265.2 266 .50 3 5l

Twin groups pooled across sexes: 83 MZ, 111 DZ. Ax? = change in chi-square, Adf = change in number
degrees of freedom, * = significant Ay
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Multivariate genetic analyses

A full Cholesky decomposition imposed upon the A, C and E structures was
fitted to the MZ and DZ between and within mean cross-product matrices. First,
the significance of the shared environmental structure was tested in this model
(Table 2.6). The C structure could be omitted without deterioration in fit [Ay*(77)
= 18, p = .99]. The corresponding estimates of genetic and environmental
correlations between subtests as well as heritabilities for each subtest for the full
AE Cholesky model are reported in Table 2.7.

Table 2.7
Genetic (below diagonal) and non-shared environmental (above diagonal) correlations for the
WALIS subtests, estimated from the AE Cholesky decomposition.

INF COM ARI SIM DS VOC CODE PC BLK PA OA

INF - .01 A2 .02 17 18 .16 .01 .03 .01 i |
COM .80 - .03 .06 20 .20 .03 .18 .04 21 .04
ARI 71 13 - 17 13 A1 .08 18 22 .05 17

SIM .81 .94 74 - .04 22 .02 .06 13 A3 .05
DS 48 40 .67 .60 - .19 .05 17 .05 .06 .05
voCc .83 .87 5 91 .56 - .04 .07 .05 .06 .05
CODE .24 24 .35 .30 34 .38 - 02 .05 .01 .03
PC .60 .63 Sl .62 31 .62 Sl - 23 11 .04
BLK 48 45 .58 49 46 49 31 42 - .04 .24
PA 53 52 54 .55 43 .58 22 73 .64 - .05
OA 24 41 .28 39 15 .35 14 .60 .67 54 -

h? 5 .62 .64 .58 .61 A2 49 34 .67 39 51
e? 25 .38 .36 42 .39 28 51 .66 33 .61 49

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. Mean genetic correlation between Verbal scale subtests = J2
between the Performance scale subtests = .48, between subtests from different scales = .44. Mean environ-
mental correlation between Verbal scale subtests = .12; between Performance scale subtests = .08; between
subtests from different scales = .09. Sample: 83 MZ twin pairs, 111 DZ twin pairs (same-sex and opposite-
sex twin pairs).

The heritability estimates closely resemble the univariate estimates and in
accordance with the univariate analyses higher heritabilities were obtained for the
Verbal scale subtests (58%-75%, 65% on average) than for the Performance scale
subtests (34%-67%, 48% on average). The lowest heritability estimates were again
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observed for Picture Completion and Picture Arrangement (34% and 39%, respecti-
vely). The AE model showed a reasonable fit. Next, the genetic and environmental
correlation patterns were examined in order to derive hypotheses about the under-
lying factor structure. The genetic correlations show a similar pattern as the
phenotypic correlations. The mean genetic correlation among subtests of the Verbal
scale and Performance scale were .72 and .48, respectively. The genetic correlation
among subtests loading on different scales averaged .44 and was almost equal to
the mean Performance scale correlation. This rather high correlation suggested a
General genetic factor influencing all subtests. The mean correlation among Verbal
scale subtests due to within-pair environmental influences (E) was small and
positive (.12), whereas that among the Performance scale subtests and among
different scale subtests was practically zero. The environmental correlations matrix
did not exhibit a clear pattern reflecting different effects for Verbal and Perfor-
mance subtests and therefore suggested a General E factor.

In subsequent multivariate model fitting, Model 2 (Table 2.6) was taken as
a reference for testing significance of 2 change for the modified factor models.
The AE Cholesky model was tested against a three-factor model (Model 3). In this
model the genetic structure was composed of three factors: a General additive
genetic factor, A (influencing all subtests); a Verbal genetic factor (Ay); a
Performance genetic factor (Ap); and Specific factors constituting unique genetic
variance for each subtests (Agp). Similarly, the non-shared environmental
influences were defined by three factors and specific factors: E; , Ey , Ep and Egp.
The Verbal factors were comprised of the subtests: Information, Comprehension,
Arithmetic, Similarity, Digit Span and Vocabulary; the Performance factors of the
subtests: Coding, Picture Completion, Block Design, Picture Arrangement and
Object Assembly; the General factors by all subtests. The three-factor model did
not lead to a significant increase in chi-square [Ay%(88) = 70.2, p = .88]. The
significance of the General factors (A and Ej) was tested next by fitting a two-
factor model (Verbal and Performance factor) with specifics for A and E (Model
4). The significant deterioration in fit [Ax2(22) = 164, p = .00] suggested that the
General factors could not be omitted.

Next, with Model 3 as a reference, more parsimonious structures for E were
tested. Model 5 hypothesizes only the General and Specific factors to account for
the unique environmental structure. This model resulted in a nonsignificant change
in 2 (Model 5). Because the lack of pattern in the E correlation matrix (low intra-
scale and between-scale environmental correlations) a model was tested with only
the Specific factor for the E structure (Model 6). The significant change in chi-
square indicated that the General E factor must be included in the model.
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Like the model fitting tests for E, more parsimonious structures for A were
examined. The three-factor structure for A was tested by specifying a single
General factor and Specifics (Model 7). As may be seen from the fit of this model,
a single factor model is not adequate to account for the genetic covariance matrix.
Next, a three-factor model for A (like Model 5) was tested, but the Specific factor
was dropped (Model 8). Apparently, the highly significant decline in fit proves
inclusion of the Specific genetic factors necessary. Thus, Model 5, specifying a
General, Verbal, Performance factor with Specific factors for the additive genetic
matrix and a General factor with Specific factors for the within-pair environmental
matrix, best accounted for the covariances among the subtests. The fit of Model
5 was good (X% = 208.5, p = .497).

In order to compare the present results with multivariate genetic analyses
results of the WISC (LaBuda et al., 1987), a model was fitted with the Cohen
factor structure imposed upon A with Specifics (Ayc , Apg » App and Agp) and
with a General factor with Specifics imposed upon E (Eg and Egp). In contrast
with LaBuda ef al. (1987), this model did not fit the data adequately, as can be
seen by the significant change in chi-square [}?),, = 328.9, p = .00; Ay*(11) =
120.4, p = .00]. This incompatibility could be explained by the fact that a general
genetic factor is crucial in explaining our data. In our adolescent twin sample
shared environmental influences could be left out in our model, whereas in the
WISC data these influences were significant. The first multivariate analyses results
of the WAIS (Tambs et al., 1986) yielded a model with a General factor and the
Cohen factors for A (Ag , Ayc » Apg » App) and a General factor with Specifics
for E (Eg and Egp). This model adds a general genetic factor to the LaBuda et al.
(1987) model and, consequently, when fitted to our data gave a better fit [¥?,,
=268.3, p = .014]. Compared to Model 5, however, this model did not fit adequa-
tely [Ax2(11) = 59.8, p = .00]. Just as with the LaBuda et al. (1987) model, this
bad fit could possibly be explained by the insignificant shared environmental
structure in our data. Instant comparison with the Casto et al. (1995) model was
impossible because of their different approach of using summed factor scores for
the genetic analyses. Thus, only factor (VC, PO and FD) specific E influences
were considered in the Casto model which contrasts with the significant subtest
Specific E factors in our data.

In the final step the significance of loadings in the factor structure of Model
5 was tested. All general additive genetic influences were significant. For the
Verbal additive genetic factor (Ay) loadings from Arithmetic and Digit Span were
nonsignificant; for Ap the loading of Coding and for Agp loadings of Arithmetic,
Similarities, Vocabulary and Object Assembly were nonsignificant. All specific
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environmental influences were significant, probably accounting for the error
variance specific to each subtest, but for E; the loadings of Information, Arith-
metic, Digit Span, Coding and Block Design were nonsignificant. In Model 9 all
12 nonsignificant loadings were set to zero [Ax(12) = 3, p = .99].

The question how the shared variance of the Raven and the WAIS is
mediated was addressed by including the Raven scores as a subtest in the multi-
variate design in order to examine the loading pattern on the latent A and E factors.
The Raven was included in Model 10 (Table 2.6) and allowed to load on all
genetic and environmental factors (y2,; = 260.1, p = .54). However, loadings on
Ay, Ap and E; were very weak and could easily be omitted without significant
increase in chi-square (Y24 = 265.2, p = .50) (Model 11). But what if, in addition
to the specific genetic variance, the Raven taps a quite different cognitive
processing structure than those underlying Verbal or Performance scales of the
WAIS? Therefore, a model was tested which allowed the Raven to load on a
distinct (fourth), orthogonal genetic factor. This did not improve the fit of the
model (X% = 341.6, p = .00). Going back to model 11, covariance of the Raven
test score with the other WAIS subtests was solely accounted for by the General
genetic factor. The mean genetic correlation of the Raven with the verbal subtests
was higher than with the performance subtests (.73 and .51, respectively). Genetic
and environmental correlations among WAIS subtests as well as heritability esti-
mates did not alter significantly when the Raven was included in the multivariate
analysis (Table 2.8). Heritability estimate for the Raven (65%) and the WAIS
subtests along with information about their precision in the form of likelihood
based 80% confidence intervals are reported in Table 2.9.
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Table 2.8
Genetic and non-shared environmental correlations for the WAIS subtests and the Raven test
score. Estimates are based on Model 11.

INF COM ARI SIM DS VOC CODE PC BLK PA OA Raven

INF - .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
COM 79 - .00 .14 .00 .14 .00 24 00 21 .11 .00
ARI o L - .00 .00 .00 .00 .00 .00 .00 .00 .00
SIM 87 91 .87 - .00 .05 .00 .09 00 .08 .04 .00
DS 58 57 713 .63 - .00 .00 00 .00 .00 .00 .00
voC .86 90 .84 99 .61 - .00 .09 00 .08 .04 .00
CODE 37 37 46 40 34 39 - .00 .00 .00 .00 .00
PC 58 58 74 64 54 62 34 - .00 .14 .07 .00
BLK 52 52 66 57 48 55 .30 .66 - .00 .00 .00
PA 53 53 67 58 49 56 31 59 .63 - .07 .00
OA 33 33 41 36 .30 35 .19 58 80 .57 - .00
Raven 69 69 87 76 .63 .73 40 64 57 58 36 -

Subtests: INF = Information, COM = Comprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit
Span, VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. Sample: 83 MZ twin pairs, 111 DZ twin pairs (same-sex and
opposite-sex twin pairs).

Table 2.9
Percentages genetic and environmental variance and heritabilities with 80% convidence intervals
for the WAIS subtests and the Raven test score.

% Variance accounted for by the genetic and environmental factors
Subtests  Ag Ay Ap Agp h? 80% CI Eg Egp e?

INF 48 10 - 18 76 71 - 81 - 24 24
COM 38 12 - 11 61 54 - 67 14 25 39
ARI 58 - - - 58 53 - 64 - 42 42
SIM 42 13 - - 55 49 - 60 2 42 45
DS 32 - 28 60 52 - 67 - 40 40
vocC 52 22 - - 74 69 - 78 1 25 26
CODE 15 - - 9 49 38 -58 - 75 51
pPC 16 - 3 11 30 19 - 40 11 59 70
BLK 30 - 23 16 69 63 - 74 - 31 31
PA 17 - 4 18 39 29 - 49 8 53 61
OA 8 - 41 - 49 41 - 57 2 49 3l
Raven 49 - - 16 65 59-171 - 35 35

Note. All values reperesent percentages. A; = General genetic factor, Ay = Verbal genetic factor,
Ap = Performance genetic factor, Agp = Specific genetic factor, E; = General environmental factor, Egp
= Specific environmental factor. 2 = heritability.
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Estimates of Model 11 (Figure 2.2) indicate that the variance in the subtest
Arithmetic is only accounted for by General genetic and Specific environmental
factors and the nonsignificant loading on the Verbal genetic factor suggests that
Arithmetic may not be a typical verbal tests (see also Table 2.9). The same holds
for Digit Span which also loaded non-significantly on Ay,. For the performance
scale it was the subtest Coding which did not seem to share variance with the other
performance subtests. These findings indicated some congruence with the third
extracted Cohen factor (Cohen, 1957) Freedom from Distractibility (App) on which
Arithmetic, Digit Span and Coding typically load. A model was specified in which
the subtests Arithmetic, Digit Span and Coding were allowed to load on a fourth
genetic factor (Agp) instead of being equalized to zero (2,4 = 210.5, p = .63).
Because this fourth factor might also arise from underlying environmental
influences a model was tested with an additional Eg, factor, loaded by these three
subtests (x%5 = 209.9, p = .64). The fit of these two models, compared to that
of Model 9, indicated that the nonsignificant loadings of Arithmetic, Digit Span
and Coding on the verbal genetic factor and their moderate genetic correlation
were due to neither a common influence of a distinct genetic Freedom of Distracti-
bility factor, nor to a distinct environmental Freedom of Distractibility factor.

DISCUSSION

Results of the present study provide information about the underlying factor
structures constituting individual differences in WAIS subtest scores. By means
of multivariate genetic analyses the phenotypic associations among the subtests
were decomposed into a part due to genetic and a part due to environmental
factors. The relative contributions of these factors and the extent to which
individual differences in the subtests are determined by the same factors were
estimated. The genetic correlations among subtests comprising the Verbal scale
and Performance scale indicated substantial communality within these scales. The
covariance structure of the additive genetic matrix could be adequately explained
by: a General factor (on which all subtests loaded), a Verbal, a Performance and
Specific factors. The covariance ‘structure of the unique environmental matrix
indicated one General factor with Specific factors to account for the environmental
variance.
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In contrast with earlier findings (Tambs ef al., 1986; LaBuda et al., 1987
and Casto et al., 1995), the influences of sharéd—family environment were
nonsignificant. The significant shared environmental influences for individual
differences in the WAIS-R subtest scores of the Tambs et al. study were low,
however, and were suggested to be interpreted with caution because of the small
sample size and relative low phenotypical correlations observed among subtests.
The significant shared environmental variance of the WISC-R data in the other
two studies was not surprising given the mean age of the samples (12.5 and 11.2
years, respectively). The effects of shared environment are suggested to decrease
as children begin their formal education, and non-shared family environment
becomes more important as children become adolescents (Scarr, 1983; Thompson,
1993, Boomsma, 1993).

Verbal scale subtests were strongly influenced by the General genetic factor
and moderately by the Verbal genetic and Specific genetic factors. Performance
scale subtests were more or less equally influenced by the General, Performance
and Specific genetic factors. The General environmental influences were low for
all subtests and the major part of the environmental variance was explained by
environmental influences specific to each subtest. Heritabilities for the Verbal
subtests were between 55% and 77% and for the Performance subtests between
30% and 70%.

The Raven is a widely used nonverbal test and claimed to measure analytic
intelligence, the ability to reason and solve problems involving new information,
without relying to heavily on acquired knowledge and skills. This implies a high
loading on g, and thus on the general rather than the group factors. Covariance
with the WAIS IQ subtests and other tests of mental ability was, therefore
expected to be mediate by general rather than group factors. The next question is,
whether this covariance is mediated by general genetic or by general environmental
influences. The covariance between the WAIS and the Raven was solely accounted
for by the General genetic factor. By revealing additional information about
underlying genetic and environmental factor structures, multivariate genetic
analysis has helped answering the question about the nature of the General factor
of intelligence (g). The construct g refers to the variance component of individual
differences in IQ that is common to all tests of mental ability. The psychometric
aspects of g are well established empirically, and now research is focusing on the
biological basis of g (Jensen, 1993). In this search establishment of a genetical
basis of g is of great importance. The covariation among the WAIS subtests and
the covariation between the subtests and the Raven in our data is predominantly
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influenced by a General genetic factor and support the notion of a biological basis
of g.

As shown in this paper, genetic covariance structure models can be fitted
to phenotypic data from genetically informative subjects by means of stringent
maximum likelihood (ML) techniques. Not very long ago such a strict adherence
to ML techniques could only be accomplished by taking recourse to special
purpose software. Nowadays, ML-based quantitative genetic modelling can be
accommodated by commercially available software, such as LISREL or Mx.
Multivariate genetic covariance structure analysis can also be accommodated in
these programs in a natural way. The multivariate extension of genetic linear
structural equation models has recently made apparent a number of possible
generalizations of these models. These generalizations involve applications to the
genetic analysis of repeated measures or longitudinal data, and the estimation of
single-subject common genetic and environmental factor scores, the study of
genotype X environment interaction (Molenaar & Boomsma, 1987; Molenaar et
al., 1990) and the decomposition of phenotypic means (Dolan, Molenaar &
Boomsma, 1992). Behavior genetics has now even moved beyond estimation of
heritabilities: likelihood based confidence intervals (CI) provide information about
the precision of the estimates (Neale & Miller, 1996). Confidence intervals can
provide information about differences in heritability between variables. If two
intervals are non-overlapping, which is the case for example for Information and
Arithmetic, one may conclude that heritabilities of these subtests are significantly
different.

The advantage of multivariate genetic analysis is that it can reveal additional
information about underlying genetic and environmental factor structures that can
be quite different from the observed phenotypic factor structure (Heath ez al.,
1989a, 1989b). In our data this is demonstrated by the fact that the phenotypic
factor structure was only mirrored in the genetic component in variance but not
in the unique environmental structure. Another obvious advantage is indicated by
the difference in fit between the phenotypic factor analysis (235 = 56.4, p = .02,
which reflects a bad fit) and that of model 11 ()24 = 265.1, p = .50, which
reflects a good fit). Therefore, genetic research focusing upon the analysis of scale
scores or factor scores derived by traditional (phenotypic) factor analysis, might
be misleading (Heath ef al., 1988). Differences in heritability estimates of scale
scores can arise through differences in subtest reliability, subtest loadings on one
or more underlying genetic common factors, or in subtest specific genetic factors.
With multivariate genetic analysis, however, these different possibilities can be
resolved with information contained in the intertwin, intersubtest correlations about
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genetic and environmental correlations between subtest scores (Heath et al., 1989;
Heath & Martin, 1990).

Quantitative genetic theory offers a strong foundation for the application
of structural equation models in behavior genetics and genetic epidemiology
because unambiguous causal relationships can be specified. For example, genes
’cause’ a certain variable like cognitive abilities or blood pressure and parental
genes determine those of children and not vice versa (Rao, 1991). Quantitative
genetic research, by means of multivariate genetic analyses, has established the
importance of genetic factors in many complex behaviors such as personality and
cognitive abilities and has also provided an empirical guide and conceptual
framework for the application of molecular genetics by identifying the most
heritable domains of behavior and the specific genes that contribute to genetic
variance in complex behaviors (Plomin, Owen & McGuffin, 1994).

Beyond the current study, the power of the multivariate genetic approach
is applied to the search for quantitative trait loci (QTL). Until very recently genes
that underlie continuously distributed quantitative characteristics such as behavior,
were thought impossible to map and identify. With the availability of highly
polymorphic DNA markers and improvements in linkage methodology, the
localization of genes underlying complex traits has become possible. Several
strategies have been developed to map QTL, that are based on identifying marker
alleles that are inherited identical by descent (IBD). The methods that study the
genetic linkage of a quantitative trait and a polymorphic marker in data from for
example sibling pairs, suppose that if a marker is co-segregating with a quantitative
trait, then siblings whose trait values are more alike, are more likely to receive the
same alleles IBD at a closely linked marker locus than siblings whose resemblance
for the trait is less. However, even with large numbers of highly polymorphic
markers the power to detect a single locus that influences quantitative traits is low
(e.g. Blackwelder & Elston, 1982). One strategy to increase the power to detect
QTL is to reduce the environmental variance in the trait under study. This can be
accomplished by using multivariate observations to estimate (extreme) individual
genotypic values at a QTL, that pleiotropically affects more than one trait. The
genetic scores (instead of phenotypic observations) are investigated in relation to
the genetic markers (Boomsma, 1996).

It is not clear to what extent the relations between IQ and its biological
correlates are genetically or environmentally mediated. Multivariate genetic
analyses of specific cognitive abilities suggest that genetic influences substantially
overlap, although some genetic effects are unique to each ability. These findings
imply that there may be a common set of genes associated with these cognitive
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abilities (PLomin, Owen & McGuffin, 1994). Application of molecular genetic
techniques are now being considered to look for multiple loci that affect
quantitative traits such as intelligence. Molecular genetics might profit from
focusing on results of multivariate genetic analyses which indicate what cognitive
abilities have in common. Recently the first allelic association study to identify
QTL associated with high versus low IQ (Plomin et al., 1994) has been conducted.
Frequency differences were investigated in 60 DNA markers, related to genes
thought relevant for neural functioning, in a low and high performing group of
children. The findings were not replicated (Plomin et al., 1995) due to limited
statistical power. Despite skeptism, however, QTL research on IQ and other human
behavior is progressing. An important advance in QTL research on cognitive
disabilities was made in the context of reading disability (Cardon et al., 1994).
Identification of the functional genes that cause the disorder can improve risk
assessment and early diagnosis.
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Genetic analysis of peripheral
nerve conduction velocity in twins'

F.V. Rijsdijk, D.I. Boomsma and P.A. Vernon

ABSTRACT

We studied variation in peripheral nerve conduction velocity (PNCV) and intelli-
gence in a group of sixteen year-old Dutch twins. It has been suggested that both
brain nerve conduction velocity and PNCV are positively correlated with intelli-
gence (Reed, 1984) and that heritable differences in NCV may explain part of the
well established heritability of intelligence. The Standard Progressive Matrices test
was administered to 210 twin pairs to obtain IQ scores. Median nerve PNCV was
determined in a subgroup of 156 pairs. Genetic analyses showed a heritability of
.65 for Raven test scores and .77 for PNCV. However, there was no significant
phenotypic correlation between IQ score and PNCV.

INTRODUCTION

Understanding the nature of human intelligence must include knowledge of the
underlying neurophysiological factors and processes that contribute to variance in
this trait. Among features like the electroencephalogram (Courchesne, 1978), regio-
nal cerebral blood flow (Phelps ef al., 1982; Risberg, 1986) and cortical glucose
metabolism (Chase et al., 1984), peripheral nerve conduction velocity (PNCV) has
been investigated as a potential biological determinant of intelligence. Nerve con-
duction velocity is the speed with which electrical impulses are transmitted along

U This chapter is a slightly revised version of publication in Behavior Genetics, 1995, 25,
341-348.
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nerve fibres and across synapses.

Peripheral nerve conduction velocity is a well established, extensively studied
neurological trait in humans for diagnosing neuromuscular and neurological
diseases (Desmedt, 1980 ; Oh, 1993). Nothing is known about causes of variation
in PNCV in humans. In animal studies low to median heritabilities have been
observed. Hegmann et al. (1973) found a significant heritability in mouse tail NCV
(narrow-sense heritabilities of .1 to .2; broad-sense heritabilities of .2 to .3). Tail
PNCV also correlated with certain behaviours like open-field activity and defecati-
on (Hegmann, 1979). Reed (1988) found a significant narrow-sense heritability
in mouse tail PNCV of .23. He suggested that in large natural populations of
mammals, including humans, the heritability of PNCV could be considerably
greater because the genetic variability of randomly bred laboratory mouse colonies
derived from inbred strains is probably much less than that of natural populations.
Body length in heterogenous-strain mice, for example, has a heritability of .21 +
.05, which is much smaller than the heritability of around .8 in humans. According
to Reed, a heritability of .5 or more for PNCV in humans may be a reasonable
estimate.

Three components of nerve action potentials can be distinguished. Onset
PNCV and peak PNCV measure the conduction speed in the fast-conducting
(large-diameter) nerve axons and the average-conducting (average-diameter) nerve
axons, respectively, while end PNCV involves slow-conducting (small-diameter)
axons (MA & Liveson, 1983; Oh, 1993). Onset PNCV is commonly used in
studies examining the relation between IQ and PNCV, because it reflects conducti-
on of the fast nerve fibres. A high IQ is suggested to be a consequence of faster
speed-of-information-processing (SIP) and, hence, of faster and more efficient
central nervous functioning (e.g. Vernon, 1993). Reed (1988) suggested that
genetic variation in NCV might account for heritable differences in IQ.

Twin and family data support the existence of genetic influences upon human
cognitive abilities. Approximately 50%-60% of the phenotypic variance in IQ is
associated with genetic differences among individuals (Bouchard & McGue, 1981;
Plomin, 1991; Boomsma, 1993). Reed (1984) hypothesized that NCV and intelli-
gence might be correlated as a result of genetic variability in the structure and
amount of transmission proteins which set limits on information processing rates
and, hence, on intelligence. Higher NCV may allow higher SIP and thereby
contribute to higher IQ test scores (Vernon, 1993, Reed, 1984).

Recently, Vernon and Mori (1992) reported correlations of .43 and .46
between PNCYV in the median nerve and IQ score on the MAB (Multidimensional
Aptitude Battery) in two independent samples (N = 85 and N = 88) of Canadian
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university students. However, Barrett et al. (1990) found no correlation between
median PNCV and Raven Advanced Progressive Matrices in 44 British adults and
Reed and Jensen (1991) also failed to find a relation between median nerve
conduction velocity and IQ in 200 Californian students.

The present study was designed to study the heritability of PNCV in humans;
to determine the correlation between PNCV and a measure of intelligence; and to
investigate to what extent this correlation is influenced by genetic factors. IQ
scores were determined for 210 sixteen year-old Dutch twin pairs by the Raven
Standard Progressive Matrices Test. Complete data for median nerve conduction
velocity were available from a subgroup of 156 pairs.

SUBJECTS AND METHODS

Subjects

Four hundred twenty-six adolescent Dutch twins (mean age, 16.13; SD, 0.56)
participated in the experiment. Mean age was equal for males and females. Addres-
ses of the twins were obtained from municipal authorities. Subjects had earlier
participated in a large questionnaire study on personality and lifestyle factors such
as physical activity level, alcohol consumption (Koopmans ef al., 1993) and
smoking (Boomsma ef al., 1994). A subsample of the twins who enrolled in this
questionnaire study currently take part in a longitudinal EEG and ERP study in
which genetic and environmental influences on brain development are examined.
This PNCV-IQ study was part of the EEG/ERP project. NCV and IQ data presen-
ted in this paper were collected at the first visit of the twins to the laboratory.

IQ data were available for 38 MZM, 36 DZM, 51 MZF, 37 DZF and 48 DOS
twin pairs. For IQ data three outliers (1 DZM, 1 MZF and 1 DZF) were removed
because of questionable test circumstances (e.g. noisy, distracting room). Nerve
conduction data were available for 25 MZM, 20 DZM, 42 MZF, 30 DZF and 39
DOS twin pairs. Missing NCV data for one or both twins in a pair were due to
technical and procedural problems (e.g. difficulty in palpation of the nerve). To
date, for 104 same-sex twins zygosity was determined by blood and DNA typing,
for the other same-sex pairs by a questionnaire filled in by the mother. Questions
were asked about physical similarity (face, hair structure, and eye, hair and skin
color) and about the frequency of confusion of the twins by family members and
strangers. In 16 cases zygosity was determined by a questionnaire completed by
the twins themselves. In the subgroup of 104 same-sex twin pairs, questionnaire
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data were available for 86 pairs. The percentage correctly classified zygosities of
the questionnaire compared with blood group polymorphism was 88%.

Intelligence Test
The Raven Standard Progressive Matrices Test (Raven, 1958) was administer-
ed without a time limit. The IQ score was simply the number of correct answers.

Physical exercise

Reed (1993) has suggested that physical exercise could be a covariate of
peripheral NCV and should be controlled for in studies examining correlations
between PNCV and 1Q. Data on sports participation and average weekly physical
activity level were obtained from the questionnaire study for 216 subjects; 85
males and 131 females (Koopmans et al., 1994).

Nerve conduction velocity
PNCVs were determined for the wrist-elbow segment of the median nerve of
the right arm. The median nerve is a mixed motor and sensory nerve.

Action potential acquisition apparatus

Subjects were tested in an electrically shielded sound proof cabin. Orthodromic
electrical stimulation of the median nerve was accomplished using a ELTRON G-F
437 (Enraf Nonius) stimulator. The stimulator, two surface electrodes provided
positive, 0.05 msec long, constant current electrical pulses. Current stimulation was
available from 0 to 75 mA. A skin thermistor probe, placed on the middle of the
arm, provided continuous temperature readings. The probe and stimulator were
under control of an Olivetti M28 PC, which also controlled a heating pad, wrapped
around the arm. The stimulator was only effective if arm temperature was 33°C
and the heating pad was switched off. A Nihon Kohden AB-601G Bioelectric pre-
amplifier unit was used for signal amplification. Filters were set at an upper fre-
quency limit of 1 KHz and at a lower limit with a time constant of 3 msec. The
pre-amplifier was connected to a digital sampling oscilloscope (DSO) PM 3355
(Philips), sampling at 50 KHz per channel. All signals were monitored directly on
the DSO and via a GPIB-PC2/2A Handler (National Instruments) on the PC termi-
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nal. Recording and reference electrodes were standard EEG silver-chloride 9 mm
disc electrodes filled with NaCl electrode gel.

Action potential acquisition procedure

Phase 1. After locating the nerve via palpation, the stimulating electrodes were
placed at the elbow, anode most distal. The stimulating current was slowly increa-
sed to determine whether the innervated fingers of the median nerve were effected
(thumb, index, middle and lateral part of the ring finger).

Phase 2. The skin on all test sites was cleaned with alcohol and lightly abraded
with a scrub paste. The stimulating electrodes were placed at the wrist with a
centre-to-centre distance of 30 mm (anode most proximal). A recording electrode
(most distal) and a reference electrode were applied in the elbow (30 mm centre-
to-centre distance) and together with a ground electrode connected to the
preamplifier. Impedances between electrodes were below 5 KQ.

The current value beyond which the amplitude of the nerve action potential
no longer increased was used as the supra maximal level (SML). At the SML all
nerve fibres of the median nerve are being stimulated. The subjects were given
2 series of 8 stimuli at a rate of 1 per second with the SML, each series yielding
a signal averaged action potential (AP).

NCV computation

From the two APs 3 latencies (components) were determined: the time from
shock onset to the first deviation from baseline (onset latency); to the peak (peak
latency) and to the end (end latency). Dividing wrist-elbow distance in millimetres
(centre-to-centre distance between the recording electrode and the closest pole of
the stimulating electrode) by the average latencies of the two APs (milliseconds)
gave the onset PNCV (ONCV), peak PNCV (PNCV) and end PNCV (ENCV) for
the nerve segment.

Statistical analyses

The effect of sex on mean IQ and PNCV measures was assessed by likeli-
hood-ratio chi-square tests using the computer program LISREL7 (Joreskog &
Sorbom, 1988). These tests were used to compare the fit of a model that con-
strained parameter estimates for mean IQ and PNCVs to be equal across sexes to
one which allowed them to vary in males and females, while taking into account
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the dependency that exists between observations from twins (Boomsma et al.,
1993).

Genetic analysis

Genetic model fitting was carried out on variance-covariance matrices of the
5 different sex-by-zygosity groups. Genetic models specified variation in phenotype
to be due to genotype and environment. Sources of variation considered were A,
additive genetic variation (i.e. the sum of the average effects of the individual
alleles at all loci); D, dominance genetic variation (interaction of alleles at a given
locus, summed over all loci) and E, a random environmental deviation that is not
shared by family members. We assume that the phenotypic variance can be expres-
sed as a simple additive function of additive genetic effects (A), dominance genetic
effects (D) and specific environmental effects (E);
Vp =V, + Vp + Vg
The relative contributions of genetic and environmental influences to individual
differences were estimated by maximum likelihood, using the computer program
Mx (Neale, 1991). PRELIS, the preprocessor of LISREL, was used to compute
the variance-covariance matrices of the observations. Sex differences in covariance
structure were examined by comparing the fit of an ADE model with the parame-
ters constrained to be the same for males and females to the fit of an unconstrained
ADE model. Goodness-of-fit was assessed by likelihood-ratio 2 tests. The overall
X? tests the agreement between the observed and the predicted variances and
covariances in the 5 groups. A large %2 (and a low probability) indicates a poor
fit, while a small 2 (accompanied by a high p-value) indicates that the data are
consistent with the model. Submodels were compared by hierarchic 2 tests, in
which the ¥?2 for a reduced model is subtracted from that of the full model. The
degrees of freedom (df) for this test are equal to the difference between the df for
the full and the reduced model (Neale & Cardon, 1992).

RESULTS

Figure 3.1 shows the distribution of the raw scores for onset PNCV and the Raven
test. The raw scores for onset PNCV showed acceptable symmetry (skewness .344;
kurtosis .053) (Figure 3.1A). The Raven test score distribution (Figure 3.1B) was
negatively skewed (skewness -.977; kurtosis 1.66), and a quadratic transformation
was used to obtain a more symmetric distribution (skewness -.485; kurtosis .273).
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Height, temperature, age (Oh, 1993; Stetson et al., 1992) and physical exercise
level (Reed, 1994) are possible confounders of PNCV. Arm temperature was
controlled for and showed no correlation with PNCV. The PNCV measures also
showed no correlation with age and physical exercise level for males and females.
All three PNCV measures were correlated with height in males (.20, .21 and .27;
p < .05), but not in females.
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Figure 3.1

(A) Onset PNCYV distribution. The X axis represents the nerve conduction velocity (m/s).
(B) Raven test score distribution. The X axis represents the number of correct items.

In Table 3.1 the means and standard deviations for the Raven test score, the PNCV
measures and height are presented. There are no differences between males and
females for the Raven test score, peak PNCV, end PNCV measures and SML.
Males and females differed for onset PNCV [x2(1) = 10.87] and height [}*(1) =
135.85].
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Table 3.1
LISREL estimates of means and standard deviations for the Raven, PNCV measures and height.
Males Females Sex differences
M SD M SD Ax2(1)
Raven 49.3 6.4 49.3 5.6 .37
Onset PNCV (m/s) 62.3 7.7 65.2 8.3 10.87"
Peak PNCV (m/s) 49.9 6.0 49.9 5.2 )
End PNCV (m/s) 39.5 5.1 39.5 44 .65
SML (mA) 383 106 38.3 9.3 1.75
Height (cm) 176.9 7.8 168.3 53 135.8"

Raven = number of correct items. SML = Supra Maximal Level (mA = milli Ampére).
* = Ax?(1) > 3.84 and implies significant difference between males and females. For PNCV, SML and
Height: 129 males and 183 females. For the Raven: 196 males and 224 females.

The PNCV means of 63.8 m/s (onset PNCV) and 49.7 m/s (peak PNCV) for the
total population (N = 312) agree with values reported in the literature for adults
(age range, 20 - 60) : 64.5 + 4.28 and 55.99 + 3.30 respectively (Oh, 1993). Onset
PNCV showed high correlations with the other two PNCV measures; 0.88 (p <
.001) with peak PNCV and 0.71 (p < .001) with end PNCV. For onset PNCV a
test-retest reliability of 0.80 was found in a group of 13 university students,
measured two weeks apart.

Table 3.2
Twin correlations for the Raven, PNCV measures and height.

Raven onset PNCV peak PNCV end PNCV Height
MZM 76" 72" 75" 3" 98"
DZM 5] 15 14 14 37"
MZF 52" 74" 68" 70" 88"
DZF 31" 46" 40 43" 17
DOS 50" 17 12 -.05 58"

¥ = p < .05. For Raven-IQ: 38 MZM, 36 DZF, 51 MZF, 37 DZF and 48 DOS twin pairs. For PNCV
measures and height: 25 MZM, 20 DZM, 42 MZF, 30 DZF and 39 DOS twin pairs.
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No significant correlations between the PNCVs and the Raven test scores were
observed for males or females. The correlation between the Raven test scores and
Supra Maximal Level was also non-significant. Removing subjects with a Raven
score less than 40 correct items, did not improve the correlations between the
PNCVs and Raven test score.

The twin correlations for the Raven test score, the PNCV measures and height
are given in Table 3.2, showing higher MZ than DZ correlations for all measures.
The pattern of the male twin correlations (high MZ and low DZ correlations) for
the Raven test score suggests dominance genetic effects. Therefore, a univariate
ADE model for males and AE model for females was tested against the AE sex-
differences model. For IQ the dominance component could be omitted from the
model without a significant detoriation in fit and the reduced AE no-sex-differences
model gave the most parsimonious explanation of the data (23 =23.93, p=.032).
Heritability for the Raven test was 65% (V = 20.02; Vg = 10.95). The height-
PNCV relationship was examined by a Cholesky triangular decomposition with
height entered as the first variable and the NCV phenotypes as the second variable.
Figure 3.2 shows the model for one member of a twin pair, where A and E are
the genetic and environmental influences common to height and PNCV, and Ag
and Eg are the genetic and environmental influences specific to PNCV. The effects
of A and E on height are represented in the parameter &, and e, and the effects
of Ai and E on PNCV in /', and €’ . In Table 3.3 bivariate analyses results are
presented. Models which tested dominance genetic effects did not show a better
fit than models where the dominance factor was omitted. A model without sex
differences did not show a good fit to the data because of the significant difference
in heritability for height between males and females. Therefore a model was tested
which constrained the total genetic and environmental variance in PNCV to be
equal for males and females and allowed the variation in height to vary across
gender. Thus, for PNCV [(7’ )% + (h)?] mates = [(B°)? + (h)*] gemales and [(e”,)?
+ (€] smates = [6€° P + (€] femates implying no sex differences in heritability
for PNCV. This model showed the best fit for onset, peak and end PNCV. In
Table 3.4 the standardized parameter estimates for the best fitting models are pres-
ented. The covariation of height with the PNCV phenotypes was genetically
mediated in females and influenced by A and E in males. However, the overall
covariation of height and PNCV was small. The heritabilities for onset PNCV,
peak PNCV and end PNCV before controlling for height were 76%, 68%, and
64%, respectively and after controlling for height 76%, 70% and 66% in females
and 76%, 74% and 70% in males, respectively. Heritabilities for height were 86%
for females and 96% for males.
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Figure 3.2

Cholesky triangular decomposition for height with PNCV. A and E reflect the genetic and
environmental influences common to height and PNCV. Ag and Eg reflect the genetic and
environmental influences specific for PNCV.

Table 3.3
Bivariate genetic model fitting results of height with PNCV measures.

onset PNCV peak PNCV ~ end PNCV
Model df i p e p w2 p
ADEsd PNCV & height 32 30.94 52 33.66 .39 40.24 B i)
ADE 1o ABp e 35 32.16 .62 34.69 .48 40.24 25
AEsd PNCV & height 38 3479 .62 38.82 .43 46.90 A5
AEsd height 40 36.89% .61 40.25% .46 48.86* .16

For all PNCV measures the best fitting model included a constraint for keeping the total genetic and
environmental variance for PNCV equal for males and females, while for height variances were allowed

to vary across gender. sd = sex-differences, * = best fitting model.
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Table 3.4
Genetic and environmental specific and common effects of the bivariate model of height with
PNCV measures.

Genetic & environmental Genetic & environmental Genetic & environmental
specific effects for PNCV common effects for PNCV common effects for height

Females Males Females Males females Males

hy e hy e s @, & 2 h, e, h, e,

Onset 7.112 3991 6.970 3925 0.705 0.0 1579 0721 4958 2007 7.832 1.587
PNCV

Peak  4.679 3.049 4.652 2739 0.586 0.0 0769 1342 4958 2012 7.816 1.584
PNCV

End 3766 2.682 3.735 2.415 0.725 0.0 0872 1.168 4.954 2016 7.800 1.586
PNCV

For all PNCV measures the total genetic and the total environmental variance are equal for males and
females: ((hs)z"'(h,c)z) males = ((hsl)"'(h ’c)z) females ((es)2+(e'c)2) males = ((es)2+(e’c)2) females®

DISCUSSION

This study is the first to determine the heritability of PNCV in humans. As Reed
(1988) predicted, a large heritability of 76% was found for onset PNCV which
would make PNCV an interesting quantitative genetic trait that could potentially
explain genetic differences on human intelligence.

The test-retest correlation of .80 for onset PNCV (N = 13) implies a reliability
index of .64 (r2). The onset PNCV heritability of .76, therefore, suggests nearly
all reliable variation in PNCV to be heritable.

For the Raven test score we obtained a heritability estimate of 65%. Although
the genetic model for the total score on the Raven did not show a very good fit
to the data, the heritability estimate is in line with most of the other studies on
adolescent and adult IQ (for reviews see Plomin (1988, 1991); Boomsma (1993)
and Vernon (1993).

However, no significant correlation between PNCV and IQ was found in our
sample. The mean PNCVs are in agreement with the values reported in the litera-
ture (Oh, 1993) for the same nerve segment and technique, but our standard
deviations for both males and females were higher (7.7 and 8.3 versus 4.3 and 6.0;
and 5.2 versus 3.3 for onset and peak PNCV, respectively). These standard devia-
tions were also higher than those reported by Vernon and Mori (1992). However,
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it does not seem likely that these differences in standard deviations can explain
the absence of a correlation between PNCV and 1Q.

Reed (1993) found increased brain NCV and peripheral NCV in mice as a
result of environmental enrichment and physical exercise. Because human data also
indicate increased PNCV as a result of increased activity, physical exercise level
is proposed to be an important covariate which should be taken into account when
studying the relationship between PNCV and IQ. Reed suggested that lack of
information on physical exercise status may explain, at least in part, the contra-
dictions among studies that correlate median nerve PNCV with IQ level. We,
however, found no correlation between physical activity level and PNCVs.

Our results contrast sharply with those observed in two samples by Vernon
and Mori (1992). They found correlations between PNCV and IQ of .43 (N = 85)
and .46 (N = 88). In our study, arm temperature was experimentally controlled and
supramaximal stimulation was used to measure PNCV just as in the studies of
Vernon and Mori. A possible explanation for the lack of correlation between
PNCV and IQ, therefore, is the use of the Raven IQ test. This lack of correlation
is consistent with results from Jensen and Reed (1991), who found no correlation
between median nerve arm PNCV and IQ scores in two groups of students. In their
university students, IQ was measured with the Raven Advanced Progressive
Matrices and for their community college students, the Standard version was used.
Barrett et al. (1990) also reported no correlation between the advanced form of
the Raven test and PNCV.

The correlations of .43 and .46 between PNCV and IQ found by Vernon and
Mori were obtained using the MAB. The MAB is a group test of intelligence
patterned after and highly correlated with the WAIS-R (.91 for Full-Scale 1Q,
Jackson, 1984). The correlation of the Raven Advanced Progressive Matrices with
the WAIS Full-Scale IQ is .72 (Vernon, 1983) and is even lower with verbal IQ
and performance IQ (.57 and .69, respectively). The fact that Raven IQ and WAIS
IQ only have around 50% of their variance in common may account for the
absence of a phenotypic correlation between Raven IQ score and PNCV. (Though
see Wickett & Vernon (1994), who failed to find a significant correlation between
MAB IQ scores and PNCYV in a sample of adult females). Our subjects are current-
ly participating in a second PNCYV study in which the WAIS is administered. The
results from this study will resolve the issue of wether use of the Raven IQ test
is an explanation for the failure to confirm the positive correlation between
peripheral conduction velocity and IQ level.
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Genetic mediation of the correlation between
peripheral nerve conduction velocity and IQ!

F.V. Rijsdijk & D.I. Boomsma

ABSTRACT

Variation in peripheral nerve conduction velocity (PNCV) and intelligence was
studied in eighteen year-old Dutch Twins. It has been suggested that both brain
nerve conduction velocity and PNCV are positively correlated with intelligence
(Reed, 1984) and that heritable differences in nerve conduction velocity may
explain part of the well established heritability of intelligence. The relationship
between IQ, obtained with the Wechsler Adult Intelligence Scale, and median
nerve PNCV was examined in 159 twin pairs. Genetic analyses showed a heritabi-
lity of 81% for IQ and 66% for onset PNCV. The small but significant phenotypic
correlation between IQ and onset PNCV (.15) was entirely mediated by common
genetic factors. Analyses of difference scores for PNCV of this study and PNCV
from the same subjects collected at age sixteen, suggest that there might still be
development in PNCV in this age interval. This maturation is highly controlled
by genetic factors. It is suggested that variation in IQ that is associated with nerve
conduction velocity, only becomes apparent after the developmental processes in
peripheral nerves are completed. This is in line with the suggestion of increasing
heritability of IQ in adulthood.

1 Accepted for publication by Behavior Genetic, 1997, 27 (2).
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INTRODUCTION

The strong heritability for psychometric intelligence is well established. Twin and
family data support the existence of genetic influences upon human cognitive
abilities. Approximately 50%-60% of the phenotypic variance in adult IQ is
associated with genetic differences among individuals (Bouchard & McGue, 1981;
Plomin & Rende, 1991; Boomsma, 1993; Bouchard, 1993). Since genetic polymor-
phisms code for biological differences, these findings give strong evidence for the
existence of biological determinants of intelligence differences between individuals.
This biological intelligence is influenced by genes which code for neurophysiolog-
ical and biochemical factors and processes in the brain, but can also be modified
by environmental factors. Despite the considerable practical applications of
psychometric IQ it remains an uncertain mixture of capacity and acquired
knowledge and a more complete understanding of the nature of human intelligence
should include knowledge of biological intelligence (Eysenck, 1993).

Among a great number of biological variables, peripheral and central nerve
conduction velocity have been investigated as potential biological determinants of
intelligence. Nerve conduction velocity (NCV) reflects the speed with which
electrical impulses are transmitted along nerve fibres and across synapses. Reed
(1984) hypothesized that the heritability of IQ may be a result of genetic variability
in the structure and amount of ’transmission proteins’ which set limits on
information processing rates and on intelligence. Transmission proteins include
enzymes involved in myelin sheathing and neurotransmitters (which are synthesised
by specific enzymes). Genetic variability in the structure and amount of trans-
mission proteins may determine information processing rates. Reed (1988)
suggested that peripheral nerve conduction velocity (PNCV) as a quantitative
genetic trait may model central nerve conduction velocity. PNCV is a relatively
easy obtainable measure of nerve conduction speed. In humans, it is a well
established, extensively studied neurological trait, used for diagnostic purposes in
neuromuscular and neurological diseases (Desmedt, 1980 ; Ma & Liveson, 1983;
Oh, 1993). The genetic background of PNCV variation was first studied in mice
populations by Hegmann et al. (1973), who observed low to median heritabilities
in tail PNCV (narrow-sense heritabilities of .1 to .2; broad-sense heritabilities of
.2 to .3). Reed (1988) also found heritabilities of .23 =+ .05 for tail PNCV in mice.
In humans, the genetic architecture of PNCV was studied in twins (Rijsdijk et al.,
1995) and was, as predicted by Reed (1988), a substantially heritable trait. The
heritability for median nerve conduction velocity, computed for onset latencies of
orthodromically assessed compound mixed nerve action potentials, was 76%.
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Variation in PNCV has been studied in relation to individual differences in
intelligence.

Table 4.1 provides an overview of the results of studies conducted on peri-
pheral NCV and IQ. Vernon and Mori (1992) reported correlations between PNCV
in the median nerve and IQ score on the MAB [Multidimensional Aptitude Battery,
(Jackson, 1984)] in two independent samples of Canadian university students: .43
(N = 85) and .46 (N = 88). They concluded that a general factor of neural
efficiency is a major aspect of psychometric IQ. However, Barrett et al. (1990)
found no correlation between median NCV and Raven Advanced Progressive
Matrices in 44 British adults. Wickett and Vernon (1994) also failed to replicate
the findings of the earlier studies of Vernon and Mori (1992), submitting the same
IQ test and PNCV procedure to a smaller sample of 38 females (20 to 30 years
of age). Reanalyses of the data of 1992, yielded sex difference in the relationship
between PNCV and IQ, with a pronounced correlation in males. Wickett and
Vernon speculated that males may rely more heavily on neural speed to perform
cognitive tasks, whereas for females other neural processes might play the
predominant role.

In addition to these studies of peripheral NCV and IQ, two other studies
investigated the relation between peripheral NCV, central NCV and IQ simulta-
neously. Reed and Jensen (1991) divided latencies of visual evoked potentials
(VEP) by head length to obtain an indicator of central NCV. The latency of a VEP
reflects the speed of conduction along the primary visual pathway (retina-thalamus,
v1). Reed and Jensen found no correlation between visual pathway NCV and 1Q
(though, an earlier report (1989) from the same project gave correlations of .27
and .37 between visual pathway NCV and IQ). There was no correlation between
peripheral NCV and the visual pathway NCV, nor between peripheral NCV and
IQ (N = 200).

Reed and Jensen (1993) also studied the relation between central NCV, peri-
pheral NCV and IQ by means of Somatosensory evoked potentials (SEPs). SEPs
are electrical signals recorded from the scalp over the relevant part of the
somatosensory cerebral cortex following stimulation of some peripheral nerve.
Three SEPs are usually observed following one single stimulation of the median
nerve at the wrist. N13 is generated in the region of the cervical spinal cord, N19
is generated in the thalamus and P22 is generated in the somatosensory cortex. The
Latency of the N13 represents peripheral conduction time. The latency difference
P22 - N19 represents the thalamus - parietal cortex transmission time and reflects
brain conduction time. The P22 - P19 latency difference correlated negatively with
IQ (r = -.22). Peripheral laténcy (wrist to cervical spinal cord) did not correlate
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with IQ. This finding was in agreement with the previous study of the same popu-
lation (Reed & Jensen, 1991), where no correlations were found between median
nerve NCV and IQ. Inadequate temperature control in both studies (statistically
instead of physically) should be considered when evaluating these findings as
temperature is regarded the most important source of error -that can affect the
assessment of peripheral NCV (e.g. Kimura, 1984; Rivner, 1990; Oh, 1993; Letz,
1994). Reed and Jensen did not report on the correlation between peripheral and
central tract latencies, nor did they report on velocity measures for the peripheral
and central tracts.

Several studies have examined the relation between other measures of central
conduction speed and IQ. A rational for these investigations is given by the myelin
hypothesis (Miller, 1994), which postulates that higher intelligence is associated
with larger brain size. Positive correlations between brain size and intelligence
have been found in studies using magnetic resonance imaging, (e.g. Wickett et al.
1994; Willerman et al., 1991; Raz et al., 1993, Schultz et al., 1993). Miller
proposed that thicker myelin sheaths could be the major explanation for the
positive correlation between brain size and 1Q. Thicker myelin sheathed nerves
are faster, prevent accidental signalling in adjacent neurons and therefore are
associated with faster speed-of-information-processing and higher intelligence
(Miller, 1994).

Clearly, there are studies which found a significant relationship between peri-
pheral NCV and IQ and between central NCV and IQ but in the studies that inves-
tigated the three measures simultaneously, there was no evidence that peripheral
NCV was correlated with central NCV. However, besides experimental artifacts
like temperature control, the absence of a peripheral to central NCV correlation
may be real. There are differences in peripheral and central nervous system
properties that should be considered. Myelin, the membrane characteristic of
nervous tissue that is responsible for transmission velocity, is formatted and main-
tained by oligodendrocytes in the central nervous system. In the peripheral nervous
system the Schwann cells are the myelin-forming cells. These cells differ in a
number of ways, e.g. in the way of controlling the formation of myelin, in the
coding for production of myelin, in their origin and in their biochemics and
structure. A single oligodendrocyte maintains as many as 30-50 internodes of
myelin. In contrast, a single Schwann cell envelopes just one internode. (Kandel
et al., 1991). The genes in Schwann cells that encode myelin are turned on by the
presence of axons, whereas expression of the genes in oligodendrocytes that encode
for central myelin depend on the presence of astrocytes, the other major glial cell
type in the central nervous system (Kandel et al., 1991). Oligodendrocytes orig-
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inate from precursor cells in the ventricle zone of the neural tube, whereas
Schwann cells are derived from migrating neural crest cells (e.g. Jacobson, 1991).
Given these differences, peripheral and central neurophysiological processes might
not be fully comparable. However, there are a number of clinical studies providing
evidence that diseases of and inflictions upon the nervous system, show negative
effects on both peripheral and central conduction. Clinical PNCYV studies in for
example lead, zinc and copper exposed workers (Araki et al., 1987); in patients
with primary hypothyroidism (a hormone dysfunction) (Abbott et al., 1983) and
in HIV-1 patients (Pinto ef al., 1992) show slowing in both peripheral and central
NCV when patients are compared with controls, even though there was no clinical
evidence of neurological impairment.

Table 4.1
Studies on the relationship between peripheral nerve conduction velocity and IQ.
Correlation Segment Mean PNCV IQ- Temperature ~ Age range N
IQ-PNCV Median Nerve (m/s)  test controle (mean age)
Vernon & Mori 41+ Wrist-Fingers 63.9 MAB experimentally ~ 18-42 85
(1992) Wrist-Elbow (24)
Elbow-Axilla

Vernon & Mori A46* Wrist-Fingers 60.1 MAB experimentally 18-38 88

(1992) (23)

Barret et al. -.00° Fingers-Wrist 39.7 RAPM experimentally 18-41 44

(1990) (25.6)

Reed & Jensen .04° Wrist-Elbow 68.9 RSPM & statistically 18-25 200

(1991) -.07 67.1 RAPM (20.3) (males)

Wickett & Vemon .02¢ Wrist-Elbow 60.5 MAB experimentally ~ 20-30 38

(1994) -.12 Wrist-Fingers 59.0 (24.6) (females)

Rijsdijk et al. -.02 Wrist-Elbow 63.7 RSPM experimentally ~ 14.8-18 312

(1995) (16.1)

This study 15% Wrist-Elbow 59.5  WAIS experimentally 16.4-19.5 346
(17.6)

RSPM = Raven Standard Progressive Matrices; RAPM = Raven Advanced Progressive Matrices;
MAB = Multidimensional Aptitude Battery; WAIS = Wechsler Adult Intelligence Scale.

a . 8 PNCV measures of these segments were aggregated into a single one, GNCV. The Correlation
between GNCV and 1Q is reported. b . mean correlation of 4 PNCV measures with IQ, ©: correlations of
two samples: community college (RSPM) and university students (RAMP), d. correlations with PNCV of
two segments. N = Number of subjects, * = significant correlation.
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Inspired by the original findings of Vernon and Mori we designed a study to
investigate the relationship between PNCV and intelligence longitudinally in a
sample of Dutch twins. We investigated to what extend the variation in IQ is
attributed to variation in PNCV and to what extend the PNCV-IQ covariation is
mediated by genetic and/or environmental factors. At the first test occasion at age
16, no correlation was found between scores on the Raven Standard Progressive
Matrices (Raven, 1958) and PNCV measured in the median nerve (Rijsdijk ez al.,
1995). This paper reports the correlation between PNCV in the median nerve and
intelligence, determined by the Wechsler Adult Intelligence Scale (WAIS) in the
same twin pairs at age 18. Using the WAIS IQ test was suggested to increase the
probability of replicating the findings of Vernon and Mori, because the WAIS is
highly correlated with the MAB [r = .91 for Full-Scale IQ (Jackson, 1984)]. This
is in contrast with the Raven Advanced Progressive Matrices which has a common
variance of only 50% with WAIS Full-Scale 1Q [r = .72 (Vernon, 1983)]. In our
sample the common variance between the Raven Standard Progressive Matrices
and the WAIS Full-Scale 1Q was even lower; 44% (r = .66). We also looked at
the stability of the correlations between PNCV measured at age 16 and at age 18.

SUBJECTS AND METHODS

Subjects

This PNCV study was part of a longitudinal project in which genetic and
environmental influences on brain development were examined (Van Beijsterveldt
et al., 1995, 1996). At age 16, 213 twin pairs participated in the study; at age 18,
196 pairs came back for a second time. The 17 twin pairs who dropped out did
not differ significantly in IQ score compared to the others. PNCV and IQ data
presented in this paper were collected at the second visit of the twins to the
laboratory. Mean age (17.6, SD = .54) was equal for males and females. Subjects
also participated in a large questionnaire study on health, personality and lifestyle
factors such as smoking and sports participation (Koopmans et al., 1994).

For 117 twin pairs zygosity was determined by blood and DNA typing and
for the others by questionnaire data concerning physical similarity and the
frequency by which the twins get confused by family members and strangers. For
the blood and DNA typed group questionnaire data were available for 85 pairs.
The percentage correctly classified zygosities based on the questionnaire infor-
mation compared with blood group polymorphism and DNA was 95%.
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IQ data were available for 37 MZM, 31 DZM, 46 MZF, 36 DZF and 44 DOS
twin pairs. Data for median NCV were available for a subgroup of 34 MZM, 22
DZM, 40 MZF, 27 DZF and 36 DOS complete pairs. For another 28 twin pairs,
PNCV data were available for only one twin of a pair (15 males and 13 females).
In the bivariate genetic analysis and the analyses of the phenotypic correlations
between PNCV and IQ, data from these incomplete pairs were included. Missing
PNCV data for one or both twins in a pair were due to technical and procedural
problems (e.g. difficulty in palpation of the nerve and ambiguous latency readings).

Intelligence test
The Dutch translation of the Wechsler Intelligence Scale (WAIS) was adminis-
tered (Stinissen et al., 1970).

Physical exercise

Questionnaire data on sports participation and other physical activities (e.g.
cycling as transportation means) were available for 163 twin pairs and examined
in relation to peripheral NCV. Physical activity level was proposed to be a
covariate for peripheral NCV that should be controlled for when examining the
relationship between PNCV and 1Q (Reed, 1993).

Nerve conduction velocity

PNCVs were determined for the wrist-elbow segment of the median nerve,
of the right arm. The median nerve is a mixed motor and sensory nerve. Supra-
maximal stimulation was used, i.e. stimulation of the nerve at a current value
beyond which the amplitude of the nerve action potential no longer increases.
From each subject two Compound Nerve Action Potentials (CNAP) were obtained;
each CNAP was signal-averaged over 8 nerve stimulations. For each CNAP three
components were distinguished: onset-, peak- and end latency. Reliability for
PNCV measures was obtained by correlating the latencies of the two CNAPs. For
the phenotypic correlations and the genetic analyses the two onset-, peak- and end
Jatencies were averaged. The distance between the active stimulating and recording
electrodes (wrist-elbow distance in millimetres) was divided by the mean onset,
peak and end latencies (milliseconds), yielding one onset-, peak-, and end nerve
conduction velocity measure per subject.
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Onset and peak PNCV reflect the conduction in the fast-conducting (large
diameter) nerve axons and the average-conducting (average diameter) nerve axons,
respectively, while end PNCV involves slow-conducting (small diameter) axons
(MA & Liveson, 1983; Oh, 1993). Onset PNCV is commonly used in studies
examining the relation between IQ and PNCV, because it reflects conduction of
the fast nerve fibres.

Two important errors can bias nerve conduction velocity assessment: latency
readings and errors in surface measurement of the length of the nerve (Oh, 1993).
To correct for the first type of error, compound nerve action potentials with
ambiguous onset latencies were excluded from the sample. Temperature was
experimentally controlled and kept at a constant level (33°C). For a detailed
description of the action potential acquisition apparatus, -procedure and PNCV
computation, see Rijsdijk et al. (1995).

Statistical analyses

The effect of sex on mean IQ and PNCV measures was assessed by likeli-
hood-ratio 2 tests using the computer program LISREL VII (Joreskog & Sérbom,
1988). These tests compare the fit of a model that constrained parameter estimates
for mean IQ and PNCVs to be equal across sexes to one which allowed them to
vary in males and females, while taking into account the dependency that exists
between observations from twins (Boomsma et al., 1993). Phenotypic correlations
between PNCV, IQ and age were estimated using LISREL VII. To the variance-
covariance matrices of the 5 sex-by-zygosity groups and the two singleton groups
a model was fitted in which correlations as well as the standard deviations were
estimated. Sex and zygosity differences in correlations were tested by comparing
the fit of models which constrain correlations to be equal across groups with
models in which correlations are set free. Significance of correlations was tested
by comparing the fit with models in which correlations are constrained at zero.

Genetic analyses

Quantitative genetic model fitting was carried out on variance-covariance
matrices to decompose the phenotypic variance. Sources of phenotypic variation
considered were A, additive genetic variation (i.e. the sum of the average effects
of the individual alleles at all loci); D, dominance genetic variation and E, a
random environmental deviation that is not shared by family members. Dominance
genetic effects, rather than C (common or shared environmental variation) were
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considered, because of the high MZ versus DZ twin correlations. This model
assumes negligible effects of assortative mating, and genotype-environment
correlation and/or interaction. Relative contributions of the genetic and environ-
mental influences to observed individual differences were estimated by maximum
likelihood, using the computer program Mx (Neale, 1995). Also, 80% confidence
intervals for the heritability estimates were computed (Neale & Miller, 1996).
Goodness-of-fit was assessed by likelihood-ratio ? tests.

Bivariate genetic analysis was used for modelling the relationship between
PNCV and IQ. Two sets of latent A, D and E factors were specified: common
factors influencing both PNCV and IQ and specific factors influencing IQ only.
Figure 4.1 shows the model for one member of a twin pair, where A and E are
the genetic and environmental influences common to PNCV and IQ, and Ag and
Eq are the genetic and environmental influences specific to IQ. The effects of A
and E- on PNCV are represented by the parameters i, and e and the effects of
A and E_ on 1Q by the parameters /', and e’,.

h e, n
C

PNCV

Figure 4.1

Bivariate genetic model for PNCV and IQ. A¢ and E reflect the genetic and environmental
influences common to PNCV and IQ; Ag and Eg reflect the genetic and environmental influences
specific for IQ.
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RESULTS I

Raw score distributions of the WAIS Full-Scale IQ and onset PNCV showed
acceptable symmetry (skewness -.3 and .002; kurtosis -.42 and -.21, respectively),
as did the distributions of WAIS Verbal I1Q (VIQ), WAIS Performance I1Q (PIQ),
peak PNCV and end PNCV.

In Table 4.2 the means and standard deviations for WAIS Full-Scale IQ, VIQ,
PIQ, and PNCV measures are presented. The onset PNCV mean of 59.6 m/s (SD
= 3.4) for the total sample (N = 346) agrees with values reported in the literature
for adults (age range, 20-60, temperature above 31) : 55.99 + 3.3 (Oh, 1993). The
observed mean WAIS Full-Scale IQ of 113.6 was higher and the standard devia-
tion of 11.2 was lower than the population mean and standard deviation (M = 100;
SD = 15). In a recent validation study (N = 601) of 4 subtests of the Dutch
translation of the WAIS (Mulder et al., 1995) it appeared that scores on all 4 tests
were higher than the scores of the Dutch normative sample (Stinissen et al., 1970).
Bouma et al. (1996) suggested that this observation might be a consequence of
increasing population IQ and that WAIS IQ scores based on the 1970 norms might
be somewhat overestimated. There were no differences between males and females
in mean scores for IQ, and for onset and peak PNCV. Mean end PNCV showed
a significant sex difference [¥?(1) = 26.1]. Reliabilities for the PNCV measures
obtained by the correlations for onset-, peak- and end latency between the two
initial CNAPs available for every subject were .97, .98 and .98, respectively.

Table 4.2
Estimates of means and standard deviations for WAIS IQ scores and peripheral nerve conduction
velocity measures.

Males Females Sex differences
N=163 N =183

M SD M SD Ax2(1)
WAIS VIQ 110.2 12.5 109.7 11.7 0.14
WAIS PIQ 115.9 11.9 116.8 11.7 0.35
WAIS FSIQ 113.7 11.7 113.9 11.7 0.01
Onset PNCV (m/s) 59.3 33 59.9 3.6 3.34
Peak PNCV (m/s) 50.3 2.8 49.9 2.8 0.90
End PNCV (m/s) 43.2 24 41.8 2.3 21.03*

WAIS = Wechsler Adult Intelligence Scale; VIQ = Verbal 1Q; PIQ = Performance IQ; FSIQ = Full-Scale
1Q. PNCV = peripheral nerve conduction velocity. * = Ax2(1) > 3.84, and implies a significant difference
between males and females.
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Potential confounders of PNCV are age, height, temperature, (Oh, 1993; Ma &
Liveson, 1983; Rivner ef al., 1990; Stetson et al., 1992) and physical exercise
status (Reed, 1993). Age, height and physical exercise status, based on sports
activity and daily cycling exercise did not show a correlation with PNCV. Arm
temperature was experimentally controlled for and showed no correlation with
PNCV. Table 4.3 shows the maximum-likelihood estimates of the phenotypic
correlations between the PNCV measures and IQ scores. All PNCV-IQ correlations
could be equated across twins, zygosity and sex without decline in fit. All PNCV-
IQ correlations were significant.

Table 4.3
Maximum-likelihood estimates of the penotypic correlations between peripheral nerve conduction
velocity and WAIS IQ.

WAIS FSIQ WAIS VIQ WAIS PIQ
Onset PNCV 15 15 15
Peak PNCV 16 17 14
End PNCV 18 14 15

WAIS = Wechsler Adult Intelligence Scale; FSIQ = Full-Scale 1Q; VIQ = Verbal 1Q; PIQ = Performal
IQ; PNCV = peripheral nerve conduction velocity. All correlations are significant.

The twin correlations for the IQ scores, and the PNCV measures are given in
Table 4.4, showing higher MZ than DZ correlations for all measures. The pattern
of the female twin correlations (high MZ versus low DZ correlations) for WAIS
VIQ, peak PNCV and end PNCV suggests dominance genetic effects. Therefore,
a univariate ADE model for females and AE model for males was tested against
the ADE sex-differences model. For all three variables the dominance structure
could be dropped without worsening of fit and the reduced AE no-sex-differences
model gave the best explanation of the data. For onset PNCYV it was the correlation
pattern for males that suggested a dominance genetic structure to be involved. This
dominance structure could be omitted and further reduction of the model also
showed the AE no-sex-difference model to have the best fit. The correlation pattern
for WAIS Full-Scale IQ and WAIS PIQ suggested dominance genetic influences
for both males and females, but the reduced AE no-sex-differences again showed
the best fit to the data. Table 4.5 gives the univariate estimates and heritabilities
for PNCV and IQ measures for the subsample with both PNCYV and IQ data (159
pairs). Likelihood based confidence intervals (CI) provide information about the
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precision of the estimates (Neale & Miller, 1996). In Table 4.5 the 80% CI for
the heritability estimates for all variables are reported. Non-overlapping intervals,
which is the case for example for WAIS Verbal IQ and WAIS Performance IQ,
indicate that heritabilities are significantly different. Heritability for WAIS Full-
Scale IQ was 81% and for onset PNCV the heritability was 66%. WAIS IQ data
were available for a larger group (194 pairs). The heritability for WAIS Full-Scale
IQ for this sample was 82% (Rijsdijk & Boomsma, submitted).

Table 4.4
Twin correlations for PNCV measures and WAIS IQ scores.
Onset Peak End WAIS WAIS WAIS
PNCV  PNCV PNCV VIQ PIQ FSIQ
MZM (N = 34) .80 78 79 .88 74 .86
DZM (N =22) 21 41 52 47 .30 .37
MZF (N =40) .63 71 71 .85 .65 .82
DZF (N =27) 31 .19 .10 30 24 34
DOS (N =36) .39 52 45 24 .20 .19

PNCYV = peripheral nerve conduction velocity; WAIS = Wechsler Adult Intelligence Scale; VIQ = Verbal
1Q; PIQ = Performal IQ; FSIQ = Full-Scale IQ. N = number of pairs with both PNCV and WAIS IQ data.

Table 4.5
Univariate estimates of genetic (a) and environmental (e) path coefficients and heritabilities with
80% confidence intervals for PNCV and IQ measures.

x2 p a e h? 80% CI

(df=13) for h?
Onset PNCV 15.08 30 272 1.94 66% 58%-73%
Peak PNCV 14.04 37 231 1.46 71% 64%-77%
End PNCV 13.88 38 1.95 1.22 72% 65%-78%
WAIS VIQ 13.72 44 10.95 5.02 83% 78%-86%
WAIS PIQ 3.62 .99 9.43 6.60 67% 59%-74%
WAIS FSIQ 10.18 68 10.46 5.08 81% 76%-85%

PNCV = peripheral nerve conduction velocity; WAIS = Wechsler Adult Intelligence Scale; VIQ = Verbal
1Q; PIQ = Performal 1Q; FSIQ = WAIS Full-Scale IQ. The best fitting model for all variables was an AE
no-sex-differences model.
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Onset PNCV and the WAIS Full-Scale IQ score were used to investigate the
PNCV-IQ relationship, using the genetic model presented in Figure 4.1. In Table
4.6 the bivariate analysis results are presented. An ADE model with sex differences
did not show a better fit than a model in which the parameters were equated across
males and females. In the next step the common dominance genetic factor could
be omitted without worsening of fit. In the reduced AE no-sex-differences model
the common unique environmental influences of PNCV on IQ (e’,) could be fixed
at zero without deterioration in fit [Ay2(1) = .22, p = .64], whereas the common
genetic influences (%’,) could not be constrained at zero [Ax%(1) = 4.15, p = .04].
These results indicate that all common variance in PNCV and IQ can be explained
by common additive genetic factors (x%s; =5 8.4, p = .22). This model gave a good
fit to the data. Thus, the PNCV-IQ relationship is purely based on common genetic
mediation. The genetic correlation (rg) between PNCV and IQ as estimated by Mx
was .20. The heritability for onset PNCV was .66 with a 80% CI of .58 - 3.
Heritability for WAIS Full-Scale IQ score .81 with a 80% CI of .75 - .84. The
phenotypic correlation between onset PNCV and WAIS Full-Scale IQ based on
the Mx estimates was .15. In Table 4.7 the parameter estimates of specific and
common genetic and environmental influences for the best fitting model are

presented.

Tabel 4.6

Bivariate model fitting results for onset PNCV with WAIS Full-Scale 1Q.
Model X2 df p
ADE sd 48.73 38 A1
ADE nsd 56.13 47 17
AE nsd 58.26 50 .19
AE nsd, no e’ * 58.40 51 22
AE nsd, no b’,, 62.41 51 13

e’, = environmental path from PNCV to IQ. h’, = genetic path from PNCV to IQ. (n)sd = (no-)sex-
differences. * = Best fitting model: AE no-sex-differences and no common environmental influences.
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Tabel 4.7
Genetic and environmental specific and common effects of the bivariate model of PNCV
and WAIS Full-Scale 1Q.

Genetic & environmental Genetic & environmental Genetic & environmental
specific effects for IQ common effects for IQ common effects for PNCV
hy & h’. & h, &,
10.121 5.121 2.054 0.00 2.718 1.960

h. and e, are the components of the common genetic and environmental factors influencing PNCV; h’,
is the component of the common genetic structure, reflecting the genetic mediation of the correlation
between PNCV and IQ; e’ = 0, means no environmental correlation between PNCV and 1Q; hs and e,
are the components of the genetic and environmental specific factors exclusively influencing IQ.

DISCUSSION I

For WAIS Full-Scale IQ a heritability estimate of 81% was observed. This is in
line with or somewhat higher than most family and twin studies. As Reed (1988)
predicted, human peripheral NCV was found to be a substantial heritable trait
(66%). Reed suggested that PNCV as a heritable trait, to some extend could
explain part of the genetic variation in human intelligence and consequently the
PNCV-IQ relationship should be mediated by genetic factors. A low but significant
correlation between peripheral NCV and IQ was found in our sample and this
correlation was solely mediated by common genetic factors. The genetic correlation
between onset PNCV and IQ was .20.

Peripheral NCV, when measured in the same subjects at age 16, showed a
heritability of 76%. No correlation was found between Raven Standard Progressive
Matrices test scores and peripheral NCV. The lack of correlation between IQ and
peripheral NCV was also found in other studies using the Raven test (Jensen &
Reed, 1991 and Barrett et al., 1990). The use of the Raven IQ test was proposed
as a possible explanation for the lack of correlation between PNCV and IQ,
because the correlations of .43 and .46 between PNCV and IQ found by Vernon
and Mori were obtained using the Multi Aptitude Battery (MAB). The WAIS test
was used in the present study to enlarge the probability of replicating the results
of Vernon and Mori (1992), though, Wicket and Vernon (1994) failed to replicate
a significant correlation between the MAB IQ scores and PNCV in a sample of
adult females. However, the correlation of the Raven IQ scores of our first study
with PNCVs of the second study (r=.17, p < .05) was higher then the correlation
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between WAIS Full-Scale IQ and PNCVs of the second study, suggesting that lack
of correlation was not due to the Raven test.

Results for both test occasions revealed the peripheral NCV measure to be a

substantial heritable trait, 76% and 66%, respectively. However, the test-retest
correlations of the PNCV measures were very low, for onset PNCV .13 (p < .05),
for peak PNCV .08 (ns) and for end PNCV .20 (p < .05). PNCV data at both age
16 and 18 were available for 293 individuals. No changes were made in acquisition
procedure, apparatus, experimenter and nerve conduction velocity computation.
Possible statistical artifacts like non-normality, that might explain this lack of
correlation were extensively tested by means of randomization tests. Randomi-
zation tests do not imply assumptions about binormality and the significance (p-
value) of a statistical test is derived from the empirical distribution of p-values
bases on (part of) all possible combinations. When results of a randomisation test
of for example test-retest correlation are similar to the probability value of the
classical test, the possibility of a wrong decision based on the classical test, when
a non-binormal distribution leads to a distorted p-value, is ruled out. No difference
in the probability values for the test-retest correlations of latencies, wrist-elbow
distance and PNCVs were obtained in either way. These results imply that lack
of stability in the PNCV data is not caused by statistical artifacts as non-binorma-
lity and justify the use of parametrical tests.
The twin correlation pattern, especially the high MZ correlations, also suggests
that the lack of test-retest correlation, is not solely due to measurement errors and
technical pitfalls. Moreover, the low DZ PNCV twin correlations relative to MZ
correlations suggest that high MZ twin correlations are not the result of correlated
measurement errors. Additional evidence for PNCV measurement consistency or
reliability can be obtained by split-half correlations for the 3 latencies between the
two initial compound nerve action potentials available for every subject. Reliability
for onset-, peak- and end latency was .97, .98 and .98, respectively. The same
reliability indices were observed for the 3 latencies of the first test occasion: .97,
.99 and .99, respectively.

We speculate that the lack of correlation between age 16 and 18 might be
explained by ongoing maturation processes in this age-range. Nerve conduction
velocity increases in a logarithmic function. From birth to approximately age 4-6,
peripheral NCV increases rapidly as a result of the myelination process and the
increase in the number of large axonal fibres (Cruz Martinez et al., 1978; Wagner
& Buchthal, 1972; Gamstorp & Shelburne, 1965). The existence of double peaks
in the sensory nerve action potential (up to age 6), indicates the presence of two
groups of fibres with different degrees of maturation. No further increase in PNCV
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is noted between 4-6 and 16 years of age. PNCV decreases in the late twenties.
The rate of decrease for mixed PNCV per decade is approximately 4 m/sec in the
median nerve (Oh, 1993).
It is reasonable to assume that, with respect to PNCV development, individual
growth curves show the same morphology but have different slopes, for example,
the speed of maturation might differ per individual. It is also reasonable to assume
that maturation processes might be more alike in MZ twins compared to DZ twins.
We, therefore, decided to examine whether ongoing maturation processes in
this age sample might explain our findings of 1) a significant correlation of PNCV
with both Raven and WAIS IQ at age 18 but not at age 16; 2) a low test-retest
correlation between PNCV assessed at ages 16 and 18 and 3) high MZ correlations
(and high heritabilities) at both ages 16 and 18. A genetic analysis of PNCV
difference scores (PNCV assessed at test occasion II - PNCV assessed at test
occasion I) was carried out. Second, the relation of PNCV and IQ was studied in
subjects who showed positive and negative difference scores. Negative difference
scores might indicate that PNCV has not yet reached the highest value and positive
difference scores might reflect a phase in which this value was reached and PNCV
is then declining. It is possible that the PNCV-IQ relation is only fully observable,
once PNCV has reached its highest value.

RESULTS II

To study the maturation hypothesis a difference score between onset Nerve
Conduction Velocity of the second and the first test occasion was calculated
(difONCV). DifONCV was normally distributed (M = -3.7; SD = 8.1; skewness
= -.16; kurtosis = -.23) with about 70% of the observations between one standard
deviation from the mean (Figure 4.2). The difference scores for peak PNCV
(difPNCV) and end PNCV (difENCV) were also normally distributed (skewness
= -.02 and .00, kurtosis = .15 and .5, respectively). In subjects with positive
difference scores, PNCV is still increasing from age 16 to 18. In subjects with
negative difference scores, PNCV has supposedly reached the highest value and
is decreasing. This later group is in a relatively stable maturation phase or in a
phase representing PNCV decrease. There were sex differences for mean difONCV
and mean end PNCV difference score (difENCV). Mean difONCYV for males was -
1.5 and for females -4.3 [x%(1) = 7.2]. Mean difENCV for males was 4.3 and for
females 2.9 [x%(1) = 5.9]. There was no sex difference in mean peak difference
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score [M = 1.1, %%(1) = 3.2]. No significant age differences were seen between
the groups with positive and negative difference scores.
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Figure 4.2

Distribution of the difference scores for onset PNCV between age 18 and 16 (difONCV).
The X axis represents the difONCV scores.
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The twin correlations for difONCV suggest genetic determination (Table 4.8). The
higher MZ compared to DZ twin correlations suggested dominance genetic effects.
In contrast to the PNCV measure the dominance structure was significant for
PNCYV difference scores. For difONCV the ADE model with sex differences could
be simplified by dropping the female dominance structure [Ay2(1) =0.10, p = .75],
whereas the male dominance structure was significant and could not be dropped
[Ax?(1) = 8.16, p = .00]. For males, 86% of the variance in difONCV was
explained by dominance genetic factors, about zero by additive genetic factors and
about 14% by unique environmental influences. For females, 87% of the variance
was explained by additive genetic factors and 13% by unique environmental
factors. For peak- and end PNCV difference scores the AE-female and ADE-male
model also was the best fitting model. For males, the additive genetic variance in
difPNCV and difENCV were also about zero and the dominance genetic variance
83% and 75%, respectively. For females the additive genetic variance in difPNCV
and difENCV were 73% and 74%, respectively.

The correlations between onset PNCV and WAIS Full-Scale IQ for subjects
with positive difference scores (N = 104) was .08, whereas in the other group (N
= 189) the correlation was higher (.21). The results for the groups with positive
and negative difference scores for Peak PNCV and end PNCV were: .04 (N = 169)
versus .23 (N =124) and .08 (N = 223) versus .34 (N = 70), respectively. Although
the correlations between onset PNCV and IQ for the positive and negative
difference score groups were not significantly different, the consistent pattern
across PNCV measures of low correlations in the group with positive difference
scores as opposed to higher correlations in the group with negative difference
scores might support the notion that an association between PNCV and IQ only
becomes apparent once PNCV has reached its highest value.

Table 4.8
Twin correlations and heritabilities with 80% confidence intervals for PNCV difference scores.

MZM DZM MZF DZF DOS h?,  80% CI h% 80% CI 2

(N=22) (N=15) (N=33) (N=21) (N=29) for 2., for % (df=10)
difONCV 85 12 83 38 01  86% 78%91% 87% 81%-91% 8.13
difPNCV 85 13 69 39 05  84% 75%-89% 3% 61%-81% 9.64
difENCV 78 .05 73 35 -2 15% 61%-84% 14% 62%-82%  12.65

difONCYV, difPNCV and difENCV = Difference scores between Onset-, Peak and End PNCV measured at age 18 and
at age 16. Best fitting model for all variables was ADE for males and AE for females. N = number of twin pairs. h2,,
h% = heritability for males, females.
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GENERAL DISCUSSION

The results of the genetic analysis of the difference scores between the PNCVs
of the first and second test occasion are remarkable. Nearly all of the variance in
difONCV can be explained by genetic influences. These results imply that an
individual’s PNCV, measured on the second test occasion at age 18, is better
predicted by the increase or decrease of the PNCV value of his co-twin than by
his or her own PNCV score at age 16. If the difONCV value can be considered
a maturation index, these results give evidence that PNCV is still increasing for
some individuals in this age interval. It might be that the variance in IQ explained
by PNCV is a consequence of nerve maturation in the late adolescent years. Our
data suggest that the existence of a correlation of PNCV and IQ might depend on
whether nerve conduction has reached its highest value. The correlation of the
Raven test scores measured at age 16 with PNCVs of the present study was higher
then the correlation between WAIS-IQ and PNCVs of the second study. This
suggests that the PNCV measures obtained at age 16 were not correlated with IQ
because of ongoing maturation processes. If individual differences in PNCV only
become determinants of IQ once PNCV has reached its highest value, then we
would predict additional genes that influence IQ and thus, higher heritabilities in
IQ. This hypothesis of additional genetic variance is in line with the observation
of further increase of IQ heritability in adults. The MZ IQ correlations appear to
peak at about 16 to 20 years of age, although there is very little adult data on
heritability in IQ (Bouchard, 1993).

The maturation hypothesis might explain why Vernon and Mori (1992)
observed high correlations between peripheral NCV and IQ in both studies. The
mean age of their samples were 24 and 23 years, respectively. In this age group
PNCV is supposed to be in a stable phase, in which the PNCV-IQ correlation can
be observed. The mean age of the samples in the Barret ef al. (1990) and the
Wickett and Vernon (1994) studies was also high, but the sample sizes were to
small to detect even a low significant correlation of .3. Also, the Barrett ef al.
(1990) study did not use supramaximal nerve stimulation, a requirement to make
sure all nerve fibres are stimulated in the tested nerve. The mean age of the sample
of the Reed and Jensen (1991) study was higher than in our own study (20 years
of age) and the number of subjects was large (N = 200), but the absence of
experimental control of temperature could be the major reason why they did not
find a correlation between PNCV and IQ.

The question remains, how to interpret the low but significant correlation
between PNCV and IQ and the fact that this correlation is solely mediated by
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common genetic factors. According to Jensen and Sinha (1993), trait variation due
to multiple factors (like intelligence test scores) are unlikely to show large
correlations with any single causal factor. Small significant correlations that are
consistently replicable could be of theoretical interest especially if the intercor-
relation among a number of biological and psychometric variables show a
consistent pattern. Genetic analyses are considered to play an essential role in the
theoretical interpretation of intercorrelations between biological and behavioral
variables. Peripheral NCV was shown to be a considerable heritable trait and the
correlation with intelligence test scores, even though small, is genetically mediated.
As for replicability, peripheral NCV measures for the first and present study do
not correlate, and it is proposed that the reasons for this lack is based on unstable,
still increasing nerve conduction velocities in the tested age interval.
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The genetic basis of the relation between speed-
of-information-processing and IQ

F.V. Rijsdijk, P.A. Vernon and D.I. Boomsma

INTRODUCTION

In the search for determinants of human intelligence the relationship between
measures of timed performance on experimental cognitive tasks and scores on
psychometric tests of intelligence is the most extensively studied and well
established. Experimental cognitive tasks, usually defined as Reaction Time tasks,
are supposed to be a reflection of the speed-of-information-processing. The idea
of studying Reaction Times (RTs) as correlates of intelligence goes back to Galton
(1883), but it was not until after the 1960s that a great deal of research on RTs
and intelligence was (successfully) conducted. One of the major contributors to
this area is Jensen (e.g. 1979, 1987). The history of the research on RTs is
extensively reviewed in Vernon (1987).

Speed-of-information-processing (SIP) typically involves Long Term Memory
(LTM) retrieval and Short Term Memory (STM) scanning and is often derived
from RT tasks consisting of highly overlearned stimuli, such as digits and letters.
Operations on these RTs do not seem to involve the complex sort of reasoning
skills required by intelligence tests. Therefore, the relationship between SIP and
intelligence measures does not seem to be attributable to common content shared
by these tests, nor to the fact that some parts of IQ tests are timed (Vernon, 1983).
Moreover, Vernon and Kantor (1986) showed that the reaction time variables
actually explain less of the variance of a timed intelligence test than that of an
untimed administration of the same test.

Speed-of-information-processing is suggested to measure the efficiency with
which subjects can perform basic cognitive operations which underlie other kinds
of intellectual behavior, like the kinds involved in performance on psychometric
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tests. The correlations of individual RTs and IQ typically are in the -.2 to -.4
range, and can be increased by combining the performance measures from several
different RT tasks. When combined in multiple regression analyses the correlation
between IQ and speed-of-information-processing becomes quite substantial,
accounting for almost 50% of the phenotypic variance of IQ (Vernon, 1989).
Individual differences in intelligence, thus, are suggested to be moderately
attributable to variance in the speed or efficiency with which individuals can
execute basic cognitive operations.

A theoretical explanation for the relationship between RTs and IQ was given
by the 'neural efficiency’ model (Jensen, 1982; Vernon, 1983, 1985), in terms of
three characteristics of the short term memory system or ’working memory’ in
which the basic cognitive operations are carried out. First, this STM system has
a limited capacity to store information and only about seven discrete units or
chunks of information can be hold at any one time. Second, there is rapid decay
of information when there is no continued rehearsal and third, there is a trade-off
between the amount of information that can be stored in working memory at one
time and the amount of information that can be processed simultaneously. To
overcome these limiting properties of working memory and to prevent the capacity
threshold from being exceeded, a fourth property was proposed: speed-of-informa-
tion-processing. The speed or efficiency with which individuals can execute basic
cognitive operations at each step in solving a given problem might, therefore, be
expected to have an effect on the success of their performance. Because of the well
established negative correlation between conventional psychometric tests and timed
performance on experimental cognitive (Reaction Time) tasks, these tasks are
suggested to be a good instrument for testing the neurological basis of individual
differences because they have a true ratio scale and do not depend on a norm or
reference group for interpretation (Jensen, 1993). Individual differences on SIP
measures are not attributable to specific knowledge and acquired skills.

As is indicated by twin and family studies, individual differences in
intelligence are considerably determined by genetic influences. If individual
differences in the speed with which cognitive operations can be executed are
responsible for individual differences in intelligence, the next question is to what
extent they are attributable to differences in neurophysiological properties of the
brain that may be hypothesized to underlie both the speed with which persons can
process information and their intelligence. One approach to this question is to
examine the heritabilities of individual differences in SIP and the extent to which
the phenotypic correlation between intelligence tests and SIP is determined by
underlying genetic factors. The phenotypic association between IQ and SIP could
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be entirely mediated by environmental factors. It is likely, however, that some
common features of both SIP and IQ are determined by the same neurophysiolog-
ical processes and thus are influenced by the same or correlated genetic factors.
Behavioral genetic studies have yielded moderate heritability estimates for basic
cognitive tasks. These studies in which the genetic basis of speed-of-information
measures was reported are discussed below and next, the few studies examining
the genetic basis of the relation between RTs and IQ.

In an adult twin study, conducted by McGue, Bouchard, Lykken and Feuer
(1984), the heritability of speed-of-information-processing measures was
investigated. In a sample of 105 subjects, including 34 MZ and 13 DZ reared apart
twin pairs or triplets (mean age, 38.8 years), a Reaction Time test battery and a
battery of psychometric tests of mental ability were administered. Factor analysis
of the RT tests yielded three information processing components, accounting for
67% of the total variance. The three factors were labelled Overall Speed of
Response, Speed of Information Processing and Speed of Spatial Processing. Signi-
ficant MZ intraclass correlations were observed only for the Overall Speed of
Response factor (r = .46). The Overall Speed component underlying the reaction
time tasks accounted for a large portion of the variance in the information
processing measures and correlated -.31 with WAIS Full-Scale IQ. This component
was, thus, suggested to be strongly related to psychometric measures of g, for
which substantial genetic effects were observed.

Another adult twin study on speed-of-information-processing measures, Vernon
(1989), reported a heritability of 49% in 50 MZ and 52 DZ twins for a General
Speed of Response factor based on 8 complex reaction time tests. The age range
in this sample was quite large, between 15 and 57 years (mean age, 24 years) This
heritability index was derived by means of Falconer’s Formula =2 .. - t5.))
The RT tests were highly correlated with the Multidimensional Aptitude Battery
1Q score (MAB). The MAB is an IQ test closely pictured after the WAIS. Vernon
observed that heritabilities of the RT measures were positively related to: the
degree of loading on the general Speed of Response factor (r = .39); the extent
to which each RT task correlated with a General intelligence factor g (r = .60) and
the tests’ relative complexity (r = . 68). Vernon (1991) reported correlations of
-44 between a general IQ and a general SIP factor from 2 studies that also
measured peripheral nerve conduction velocity.

Rose, Miller and Fulker (1981) estimated heritability to be 76% for a
Perceptual Speed measure in 74 MZ and 127 DZ college-aged twins and genetic
half-siblings (MZ twin offspring). Boomsma and Somsen (1991) measured RTs
in a small sample of 12 MZ and 12 DZ adolescent twins (age range, 15 - 18). For
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Choice RT higher heritabilities were reported for shorter than (20%) for longer
(7%) interstimulus intervals. Heritabilities of almost 50% were seen for reaction
times in Double Task trials where subjects simultaneously performed mental
arithmetic and a Choice RT task.

In a study conducted by McGue & Bouchard (1989), an information-proces-
sing battery and psychometric battery of special mental abilities were administered
to a sample of 49 MZ and 25 DZ twin pairs reared apart (mean age, 39.9 years).
Heritabilities of 54% and 58% were observed for a Basic and for a Spatial Speed
factor. For the special mental abilities, the Verbal factor showed a heritability of
57% and the spatial factor 71%. No bivariate genetic results were reported. The
first conclusion in this paper was that in even relatively simple tasks, information
processing reflects a General Speed factor that is moderately related to the General
intelligence factor (g). The second conclusion was that, as the actual content of
information processing tasks and psychometric tests becomes more similar, the
correlation between the two rises.

Petrill, Thompson and Detterman (1995) suggested that heritability and
common environment for elementary cognitive tasks might differ in younger
populations. They examined a battery of elementary cognitive ability tasks in a
school-aged sample of 149 MZ and 138 same-sex DZ twin pairs (age range, 6 -
13 years, mean age, 9.55 years). Scores on the RT tasks were age and sex
corrected. Univariate model fitting did not yield a homogeneous pattern of genetic
and environmental influences across the RT measures. Simple and Choice RTs
were primarily determined by common environmental factors, while a Stimulus
Discrimination task appeared to be more influenced by genetic factors. Measures
on the Stimulus Discrimination task showed the highest heritabilities on average
(42%) and their composite score also showed the highest correlation with IQ (»
= .42), but there was no consistent pattern of tasks with higher heritabilities also
showing higher correlations with IQ.

Only a few studies have been conducted to investigate the genetic and
environmental sources of the relationship between speed-of-information-processing
and IQ. A multivariate genetic analysis of the relation between RTs and the WAIS
Full-Scale IQ score was carried out by Ho, Baker and Decker (1988) in 30 MZ
and 30 DZ pairs (age range, 8 - 18 years). Speed measures were Rapid Automatic
Naming and Symbol-Processing Speed factors. Heritabilities for these factors were
52% and 49%, heritability for IQ was 78%. Results indicated that the phenotypic
correlation between IQ and speed of processing measures (both r’s .42) were
largely attributable to correlated genetic effects. Genetic correlations were .46 and
.67, respectively. The authors concluded that the results supported the notion of
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some common biological mechanism underlying both general intelligence and
speed-of-information-processing measures.

A bivariate analysis of the Vernon (1989) RT and IQ data in 50 MZ and 32
same-sex DZ pairs (15 - 57 years) was reported by Baker, Vernon and Ho (1991).
The heritability of the General Speed of Processing factor was estimated to be
45%. Phenotypic correlations of Verbal and Performance 1Q with the General
Speed of Processing factor were both -.59 and were entirely mediated by genetic
factors. Genetic correlations were estimated to have absolute values of .92 and 1.0,
respectively. Baker et al. concluded that the results emphasize the importance of
common, heritable, biological mechanisms underlying the speed-IQ association.

More recently, Petrill ef al. (1996) conducted a multivariate analysis on 6
measures (3 speed and 3 percent-correct variables) of the elementary cognitive
tasks and the 11 subtests of the WISC-R, employing the same data as in their
earlier study (Petrill et al., 1995). The genetic variance could be represented by
a General-, a Verbal-, a Performance-, and a Speed factor. Common environmental
influences could be supported by one General factor. Loadings of the 3 speed
measures and of all WISC-R subtests on the General genetic factor were modest
compared to their loadings on the General common environmental factor. These
results indicated that covariance of speed-of-information-processing with IQ in this
sample is predominantly determined by common environment. Given the age range
of this sample (6 - 13 years), these results would be in accordance with
observations of the important effects of common environment on 1Q in this age
interval. However, the fact that all RT data were regressed on sex and age makes
these findings more difficult to interpret.

Genetic studies of reaction time tasks thus suggest moderate to high
heritability estimates in adult and adolescent samples and the correlation of RT
with IQ is probably influenced by genetic factors. In the present study, results of
a longitudinal study on Reaction Times and intelligence are reported. On the first
test occasion a Reaction Time test battery and the Raven Standard Progressive
Matrices (Raven, 1958) were administered to a group of 16 year-old Dutch twins.
On the second test occasion (one and a half years later) the same Reaction Time
test battery (slightly modified) and the Dutch translation of the Wechsler Adult
Intelligence Scale (WAIS, Wechsler, 1955) were administered. Phenotypic as well
as genetic factor models were fitted to the covariance structure among these tests
in order to derive the significance of General and Group factors. The phenotypic
and the genetic relationship between reaction times and IQ scores were examined
in a multivariate design in which all variables were included. This approach is in
contrast to the two studies (Ho et al., 1988; Baker et al., 1991), in which
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phenotypically formed factor scores of speed and IQ measures were employed in
the genetic analyses. A major disadvantage of using phenotypic factor scores is
that phenotypic factor analysis may yield quite a different factor pattern than is
observed for the genetic and environmental matrices when genetic analysis is
conducted on the complete set of variables. Variability in reaction time tasks and
designs in the few genetic RT-IQ studies hampers comparability of results. In the
Petrill et al. (1996) study the phenotypic and genetic relationships among
elementary cognitive tasks and the WISC-R subtests were examined in a
multivariate design including all variables, rather than factor scores. Thus, as for
design and intelligence test, the present study and the Petrill et al. (1996) study
are the most comparable and, to some degree, this enables one to compare the
results in two age groups. The longitudinal nature of our data also makes it
possible to compare the RT results of two time points and to test whether new
genetic influences on the RTs enter at age 18 compared to age 16.

SUBJECTS AND METHODS

Subjects

Subjects were 213 Dutch twin pairs who participated in a longitudinal project
which investigated variation in peripheral nerve conduction velocity and intelli-
gence (Rijsdijk et al., 1995) and genetic and environmental influences on brain
development (Van Beijsterveldt et al., 1995, 1996). A reaction time test battery
as well as the Raven Standard Progressive Matrices test were employed at the first
visit of the twins to the laboratory (mean age, 16.13; SD, .56). On the second visit,
one and a half years later (mean age, 17.6; SD, .54), the Dutch version of the
Wechsler Adult Intelligence Scale (WAIS) was individually administered. Also,
the same reaction time test battery (slightly modified) was employed. Seventeen
pairs did not participate the second time. This group did not significantly differ
in IQ score compared to the other participants. Mean age was equal for males and
females. IQ and reaction time data on the first test occasion were available for 34
monozygotic male twin pairs (MZM), 33 dizygotic male twin pairs (DZM), 48
monozygotic female twin pairs (MZF), 32 dizygotic female twin pairs (DZF) and
44 dizygotic opposite sex twin pairs (DOS). On the second test occasion data were
available for 33 MZM, 30 DZM, 41 MZF, 31 DZF and 39 DOS pairs.

For 117 same-sex twin pairs zygosity was determined by bloodgroup and DNA
typing and for the others by using items from a questionnaire concerning physical
similarity and the frequency with which the twins get confused by family members
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and strangers. For the blood and DNA typed group questionnaire data were avail-
able for 85 pairs. The percentage correctly classified zygosities based on the
questionnaire information compared with blood group polymorphisms and DNA
was 95%.

Reaction time test battery of test occasion I

Five reaction time tasks were administered via a personal computer with an
attached response console containing a home key and two response keys, equi-
distant (15 cm) from the home key. Principals of response routine were stated in
a general instruction: the home key had to be pressed in order to initiate each new
trial and was not to be released until the test stimulus was presented and the
subject had made a decision which response key to operate. Only index and middle
finger of the preferred hand were used. Subjects were instructed to respond as
quickly and accurately as they could. Each of the tests began with instruction and
rehearsal trials. In this paper the sum of the Decision Time (time from onset of
the stimuli to the release of the home key) and the Movement Time (time from
releasing the home key to pressing the response key) was employed as the measure
for speed of performance (msec). For each task, a mean Reaction Time was com-
puted for each subject after outlier trials, exceeding three standard deviation units
above or below an initially computed individual mean, were removed. In addition
to this individual screening of outliers per RT task, all subjects with mean RTs
exceeding =+ 3 standard deviation units from the group means were excluded. Sub-
jects with less than 50% correct responses on a RT task were excluded as well.
For test occasion I, 14 subjects and for test occasion II, 23 subjects were excluded.

Donders Simple Reaction Time (SRT)

Each trial was started by pressing the home key, which, after a 1000 msec
intertrial time, initiated the presentation of a 500 msec visual warning stimulus (a
plus sign) on the centre of the screen. A variable blank interval separated warning
signal offset from the presentation of a visual reaction stimulus. The variable time
interval was composed of a 500 msec base time plus a random number between
0-500 msec and was implemented to prevent automatic reactions. The reaction
stimulus represented either one digit from the set {*1°, *2°, °%", 94", "5, "6’} o
one letter from the set {’A’, ’B’, °C’, °D’, 'E’, "F’}, both requiring right-key
responses. The reaction stimulus disappeared as soon as the subject responded, or
when a maximum time of 1500 msec had expired. When maximum time was
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exceeded or when the wrong key was pressed, subjects were given a 500 msec
visual feedback (the word wrong’) in the centre of the screen.

Subjects started with 12 practice trials. The number of test trials was 72, containing
an equal number of digits and letters.

Donders Two Choice Reaction Time (CRT)

This task was the same as the first task, except that the reaction stimulus
representing a digit required a right-key response and a reaction stimulus
representing a letter required a left-key response.

Subjects started with 12 practice trials (6 digits and 6 letters). The 72 test trials
were composed of an equal number of digits and letters.

Sternberg Short Term Memory scanning (STM)

Each trial was started by pressing the home key, which (after an intertrial time
of 2000 msec) initiated a one-by-one display of a number of digits on the centre
of the screen. There were five conditions: the number of digits (1 to 5) in the
memory set. The 5 digits were drawn from the set { ’0’, ...., ’9’}. Each digit was
displayed for 1000 msec. Time between subsequent digits was 1000 msec. After
offset of the last digit a 1000 msec visual warning signal (dot) was presented. A
blank interval separated the presentation of the warning signal from the presen-
tation of the visual probe stimulus. The probe stimulus (a single digit) was either
one from the memory set (positive trial), requiring a right-key response, or not
(negative trial), requiring a left-key response. The probe stimulus disappeared as
soon as the subject responded, or when a maximum time of 2000 msec had ex-
pired. When maximum time was exceeded or whenever a key was pressed, subjects
were given a 500 msec visual feedback by presentation of a white square on either
the left or right half of the screen (indicating the position of the correct key).
Subjects started with 10 practice trials. The number of test trials was 100, 20 for
each condition (memory-set size) with an equal number of positive and negative
trials (’yes’/’no’ responses).

Posner Letter Identification: Name Identification (NI)

Each trial was started by pressing the home key, which (after an intertrial time
of 1000 msec) initiated the presentation of a 500 msec warning signal (a plus
sign). A blank 400 msec interval separated the offset of the warning signal from
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the presentation of the visual reaction stimuli. The reaction stimuli were two letters
from the set {’A’, 'B’, ’E’, ’N’, "0’, ’S’}. A pair of identical letters required a
right-key response and two different letters a left-key response. The reaction
stimuli disappeared as soon as the subject responded, or when a maximum time
of 1500 msec had expired. When maximum time was exceeded or whenever a key
was pressed, subjects were given a 500 msec visual feedback by presentation of
the words wrong or ’right’ on either the left or right half of the screen (indicating
the position of the correct key). Feedback was also given whenever the home-key
was released too soon, together with a 100 msec auditory penalty signal (500 Hz).

Subjects started with 12 practice trials. The number of test trials was 60, with an
equal number of positive and negative trials ("yes’/ 'no’ responses).

Posner Letter Identification: Category Identification (CI)

This task is the same as the Name Identification, but the reaction stimuli, from
the set {’A’, ’B’, ’E’, °’N’, ’0O’, ’S’} had to be matched on the category they
belong to: vowels or consonants. A pair of letters belonging to the same category
required a right-key response and a pair belonging to different categories, a left-key
response.

Subjects started with 12 practice trials. The number of test trials was 60, with an
equal number of positive and negative trials ("yes’/ ’no’ responses).

Reaction time test battery Test Occasion II

The same five Reaction Time tasks were administered with a few modifica-
tions. The number of test trials was reduced to 60 trials per task. For the Sternberg
STM task this reduction implicated the removal of two conditions (memory-set
size 2 and 4). These changes were made to shorten the administration time. Other
adjustments were made in order to ensure maximum motivation. For each task a
target reaction time value was established, based on the observed means of test
occasion 1. After each response, the reaction time was displayed on the screen and
subjects were given feedback whenever their reaction time was slower than the
target reaction time value for that specific task. Also, every correct response was
rewarded with 5 cents.
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Intelligence tests

On test occasion 1 the Raven Standard Progressive Matrices Test (Raven,
1958) was administered without a time limit. The IQ-score was simply the number
of correct answers. On test occasion 2 the Dutch translation of the Wechsler Adult
Intelligence Scale (Stinissen et al., 1970) was administered.

Statistical analyses

Phenotypic analyses

The effect of sex on mean and standard deviation of IQ and RT measures was
assessed by likelihood-ratio y? tests with the structural equation modelling program
Mx (Neale, 1995). This was accomplished by specifying a model for the means
as well as the covariances of the 5 sex-by-zygosity groups. The fit of a model that
constrained parameter estimates of means and standard deviations for each variable
to be equal across sexes was compared to one which allowed them to vary in
males and females, while taking into account the dependency that exists between
observations from twins (Boomsma et al., 1993). The chi-squared statistic is
computed by subtracting the 2 for the full model (e.g. one specifying two different
means for males and females) from that for the reduced model. The degrees of
freedom for this test is equal to the difference between the df (A df) of the two
models (Neale & Cardon, 1992).

Sex differences in phenotypic correlations among the WAIS subtests, Raven
and the RT measures were also examined in Mx. To the covariance matrices of
males and females a model was fitted in which maximum-likelihood correlations
as well as the standard deviations were obtained.

The model imposed upon the covariance matrices can be denoted as:

Syy=S*R*§,

where Xy is the observed v x v covariance matrix, S is a v x v diagonal matrix
in which the standard deviations are estimated, and R is a v x v symmetric matrix
in which the correlations among variables are estimated (v = number of variables).
Firstly, the standard deviations were tested for sex differences by comparing the
fit of models which constrained standard deviations to be equal across groups with
models in which they were allowed to vary, while correlation estimates were set
free. Next, the same strategy was followed for testing sex differences in
correlations, while standard deviations were constrained to be equal for males and
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females. Significance of a single correlation was tested by evaluating the
significance of the 2-change of the model in which the correlation (the specific
element in matrix R) was fixed at zero.

Confirmatory phenotypic factor analysis was conducted on the variance-
covariance matrix of the whole sample by model fitting in Mx as well. Models
were fitted in which the phenotypic variances and covariances were specified to
be accounted for by a General factor, a number of Group factors and by Specific
factors, accounting for the variance unique to each subtest. The model imposed
upon the covariance matrix can be denoted as:

y=F*F+E,

where Zyy is the observed v x v covariance matrix, F is a v x f full matrix in
which the loadings on the General and Group factors are estimated, and E is a v
x v diagonal matrix in which the unique variance of each variable is estimated (v
= number of variables; f= number of Group factors). Group factors are comprised
of a subgroup of variables which share a common variance, not shared by the other
variables. In contrast with exploratory factor analyses, the number of factors as
well as the factor loading pattern of the variables on the different factors can be
specified (in F). Significance of alternative phenotypic factor models can be tested
by changes in 2.

Longitudinal genetic analysis

Variation in phenotype is a function of variation in genotype and in environ-
ment. Sources of variation considered were A, additive genetic variation (i.e. the
sum of the average effects of the individual alleles at all loci), C, environmental
variation shared by family members in the same household and E, random, envi-
ronmental variation that is not shared by family members. The phenotypic variance
can be expressed as a simple additive function of the effects of A, C and E:

Decomposition of the phenotypic variance/covariance of the RT variables was
carried out in 5 bivariate genetic analyses, in which the RT of test occasion I was
selected as first, and that of test occasion two as the second variable. In the
bivariate design (see Figure 5.1) the A, C and E matrices were composed of a
common factor (Ac, Cc and E() influencing the RT of test occasion 1 and II, and
a specific factor, influencing only the second RT (Ag, Cg and Eg). For example,
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the loading of the first RT on the common genetic factor is represented by the path
coefficient a, and that of the second RT by a’ o The loading of the second RT on
the Ag factor is represented by a,. Ag represents new genetic influences on the
second time point. The relative contributions of genetic and environmental influ-
ences to individual differences were estimated by maximum likelihood, conducted
on raw data files, using Mx. This method is especially useful for handling incom-
plete data, for example subjects with missing values for one RT task are not
excluded from the sample and, thus, the loss of valuable data is minimized. Good-
ness-of-fit of alternative nested models, in which parameters were constrained
across sexes and models in which the A or C structure was dropped, were assessed
by change in chi-square, which was calculated as twice the highest log-likelihood
minus the lowest log-likelihood.

Occasion | Occasion II

Figure 5.1

Longitudinal genetic model for Reaction Times of test occasion I and II. A, C and E are the
additive genetic, the shared-environmental and the unique environmental component. A¢, C and
E( represent influences common to the RTs of test occasion I and II. Ag, Cg and Eg represent
influences specific to the RTs of test occasion II.

Multivariate genetic analyses
Because the sex differences observed in the bivariate RT analyses were small
(and no sex differences were observed for test occasion II when analyzed
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separately), the multivariate RT-IQ analyses of both occasions were conducted on
the mean-squares-between pairs (MSg) and mean-squares-within pairs (MSy) co-
variance matrices for the MZ and DZ twin pairs. This method is especially useful
for handling large numbers of variables in multivariate designs, because of the
application of much smaller input matrices, v x v (instead of 2v x 2v), where v is
the number of variables.

To examine the covariance among the RTs and IQ scores, models with a number
of Group factors and Specific factors were specified for the A, C and E structures
and fitted to the MSy and MSy, matrices of the MZ and DZ twin pairs. The dimen-
sions of the A, C and E matrices were (v x f), where f is the number of Group
factors. The dimensions of the Specific factors Agp, Cgp, and Egp were v x v, and
represent the variance specific to each variable. To examine the covariance among
the RTs and the Raven (test occasion 1), a two-factor model with Specific factors
was hypothesized for the A, C and E structures. The two factors were a General
factor loaded by all variables and a Reaction Time factor accounting for the
common variance of the RTs, not shared by the Raven. The first model for the
RTs and the 11 WAIS subtests (test occasion 2), was a four-factor model with
Specific factors, specified for the A, C and E structures. The four factors were a
General factor, a Verbal factor, a Performance factor and a Reaction Time factor.
Significance of further reduction of these models was tested by changes in chi-
square. Heritability estimates for Reaction Times and WAIS subtests as well as
their 80% Confidence Intervals (Neale & Miller, submitted) were computed based
on the best fitting genetic factor model.

RESULTS

Phenotypic analyses of test occasion I

The distribution of the Raven score was negatively skewed (skewness, -.98),
and a quadratic transformation was conducted to obtain a more symmetric distri-
bution (skewness, -.49). RT distributions for Simple RT, Choice RT, STM RT,
Name Identification and Category Identification, all showed acceptable symmetry
(skewness, .39, .46, .60, .47 and .02, respectively).

Maximum-likelihood estimates of the phenotypic correlations among the
Reaction Time tasks and Raven could be constrained to be €qual for males and
females without significant increase in chi-square [Ay?(21) = 32.59, p = .051].
Correlations were equal for males and females and were all significant (Table 5.1).
The mean correlation among the RT tasks was .68. Correlations between Raven
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and Simple RT, Choice RT, STM RT, Name Identification and Category
Identification were -.21, -.22, -.24, -.27 and -.28, respectively.

Tabel 5.1
Maximum-likelihood estimates of phenotypic correlations among Reaction Times and Raven,
means and standard deviations (occasion I, age 16).

Subtests SRT CRT STM NI CI Raven
SRT -

CRT .70 -

STM .57 71 -

NI .64 .81 .16 -

CI 49 .66 67 74 -

Raven -.21 -22 -.24 -27 -.28 -
Means 448.25 649.31 784.27 642.57 814.12 49.8
SD 61.97 72.32 156.99 80.79 109.97 56.23

Subtests: SRT = Simple Reaction Time, CRT = Choice Reaction Time, STM = Short Term Memory RT,
NI = Name Identification, CI = Category Identification. Correlation estimates were equal for males and
females and were all significant.

Phenotypic factor analysis was employed to explored a more simple structure to
account for the covariances among the RTs. The correlation pattern among the RTs
did not suggest more than one Reaction Time factor, therefore, a General factor
accounting for the shared variance of the Raven with the RTs, a Reaction Time
factor, accounting for the shared variance among the RTs and Specific factors,
accounting for the unique variance for each variable were specified. The fit of this
first model (y24 = 14.13, p = .01) significantly declined when the Reaction Time
factor was omitted (y%y = 46.27, p = .00). The first model exhibits rather high
loadings on the Reaction Time factor for STM RT, Name and Category Identifica-
tion, whereas the loadings of Simple RT and Choice RT were low and could be
fixed at zero without significant change in chi-square (x% = 15.71, p = .02),
meaning that the simple RTs did not share any common variance with the more
complex RTs, other than the part they all share with the Raven test. This loading
pattern suggested the possibility of two Reaction time factors, one associated with
the more simple RT performance (loaded by Simple and Choice RT) and one
associated with more complex information processing. To examine this more
detailed Reaction Time structure a model was fitted with, in addition to the
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General factor, a Simple Reaction Time factor and a Complex Reaction Time
factor (% = 12.23, p =.02). However, the Complex factor was only significantly
loaded by the STM RT not by Name and Category Identification, and could be
dropped from the model. The model with a General and Simple Reaction Time
factor showed the best fit to the data (x2; = 14.71, p =.04). These results suggest
that the complex RTs do not share any common variance other than that which
they share with the Raven. The information processing underlying these complex
RTs tap that acquired for solving the Raven Progressive matrices. The General
factor accounted for 76% of the phenotypic RT variance (on average), and for 9%
of the phenotypic variance of the Raven (Table 5.2). The Simple Reaction Time
factor explained 22% of the Simple RT variance and 7% of the Choice RT
variance.

Table 5.2
Best phenotypic factor model for Reaction Times and Raven (occasion I, age 16).

% Variance Accounted for

General RT Specific factors
factor factor
Simple RT 45 22 33
Choice RT 74 7 19
STM RT 67 - 33
Name Identification 87 - 13
Category Identification 63 - 37
Raven 9 - 91

Phenotypic analyses of test occasion Il

All RT distributions showed acceptable symmetry (skewness, .35, .28, 27, .10,
.09) for Simple RT, Choice RT, STM RT, Name Identification and Category Iden-
tification, respectively. WAIS subtest scores all showed symmetric distributions
as well (for a detailed analysis of the WAIS subtest scores, see Rijsdijk &
Boomsma, 1996).

Maximum-likelihood estimates of phenotypic correlations among the Reaction
Time tasks and WAIS subtests could be equalized across sexes [Ax%(136) =
155.19, p = .13]. The correlations are reported in Table 5.3.
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Nine correlations were non-significant and noteworthy are the ones between the
subtest Object Assembly and 4 of the RTs. Object Assembly is one of the two
timed performance subtests in which faster performance is rewarded with a higher
score. This provides some evidence that the relationship between SIP and
intelligence measures does not seem to be attributable to the fact that some parts
of IQ tests are timed. The mean correlation among the Verbal subtests was .51.
The mean correlation among the Performance subtests (.24) was even lower than
the mean correlation between the Verbal and Performance subtests (.28). RT tasks
were almost equally correlated with the Verbal and Performance subtests, -.19 and
-.16, respectively. Strikingly, the RTs showed an even higher intercorrelation (.59)
than the Verbal subtests. The mean correlations of the Simple RT, Choice RT,
STM RT, Name Identification and Category Identification with the 11 WAIS
subtests were: -.19 , -.15, -.21, -.18 and -.17, respectively.

Five factors and Specific factors were hypothesized to underlie the phenotypic
covariance structure of the 16 variables (based on the results in Rijsdijk &
Boomsma, 1996). The five factors were a General factor (loaded by all RTs and
WALIS subtests), an IQ factor {loaded by the WAIS subtests), a Verbal, a Perfor-
mance and a Reaction Time factor. The Verbal and Performance factors were para-
meterized according to the regular subdivision of the WAIS subtests, the Verbal
factor was loaded by the first 6 subtests comprising the Verbal scale and the
Performance factor was loaded by the last five subtests comprising the Perfor-
mance scale. This five-factor model did not fit the data adequately (%7 = 112.79,
p = .005). In this model the loadings of Arithmetic and Digit Symbol on the
Verbal factor, the loading of Coding on the Performance factor, Object Assembly
on the General factor and the Simple RT on the Reaction Time factor were non-
significant and could be fixed at zero (x%, = 114.27, p = .01). This is also
apparent when the phenotypic correlation pattern is examined more closely to
identify departures from subtest loadings on the regularly parameterized factors.
The subtest Coding showed very low correlations with the other Performance
subtests. The same holds for Digit Span and Arithmetic on the Verbal scale. A
model in which these three tests were loaded on a separate sixth factor (%7 =
108.07, p = .01), did not improve the fit compared to one in which they were fixed
at zero. These tests do not seem to share any significant common variance with
each other or with subtests of the other scales, thus, variances for these individual
tests were predominantly accounted for by the General and Specific factors.
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Table 5.4
Best phenotypic factor model for Reaction Times and WAIS subtests (occasion II, age 18).

% Variance accounted for

General 1Q Verbal Perfor- RT Specific

factor factor factor mance factor factors
factor
Information 12 31 13 - - 44
Comprehension 4 40 12 - - 44
Arithmetic 9 47 - - - 44
Similarities 1 49 11 - - 39
Digit Symbol 9 22 - - - 69
Vocabulary 6 45 26 - - 22
Coding 21 13 - - - 66
Picture Completion 6 15 - 3 - 76
Block Design 5 21 - 24 - 50
Picture Arrangement 4 17 - 3 - 76
Object Assembly - 11 - 51 - 38
Simple RT 53 - - - - 47
Choice RT 57 - - - 11 32
STM RT 49 - - - 12 39
Name Identification 49 - - - 38 13
Category Identification 28 - - - 36 36

The subtest Coding correlated more highly (on average) with the RTs than with
the other Performance subtests. Because the score of Coding is directly associated
with speed of performance and this subtest in all respects more resembles an RT
task, one might expect this subtest to have more common variance with the other
RTs and, consequently, to have higher loadings on the Reaction Time factor. This
also holds for the Verbal subtest Digit Span, which shows more similarity with
the STM RT tasks. When Coding and Digit Span were allowed to load on a sixth
factor together with the RTs, the fit, compared with the first model, improved
significantly (¥%,;3 = 88.96, p = .11). The first model can be regarded as a
submodel of this 6 factor model. For simplicity the first model is maintained to
illustrate the phenotypic factor pattern. In Table 5.4 the percentages of phenotypic
variance explained by the different factors are reported for all significant loadings.
The general factor accounted for 47% of the phenotypic RT variance (on average)
and for just 7% of the phenotypic variance of the WAIS subtests (on average),
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with the highest percentage for Coding (21%). Performance on this subtest seems
to tap quite different skills or cognitive abilities. The Reaction Time factor
explained 19% of the RT variance on average, with a zero loading for Simple RT,
which does not share any common variance with the other RTs except for the part
shared with IQ. The average correlation between RTs and Verbal scale subtests
was -.19 and with Performance scale subtests -.16. Different from test occasion
I, STM showed the highest correlations with the subtest scores: -.21 on average.

Table 5.5A
Twin correlations for Reaction Times of test occasion I and IL

Test occasion I Test occasion II

MZM DZM MZF DZF DOS MZM DZM MZF DZF DOS
(N=34) (N=33) (N=48) (N=32) (N=44) (N=33) (N=30) (N=41)(N=31)(N=39)

Simple RT 58 .50 47 12 32 36 .59 36 .07 .30
Choice RT 56 .54 56 .10 24 37 33 57 05 .29
STM RT 40 35 52 49 .15 24 22 28 20 .22
Name Identification 55 .55 46 11 -01 29 .16 51 .14 .07
Category Identification 46 37 48 .10 .22 44 32 34 -05 .28

N = number of twin pairs.

Table 5.5B
Maximum-likelihood estimates of twin correlations for the Reaction Times of test occasion I and
II with 95% Cls.

Test Occasion I Test Occasion II

MZM DZM  MZF DZF DOS MZM DZM MZF DZF DOS

SRT .67 .60 A8 .07 .30 37 .60 34 .01 35
(45-81) (34-77) (24-66) (-25-38) (.02-54) (06-61) (34-77)  (08-56) (-31-31) (08-.57)
CRT .64 .64 .56 A2 19 37 32 55 .04 25
(41-79) (39-79) (34-72) (-20-41) (-10-45)  (07-61) (00-59) (33-71) (-28-35) (-03-50)
STM 45 51 .09 34 13 31 21 34 20 18
(1767) (22-71) (-18-35) (.03-59) (-15-40)  (-00-56) (-12-50) (07-55) (-12-49) (-.11-44)
NI .60 .60 A7 .10 -01 35 10 51 .08 .06
(35-77) (34-77) (22-65) (-22-40) (-29-27)  (04-60) (-24-40) (27-68) (-24-39) (-23-34)
CI 45 43 53 21 21 41 32 .42 -.09 26

(17-67) (13-.66) (30-70) (-12-49) (-.08-.46) (11-64) (-01-60) (.17-62) (-40-23) (-.02-.50)

Number of pairs for each group is number of data records in the raw-data files = total number of pairs
for each group, for MZM : 39, DZM : 36, MZF : 52, DZF : 38, DOS : 48.
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Longitudinal genetic analyses of RTs from test occasion I and 11

Maximum-likelihood estimates of phenotypic correlations between the
Reaction Time tasks of test occasion I and II could be equalized across sexes
[Ax2(45) = 52.84, p = .20]. The correlations are reported in Table 5.6. All
correlations were significant. The mean test-retest correlation was .54, with the
highest value for STM RT (.59). The twin correlations for RT measures of test
occasion I and II for the 5 sex-by-zygosity groups are given in Table 5.5A. Table
5.5B reports the maximum-likelihood estimates of the twin correlations based on
the raw data. Longitudinal genetic analyses results are reported in Table 5.7. The
twin correlations suggest little genetic influences for males. However, the large
CI around these correlations may explaine why the C structure could be omitted
from the ACE sex-differences model for all RTs. In a further reduction, the
parameters for males and females could be constrained to be equal for males and
females for all but the Choice RT and the Name Identification RT, resulting in
an AE no-sex-differences model. Sex differences for the STM RT task were
marginal. Heritabilities of the RTs on test occasion I were substantial and ranged
from 40% to 72%, with the highest value for males on the Choice RT. On test
occasion II a decrease in heritability was observed for almost all RTs, with the
largest decreases for males on the Choice and Name Identification RT.

Tabel 5.6
Maximum-likelihood estimates of phenotypic correlations between Reaction Times of test
occasion I and II.

Subtests SRT; CRT; STM; NI CL
SRTy; .53

CRTyy 40 .58

STMy; .39 .53 .59

NIy .39 51 41 .50

CIy; 31 41 34 43 .50

Subtests: SRT = Simple Reaction Time, CRT = Choice Reaction Time, STM = Short Term Memory RT,
NI = Name Identification, CI = Category Identification. Subscripts: I, I = test occasion I, II. Correlation
estimates were equal for males and females and were all significant.

The significance of new genetic influences was tested by omitting the specific
genetic factor (Ag) from the AE no-sex-differences model (Table 5.8). This factor
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was significant for the Simple and Choice RT and marginally significant for the
STM RT, which implies that there are no new genetic effects for the more
complex RTs. When this Ag influence was fixed to zero, the heritabilities of STM
RT, Name and Category Identification for test occasion II decreased to 23%, 32%
and 36%. New environmental effects (including measurement errors of test
occasion II) were highly significant as was indicated by the hugh increase in x?
when the Eg influence was fixed at zero. Genetic and environmental influences
from occasion I on occasion II (a’, and e’) were significant for all RTs.

Table 5.7

Bivariate moddel fitting results of Reaction Times of test occasion I and II, fitted on raw data
files of the 5 sex-by-zygosity groups (Ax? for ACEsd model is based on comparison with the
saturated model).

Models (df)

ACEsd AEsd AEnsd Heritabilities

Ax% p Ay% p A’ P hp? hy?
Simple RT 474 58 4.89 .56 6.5% .37 64% 42%
Choice RT 1.96 .92 6.09* .41 209 .00 f:49% f: 50%
m: 72% m: 43%
STM RT 0.13 .99 6.00 .42 12.9*% .04 50% 34%
Name Identification 1.55 .96 11.84% .07 172 .01 f: 40% f:47%
m: 62% m: 26%
Category Identification 1.71 .94 3.59 .73 8.8* .19 51% 42%

n(sd) = (no-)sex-differences. * = Best fitting model. hi? = heritabilities at test occasion I (age 16), hy? =
heritabilities at test occasion II (age 18). f = females , m = males.

Univariate genetic results of the WAIS subtests and the Raven have been reported
previously (Rijsdijk & Boomsma, 1996) and are summarized in Tabel 5.9. For the
subtests Coding, Picture Completion and Object Assembly an AE and CE model
fitted equally well. Heritabilities for individual differences in WAIS subtest scores
in this population are quite high and ranged from 33% to 75%. Heritabilities for
Verbal IQ, Performance IQ and Full-Scale IQ were 84%, 69% and 82%.

Because the sex differences for the 5 RTs were small, but especially to
account for the large number of variables, the multivariate RT-IQ analyses for test
occasion I and II were both conducted on the mean-square within and between
covariance matrices pooled across sexes.
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Table 5.8 :
Model fitting results for common and specific genetic and environmental influences of Reaction
Times at test occasion I and II.

Models (df)
AEnsd AEnsd AEnsd AEnsd Heritabilities
noa’, noe’, no a

A% p Ay p A’ p Ay p h? by

Simple RT 6.5 37 27.5 .00 19.6 .00 81 .00 64% 42%
Choice RT 20.9 .00 325 .00 18.1 .00 88 .00 63% 47%
STM RT 129 .04 87.7 .00 30.7 .00 42 .04 50% 34%

Name Identification 17.2 .01 26.8 .00 6.4 .01 1.3 26 52% 32%
Category Identification 8.8 .19 269 .00 6.8 .01 2.8* 10 49% 36%

h?, h? = heritabilities on test occasion I and II. n(sd) = (no-)sex-differences. * = non-significant increase
in %2

Table 5.9
Model fit indices of univariate analyses of the WAIS subtests and the Raven test fitted to pooled

MZ and DZ covariance matrices.

ACE Model AE Model CE Model Variance
df=3 df=4 df=4 Estimates h?

Subtests w2 p x? p X2 p A E
Information 9.19 .03 9.19*% .06 30.61 .00 1.502 0496 75%
Comprehension 799 .05 7.99* .09 19.59 .00 1.747 0968 64%
Arithmetic 1.86 .60 1.86* .76 13.74 .01 2203 1.321 63%
Similarities 8.28 .04 8.28* .08 21.70 .00 1.870 1.296 56%
Digit Span 0.59 .89 0.59* .96 8.18 .09 1.615 1272 59%
Vocabulary 399 .26 3.99* 41 30.16 .00 2.008 0.678 75%
Coding 243 49 2.59 .63 5.11 .28 1.520 1.628 48%
Pict Completion 1.19 .76 206 .73 1.34 .86 0997 2.019 33%
Block Design 044 93 2.23* .69 7.03 .13 2.506 1.167 68%
Pict Arrangement  3.96 .27 3.96% 41 10.16 .04 1457 2305 39%
Object Assembly 1.48 .69 376 .44 2.20 .70 1.771  1.729 51%
Verbal 1Q 643 .09 6.43* 17 50.97 .00 121.44 23.68 84%
Performance 1Q 0.61 .90 0.61* .96 13.65 .01 95.38 4337 69%
Full-Scale IQ 2.64 .45 3.54% 47 42.14 .00 11096 24.12 82%
Raven 3.65 .30 541* 25 7.60 .11 211 125 63%

* = Best fitting model. For Coding, Picture Completion and Object Assembly the additive genetic as well
as the common environmental structure could be omitted from the ACE model without deterioration of
fit; the AE and CE model fitted equally well: c? was 34%, 26% and 42%, respectively. h? = heritability.
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Table 5.10
Fit indices for nested sequence of multivariate models fitted to between and within mean product
matrices of MZ and DZ pairs (occasion I, age 16).

Model y df p Ay Adf  Ap

1. Cholesky ACE 29.12 3 .00

2. Cholesky AE/CE 35.85 24 .06 6.73 21 99
47.03 .00 1791 .65

3. Two-Factor Model + Specifics 34.25 33 41

for A, C, & E : Ag Ayt Agp etc.

4. Same as 3, without C 47.66 50 37 1341 17 71

5. Same as 4, without Ext 63.81 55 .19 16.15 5 .00

6. Same as 4, without Apy 57.89 55 37 1023 5 .07

7. Same as 6, without non-signi- 60.37 59 40 248 4 .65

ficant loadings of Raven on Eg;
SRT on Eg; CRT on Eg Egp

Twin groups pooled across sexes: 80 MZ, 108 DZ pairs. Ax* = change in chi-square, Adf = change in
number degrees of freedom, A p < .05 means significant change in ¥2. Factor Subscripts : G = General,
RT = Reaction Times, SP = Specific.

Multivariate genetic analyses of test occasion I

In Table 5.10 the results of the multivariate genetic analysis of the Raven and
RTs are presented. To examine the covariances among the RTs and Raven, initial-
ly, a Cholesky decomposition was imposed upon A, C and E. The C as well as
the A structure could be dropped without significant decline in fit [Ax3(21) = 6.73,
p = .99 and Ax2(21) = 17.91, p = .65]. Factor analysis was explored to identify
a more simple structure to account for the covariances among the RTs. A two-
factor model with Specifics, imposed upon A, C and E was specified (model 3).
The two factors were a General factor loaded by the Raven and all RTs, and a
Reaction Time factor. The Specific factors accounted for variance specific to each
subtest. In model 4 the C structure was dropped, resulting in a more parsimonious
AE model [Ay?(17) = 13.41, p = .71]. In further reduction the genetic Reaction
Time factor could be omitted (model 6) [Ax2(5) = 10.23, p = .07], whereas (in
model 5) the environmental Reaction Time factor proved to be significant [AY*(5)
=16.15, p = .006]. Finally, in model 7, all nonsignificant loadings were excluded
from model 6 [AY?(4) = 2.48, p = .78]. The fit of this model was moderate (X2sq
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= 60.4, p = .40). The non-significant loadings were loadings of the Raven on Eg,
of the Simple RT on Eg and of the Choice RT on E and Egp. The non-significant
loading of the Raven on E implies that the correlation between the Raven and
the RTs is solely mediated by common genetic factors. The genetic correlations
between the Raven and RTs were -.40, -.43, -.43, -.43 and -.40. The genetic
correlation among the RTs (.75) was higher than the environmental correlation
(.49).

Path coefficients of the best fitting model (model 7) are represented in Figure
5.2. Percentages of genetic and environmental variance and heritability estimates
with information about their precision in likelihood based 80% confidence intervals
are reported in Table 5.11. The RT heritabilities are considerable, ranging from
50% to 58%, with the heritability for Simple RT as high as that for the Raven
(58%). The General genetic factor accounted for almost 45% of the total RT
variance, on average, whereas for just 12% of the total variance of the Raven. The
General environmental factor accounted for 21% of the Reaction Time variance.
The Reaction Time factor was only loaded by the STM, Name Identification and
Category Identification RTs, suggesting a shared unique environmental variance
associated with more complex information processing.

Tabel 5.11
Percentages genetic and environmental variance and heritability estimates with 80% CI for the
Reaction Times and the Raven.

Genetic factors (%) Environmental factors (%)

Subtests Ag Agp h?  80% CI Eg Egpr Egp e2 80% CI
Simple RT 44 14  58% 49%-66% 13 - 29  42% 34%-51%
Choice RT 51 6 57% 48%-65% 43 - - 43% 35%-52%
STM RT 44 6 50% 42%-58% 12 13 25 50% 42%-58%
Name 47 6 52% 43%-60% 24 14 10  48% 40%-57%
Identification

Category 39 11 50% 40%-58% 11 16 23 50% 42%-60%
Identification

Raven 12 46 58% 50%-65% - - 42 2% 35%-51%

Multivariate genetic analyses of test occasion II
To examine the covariance among the RTs and WAIS subtests, initially a
Cholesky decomposition was imposed on the A, C and E structures and fitted to
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the MSp and MSy, matrices of the MZ and DZ twin pairs. Both the C and A
matrices could be omitted without significant decrease in chi-square (Table 5.12).
The loading pattern of the A matrix suggested the existence of at least a general
factor to account for the covariation of the WAIS subtests with the RTs, an IQ
factor to account for the common variance of the WAIS subtests that is not shared
by the RTs (and thus not expressed in the General factor). Based on previous
findings, and according to the regular subdivision of the WAIS, a Verbal and
Performance factor were specified as well and finally, a fifth factor was hypo-
thesized to account for the covariance among the RTs. Specific factors accounted
for variance specific to each subtest. This model (model 3) did not fit the data
well, as is indicated by the low p-value (x%¢; = 411.57, p = .05). In subsequent
model fitting, the C structure was omitted from model 3 and 2 change for this
reduced factor model appeared to be non-significant [Ax2(59) = 55.27, p = .05].
In model 5 the Verbal and Performance factor in the E matrix proved to be non-
significant [Ax?(11) = 8.54, p = .66] and in model 6 the IQ factor could be
dropped as well. Thus, a General factor, a Reaction Time factor and Specific
factors were sufficient to explain this unique environmental matrix. As can be
concluded from models 8, 9 and 10, in the genetic covariance matrix all five
factors (Ag, AIQ’ Ay, Ap, Agr) and Specific factors were significant and could
not be omitted, thus, model 6 was accepted as the best fitting model. Note that
the fit of this model was extremely poor, though. The loadings of the more
complex RTs on the Ag were quite low and suggested the possibility of a second
(complex) RT factor in the A matrix. This was not the case: the fit of a model with
two RT factors declined significantly. Because it is conceivable that the genetic
and environmental mediation of the SIP-IQ relationship may differ for Verbal and
nonverbal abilities, a model was specified with two additional factors in both the
A and E matrix (an extention of model 3). These two factors were a Verbal-RT
factor and a Performance-RT factor (X384 = 450.2, p = .01). Model 3, regarded
as a reduction of this model, showed a nonsignificant decline in fit [AY(42) =
16.37, p = 9.99] and, thus, proved the insignificance of these additional factors.

Finally, all non-significant loadings were excluded from model 11. These were
the loadings of Digit Symbol and Coding on Ajq; Coding and Picture Arrangement
on Ap; Category Identification on Apy; Similarities, Block Design and Name
identification on Agp; Information, Vocabulary, Coding, and all 5 RTs on Eg. In
accordance with the test results of occasion I, the zero loadings of the RTs on E
imply that the observed phenotypic correlations between the RTs and all 11
subtests of the WAIS were entirely determined by genetic factors.
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Table 5.12
Fit indices for nested sequence of multivariate models fitted to between and within mean product
matrices of MZ and DZ pairs (occasion II, age 18).

Model X2 df p A2 Adf Ap
1. Cholesky ACE 297.61 88 .00 - . .
2. Cholesky AE/CE 33859 224 .00 4098 136 .99

388.69 224 .00 91.08 136 99

3. Five-factor Model + Specifics (ACE) 411.57 367 .05 - - -
Ag Arg Ay Ap Agr Agp etc.

4. Same as 3, without C 466.84 426 .08 55.27 59 .05
5. Same as 4, without Ey Ep 47538 437 .10 8.54 11 .66
6. Same as 5, without EIQ 49329 448 .07 17.91 11 .08
7. Same as 6, without Ep 516.65 453 .02 23.36 5 .00
8. Same as 6, without Ay 508.57 454 .04 15.28 6 01
9. Same as 6, without Ap 515.48 453 .02 22.19 5 .00
10. Same as 6, without App 513.23 453 .03 19.91 5 .00
11. Same as 6: 498.08 464 A3 4.79 16 .99

Ag Ajg Ay Ap Agt Asp; Eg Epr Egp
Without the non-significant loadings

Twin groups pooled across sexes: 74 MZ, 100 DZ pairs. Ax?= change in chi-square, Adf = change in
number degrees of freedom, A p < 0.05 means significant change in X2

Percentages of variance accounted for by the different genetic and environmental
factors and heritability estimates with 80% confidence intervals are reported in
Table 5.13. The heritabilities for the WAIS subtest are in close agreement with
the univariate estimates seen in Table 5.9. The General genetic factor, on average,
shows to be more important for the RTs, explaining 22% of the genetic variance,
compared to the WAIS subtests. The genetic Reaction Time factor is predominant-
ly loaded by Simple RT, whereas the environmental RT factor is highly loaded
by the more complex RTs. Simple RT showed the highest heritability (56%), heri-
tabilities of the Name and Category Identification RTs were quite low (25% and
22%). For the WAIS subtests, the average genetic correlation was higher among
the Verbal subtests (.74) than among the Performance subtests (.44), while the
mean environmental correlations were around zero. The mean genetic correlation
among the RTs was quite high (.77) and so was the mean environmental correla-
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tion (.53), which may, in part, have resulted from correlated measurement errors.
The mean genetic correlations between RTs and Verbal and Performance subtests
were -.46 and -.42.

Tabel 5.13
Percentages genetic and environmental variance and heritability estimates with their 80% CI for

the Reaction Times and WAIS subtests.

% Variance accounted for by genetic and environmental factors based on Model 11

Subtests Ag A Ay Ap Agr Agp 2 80%Cl Eg Eppr Egp e 80%CI
Information 31 13 14 - - 16  74% 68-719% - - 26  26% 21-32%
Comprehension 13 27 16 - - 7 63% 56-710% 2 - 35 37% 31-44%
Arithmetic 33 2 11 - - 15 61% 52-68% 13 - 26  39% 33-48%
Similarities 11 20 27 - - - 58% 42-63% 4 - 38 42% 37-48%
Digit Symbol 26 - 10 - - 23 59% 50-66% 1 - 40 41% 34-50%
Vocabulary 22 22 32 - - 2 78% 173-83% - - 22 22% 17-27%
Coding 14 - - - - 34  48% 37-58% - - 52 52% 42-63%
Picture Compl 12 18 - - - 8 38% 27-47% 6 - 56 62% 53-713%
Block Design 21 2 - 43 - - 66% 59-72% 8 - 26 34% 28-41%
Picture Arrang 10 13 - 1 - 11 35% 23-46% 3 - 62 65% 54-717%
Object Assembly 2 11 - 21 - 18 52% 42-60% 6 - 42  48% 40-57%
Simple RT 23 - - - 26 8 57% 48-64% - 8 35 43% 36-52%
Choice RT 21 - - - 15 9 45% 36-54% - 35 20 55% 46-64%
STM RT 28 - - - 3 5 36% 28-45% - 31 33 64% 55-72%
Name Ident 20 - - - 5 - 25% 17-33% - 60 15 75% 67-83%
Category Ident 17 - - - - 5 22% 13-31% - 53 25  78% 69-81%
DISCUSSION

On test occasion I the mean phenotypic correlation between the RTs and the Raven
was -.24, and within the typically observed range. The phenotypic correlation
among the RTs was .68. The covariances between the RTs and Raven was repre-
sented by three phenotypic factors, including a General factor, a Reaction Time
factor (which was loaded just by Simple RT and Choice RT) and Specific factors.
There was no evidence for the existence of a second (complex) Reaction Time
factor, which suggests that there is no common variance among the complex RTs
other than the part they share with the Raven. The genetic analyses showed the
Reaction Time factor to be significant for only the unique environmental matrix,
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but, in contrast, with loadings of the complex RTs. Shared family influences were
not significant. The nonsignificant loading of the Raven on the General E factor
implied that the correlation between the Raven and the RTs was exclusively
mediated by the loading on the General A factor. Heritabilities of the RTs were
substantial, ranging from 50% to 58%. The heritability of the Simple RT was as
high as that of the Raven test (58%).

The mean correlation of the RTs with the WAIS subtests was lower compared
to that with the Raven on test occasion 1. The covariance among these variables
was accounted for by five phenotypic factors and Specific factors. The five factors
included a General, an IQ (loaded by all WAIS subtests), a Verbal, a Performance
and a Reaction Time factor. Different from test occasion I, the Reaction Time
factor was loaded by all but the Simple RT, with higher loadings for the Name
and Category Identification RTs. In the genetic analyses, this five-factor model
with Specifics was fitted to the A, C and E matrix. Just like in test occasion I,
common environmental influences were not significant. All five factors were signi-
ficant for the A matrix, while the unique environmental influences were accounted
for by a General, a Reaction Time and Specific Factors. Just like in test occasion
I, the RT loadings on the General E factor were all nonsignificant, meaning that
the observed phenotypic correlation is entirely determined by loadings on the
General genetic factor. Thus, there is no evidence that practice or training effects
for these RTs (occasion I and II) influence the IQ-RT relationship. Although the
degree of correlated genetic influences for these RTs may differ, for all RTs the
General A, instead of the General E, was the mediating factor with IQ, independent
of their particular complexity level. These conclusions are, of course, limited to
the RT measures used. There was no evidence for differential genetic and environ-
mental mediation of the SIP-IQ relationship for Verbal and nonverbal abilities.
Also, no difference was observed in the genetic correlation between the RTs and
the Verbal or Performance subtests. On test occasion II variations in heritabilities
of the RTs cannot be related to the extent to which the measures tap an underlying
Phenotypic General Speed factor (Vernon, 1989), nor to the extent to which they
tap the General genetic factor. However, heritability estimates of the RTs seem
to be systemized according to the extent to which they load on the genetic
Reaction Time factor (Agy): higher heritabilities were observed for RTs with
higher loadings on the Agr.

Phenotypic results on both test occasions showed the existence of a General
factor, a Reaction Time factor and Specific factors. For test occasion II, three
additional (IQ, Verbal and Performance) factors were observed for the WAIS
subtests. Genetic factor analyses yielded different genetic and environmental factor
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patterns. Phenotypic factor patterns may not be mirrored in both genetic and
environmental components of variance, which is shown by the present results. For
test occasion I the observed phenotypic Reaction Time factor proved to be consti-
tuted by environmental influences, whereas for test occasion II the Reaction Time
factor was constituted by genetic as well as by environmental influences. The
phenotypic relationship among tests comprising the Verbal and Performance scales
of the WAIS is reflected in the genetic covariance among these variables, whereas
the same environmental influences appear to be operating across all WAIS
subtests.

On test occasion II, heritabilities for all but the Simple RT are lower compared
to those of test occasion I. In the longitudinal genetic analysis of the RTs of test
occasion I and II, lower heritabilities for test occasion II are observed as well. For
Choice RT and Name Identification RT, for which sex differences were observed,
heritability estimates for males dropped on test occasion II, whereas for females
the heritability estimates increased slightly. There seems to be a trend of significant
new genetic effects (specific to test occasion II) for the Simple RTs, whereas these
specific genetic effects are less significant (for STM RT) or not significant at all
for the more complex RTs.

Although genetic analyses of elementary cognitive tasks or RTs have been
conducted on quite different sets of tasks, the pattern of results suggests that the
observed heritabilities in RT tasks in adolescence and adults may be higher than
those observed in children (Petrill ez al., 1995, 1996). Common environmental
influences seemed to play an important role in the performance of RTs in children.
In that respect heritabilities of RTs on test occasion II (at age 17.5) were not
expected to be any lower than on test occasion I. This was not the case for most
of the RTs. The heritabilities for the RTs in test occasion I were considerable, with
the highest estimate for the Simple RT, which was as high as the heritability for
the Raven (58%). Although common environmental influences were not significant
at both ages, the heritabilities for most of the RTs at test occasion II were lower
than those for test occasion I. Significantly different heritability estimates were
observed only for Name Identification and Category Identification, which are
reflected by the totally non-overlapping confidence intervals (CI) from test
occasion I and II. For Simple RT, heritability at age 17.5 was almost equal to that
at age 16 and so were the ClIs.

It is unclear whether the significant decline in heritability was induced by the
modifications of the RT task battery. At test occasion II, subjects were rewarded
for each correct response and feedback was supplied on each reaction time that
was slower than an established target reaction time value for a specific task. These
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modifications may have induced other response strategies, which may have caused
the differences in heritability of the RTs compared to test occasion I. Mean
reaction times on all 5 tasks were significantly faster at test occasion I, but the
percentages of correctly made trials were (except for the simple RT) significantly
lower. Thus, it seems that more mistakes were made as a consequence of the fact
that subjects were speeded up by these target values.

More complex RT tasks are expected to correlate more highly with intelligence
because they impose increasing information processing demands and thus more
closely approximate cognitive operations needed by intelligence subtest
performance. Elementary cognitive tasks which more closely resemble intelligence
tests are supposed to show higher correlations with intelligence test scores and are
supposed to exhibit higher heritabilities. The correlation between the Raven and
the Simple RT in test occasion I was not significantly different from the correlation
with the STM RT, which is supposed to measure more complex cognitive informa-
tion processing. This is also reflected by the fact that loadings of RTs on Ag are
almost equally high. In contrast, on test occasion II the STM RT did show the
highest correlation with the WAIS subtests, on average, as a consequence of its
highest loading on Ag.

In accordance with the findings of Ho et al. (1988) and Baker et al. (1991)
in adult and adolescent samples, the observed phenotypic correlations on both test
occasions were entirely determined by common underlying genetic influences.
Genetic variation which leads to faster RTs are associated with genetic variation
determining higher scores on intelligence test. These findings were indicated by
the significant (negative) loadings of all RTs on the General genetic factor and
suggest that these speed variables might be an important component of general
intelligence which is based on some common biological basis. The common biolo-
gical basis for the speed measures and intelligence was hypothesized to tap neural
speed and efficiency.

In all genetic studies (except the Petrill et al., 1996 study) which have
examined the relation between cognitive speed of processing and scores on
psychometric ability tests, some phenotypic structure was assumed and calculated
factor scores were entered in the multivariate genetic analyses. This study
demonstrates the possibility of fitting meaningful phenotypic models to the
covariance among a set of psychometric tests and RTs. In order to decompose the
phenotypic structure into genetic and environmental components of variance,
multivariate genetic analyses were performed on all variables and factor patterns
were specified and tested separately for the genetic and environmental matrices.
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Appendix A

Chapter 2 dealt with the relationship between the Raven and PNCV of test occa-
sion I, chapter 3 with the WAIS Full-Scale IQ score and PNCV of test occasion
II. The relationships between Reaction Times and Raven (test occasion I) and
Reaction Times and WAIS subtests (test occasion II) are discussed in chapter 5.

In addition to these results, this appendix provides the phenotypic correlations
between Reaction Times and onset PNCV of test occasion I and IL. Also reported
are the correlations between the WAIS subtests and onset PNCV and the correla-
tions between WAIS Verbal, Performance and Full-Scale IQ and Reaction Times
of test occasion IL

Test Occasion I

Phenotypic analysis
Input Matrix:
Covariance matrix of the whole sample (N = 276) (Table 7.1).

Maximum-likelihood estimates of the phenotypic correlations between PNCV and
Reaction Times are reported in Table 7.2. There were no significant correlations
between Reaction Times and PNCV.

Test Occasion IT

Phenotypic analysis

Input Matrix:

- Covariance matrix of the whole sample (N = 326) (Table 7.3)
Maximum-likelihood estimates of the phenotypic correlations between Verbal 1Q,

Performance IQ, Full-Scale IQ and Reaction Times and PNCV are shown in Table
7.4. All correlations between PNCV and Reaction Times were nonsignificant.
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Appendix

Table 7.5 gives the correlations between PNCV and the WAIS subtest. Only the
correlations between PNCV and Coding and PNCV and Object Assembly were
significant.

Tables of appendix A: Page

7.1 Covariance Matrix Reaction Times, Raven and
PNCYV of test occasion I 122

7.2 Phenotypic correlations between PNCV and Reaction
Times of test occasion I 123

7.3 Covariance matrix of Verbal IQ, Performance 1Q,
Full-Scale IQ, Reaction Times and PNCV of test occasion II 123

7.4 Phenotypic correlations between Verbal IQ, Performance
IQ, Full-Scale IQ, Reaction Times and PNCV of test occasion II 124

7.5 Phenotypic correlations between PNCV and WAIS subtest
of test occasion II 124

Table 7.1
Test Occasion I: Covariance matrix of Reaction Times, Raven and peripheral nerve
conduction velocity. Number of individuals = 276

SRT CRT STM NI CI Raven = PNCV
SRT 41.02
CRT 32.78 49.93
STM 57.06 80.32
NI 33.68 4691  67.18
CI 36.02 53.94 68.10 127.16
Raven -8.29 -6.80 -11.80 -18.30 31.54
PNCV -3.04 -5.86 -7.77  -12.19 -4.13 68.62

SRT = Simple Reaction Time, CRT = Choice Reaction Time, STM = Short Term Memory RT, NI = Name
Identification, CI = Category Identification, PNCV = Peripheral Nerve Conduction Velocity.
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Table 7.2
Test Occasion I: Maximum-likelihood estimates of phenotypic correlations between peripheral
nerve conduction and Reaction Times and Raven. Number of individuals = 276.

SRT CRT STM NI CI Raven

PNCV -.06 -.10 -.06 -.06 -.13 -.09

SRT = Simple Reaction Time, CRT = Choice Reaction Time, STM = Short Term Memory RT, NI = Name
Identification, CI = Category Identification, PNCV = Peripheral Nerve Conduction Velocity. All correlation
are non-significant.

Table 7.3
Test Occasion II: Covariance matrix of WAIS Verbal IQ, Performance IQ and Full-Scale I1Q,
Reaction Times and peripheral nerve conduction velocity. Number of individuals = 326.

VIQ PIQ FIQ SRT CRT STM NI CI PNCV
VIQ 140.60
PIQ 79.94 133.29

FSIQ 125.48 113.23  132.62
SRT -219.26  -164.23 -217.54  4860.40

CRT 91.79 -11039 -111.18  1738.20 2048.40

STM -268.69 -218.40 -276.21 247520 2061.50 5284.90

NI -140.87 -121.93 -148.65 1605.10 1527.30 2246.80 2068.90

CI -183.60 -165.24 -194.69 151430 1570.60 2645.30 2003.70 3660.40

PNCV 6.06 7.54 7.54 12.19 5.50 8.66 1.56 -7.07  12.09

VIQ = Verbal 1Q, PIQ = Performal IQ, FSIQ = Full-Scale IQ, SRT = Simple Reaction Time,
CRT = Choice Reaction Time, STM = Short Term Memory RT, NI = Name Identification, CI = Category
Identification, PNCV = Peripheral Nerve Conduction Velocity.
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Table 7.4
Test Occasion II: Maximum-likelihood estimates of phenotypic correlations among WAIS Verbal,

Performance and Full-Scale IQ, Reaction Times and peripheral nerve conduction velocity. Number
of individuals = 326.

VIQ PIQ FSIQ SRT CRT STM NI CI PNCV

VIQ 1

PIQ .58 1

FSIQ 92 .85 1

SRT -27 =20 -27 1

CRT -17 -21 -21 .55 1

STM -31 -26  -33 49 .63 1

NI -.26 -.23 -.28 Sl 74 .68 1

CI -26 -24  -28 .36 57 .60 73 1

PNCV 15 .19 .19 05" .04™ 03" 01" -03™ 1

VIQ = Verbal 1Q, PIQ = Performal IQ, FSIQ = Full-Scale IQ, SRT = Simple Reaction Time,
CRT = Choice Reaction Time, STM = Short Term Memory RT, NI = Name Identification, CI = Category
Identification, PNCV = Peripheral Nerve Conduction Velocity. "™ = non-significant correlations.

Table 7.5
Test Occasion II: Maximum-likelihood estimates of phenotypic correlations between peripheral
nerve conduction velocity and WAIS subtests. Number of individuals = 326.

INF COM ARI SIM DS VOC CODE PC BLK PA OA

PNCV 07" 13" 06™  .10™  -.00™ .13™ 20 .08™ .06™ .03™ .18

INF = Information, COM = Cdmprehension, ARI = Arithmetic, SIM = Similarities, DS = Digit Symbol,
VOC = Vocabulary, CODE = Coding, PC = Picture Completion, BLK = Block Design, PA = Picture
Arrangement, OA = Object Assembly. PNCV = Peripheral Nerve Conduction Velocity. ™ =
non-significant correlations.
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Summary and discussion

The existence of reliable and stable individual differences in performance on
psychometric intelligence tests or IQ, is beyond any doubt. Theories on the
structure of intelligence give little information about underlying processes that may
cause these individual differences (Brody, 1992). The search for biological deter-
minants of intelligence that might explain differences in cognitive functioning has
long been the subject of experimental psychology and can be divided into two
main approaches. One explores the relation between general intelligence and the
speed of execution of elementary cognitive tasks (reaction time tasks), based on
ideas that can be traced back to Galton (1883). Another approach is to study
individual differences in intellectual abilities in relation to physiological measures.
The existence of biological determinants underlying cognitive functioning
gains much evidence from results of behavior genetic research, which has shown
that genetic factors account for 50-60% of the phenotypic variance in psychometric
intelligence (Bouchard & McGue, 1981). Beyond showing evidence for some
genetic determination of phenotypes, quantitative genetic methods can also reveal
the nature of the relationship between phenotypes. The correlation between
phenotypes may be entirely environmental in origin or may be caused by under-
lying common genetic influences. Genetic analyses, thus, are of importance when
interpreting the correlations between biological and behavioral variables.
Biological determinants of cognitive functioning may be translated into neuro-
physiological and biochemical processes in the central nervous system. Among
a great number of biological variables, peripheral and central nerve conduction
have been investigated in the search for biological determinants underlying the
individual differences in psychometric intelligence. Reed (1984) hypothesized that,
as far as individual differences in IQ are genetically determined, they can be attri-
buted to genetic variability in the structure and amount of ’transmission proteins’,
which determine information processing rates and, consequently, intelligence. This
is called the *neural efficiency model of intelligence’. The established relationship
between intelligence and Reaction Times on elementary co gnitive tasks (a behavio-
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ral manifestation of this neural efficiency) may provide additional evidence for this
model (Vernon, 1993).

In the present study the relative contributions of genetic and environmental
factors to the relation between peripheral nerve conduction velocity, reaction times
and IQ was investigated. These characteristics were measured longitudinally in a
group of 213 twin pairs. At the first test occasion the mean age was 16 years and
at the second, 17.5 years.

In this general discussion, first, results are summarized of the phenotypic and
genetic factor structures underlying the individual differences in WAIS subtest
scores (test occasion II). This kind of genetic analysis on the WAIS subtest scores
was only rarely conducted. Also, the results of the genetic association between the
WALIS subtests and the Raven are discussed. Next the nature of the RT - IQ rela-
tionship and the longitudinal analysis results of RTs on test occasion I and II are
discussed. In the next section special attention is drawn to the results on the
genetic architecture of peripheral nerve conduction in humans. Finally, the results
of the PNCV - IQ relationship of test occasion I and II (chapters 3 and 4) are
summarized and a theory is suggested to account for the apparently contradictory
findings of test occasion I and IL.

Multivariate analysis of the WAIS subtests and the Raven

The factor structure underlying individual differences in WAIS subtest scores
was explored by means of multivariate genetic analyses. The associations among
the subtests were decomposed into parts due to genetic and environmental
influences. Additive genetic and non-shared environmental influences accounted
for the phenotypic covariance, whereas shared family background did not. The
matrix of genetic correlations suggested a General factor, a Verbal factor, a
Performance factor and Specific factors. The matrix of environmental correlations
among subtests did not bear any evidence for a separate Verbal and Performance
factor, the covariance structure indicated a General factor and Specific factors.
Thus the regular subdivision of the WAIS (Wechsler, 1955) into a Verbal and
Performance scale reflects genetic rather than environmental covariance between
the subtests.

Association among WAIS subtests showed the significance of a General intel-
ligence factor (g) which was more dominant in the genetic matrix. The construct
g refers to the positive manifold, the presence of positive intercorrelations among
diverse tests of cognitive abilities. The General genetic factor was predominantly
tapped by the verbal subtests. In addition to the genetic General and Group factors,
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Specific factors were observed, accounting for the unique characteristics of each
subtest, not shared by the other subtests. Multivariate genetic analyses, thus, can
help solve the question about the nature of g (Jensen, 1993). The establishment
of a genetic basis of g supports the notion of a biological basis of g.

A special feature of chapter 2 was the inclusion of the Raven (Raven, 1958)
in the multivariate analyses. The Raven is a nonverbal test of reasoning and does
not rely heavily on acquired knowledge. The association with the WALIS and other
tests of mental abilities is expected to be the result of loadings on a General factor
of intelligence g. With a multivariate genetic model it was possible to address the
question whether this association is mediated by the General genetic factor or
General environmental factor. The covariance of the WAIS subtests and the Raven
was solely accounted for by the General genetic factor.

The finding of nonsignificant common environmental (family background)
influences of the present study fits the idea that non-shared family environment
becomes more important once children start their formal education (Scarr &
McCartney, 1983, Thompson, 1993, Boomsma, 1993). Adoption studies indicate
that younger children, regardless of genetic relatedness, resemble each other
intellectually because of similar rearing environment. Adolescents are able escape
the influences of the family by actively selecting their own environment and,
therefore, resemblance will exists only if they share genetic background (Scarr &
Weinberg, 1983).

Intelligence Quotient in the Dutch population

In the present study, individual differences in WAIS Full-Scale IQ score were
shown to be highly heritable. The heritability estimate of 82% is higher than values
reported for adult IQ (70%) as measured in reared apart MZ twins (Bouchard et
al., 1990) and higher than meta-analyses results of 50% to 60% (Bouchard &
McGue, 1981). This difference remains even when the lower bound of the 95%
confidence interval of our estimate is considered (75%). The upper bound was
estimated to be 87%. The question is how this high heritability estimate in the
Dutch population can be explained. When cultural influences on a phenotype are
important and relatively homogeneous, environmental variance decreases and
heritability will increase (Bouchard et al., 1990). Tambs et al. (1984, 1986) argued
that the high genetic variance for WAIS IQ observed in Norwegian twins could
be a results of the rather egalitarian Norwegian society. Higher genetic variance
was particulary observed in younger generations (Sundet et al., 1981), which
probably is an effect of developing social homogeneity. This was also demonstra-
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ted by the fact that, compared to the US population, a smaller proportion of
Norwegians was doing extremely poor on the test. A possible explanation for the
high heritability for individual differences in IQ in Norway and The Netherlands
could be that genetic and environmental influences upon intelligence are correlated.
Genotype-environmental correlation refers to the fact that the environments which
individuals experience may not be random, but are caused by their genes and the
genes of their parents. It is possible that these higher heritability estimates are
caused by the fact that social equality creates optimal educational conditions for
all individuals and an equal chance to choose among a variety of secondary
schools and educational institutions. Therefore, selection or choice of schools and
length of education may be (actively) influenced by genotypes of individuals
(rather than e.g social economical status of the parents) and, thus, a balanced,
random sample of adolescents is likely to exhibit large genetic influences on IQ.
This is called active genotype-environmental correlation.

Despite the higher heritability estimate for IQ in our study, the common
finding of higher shared-family environmental influences on IQ in children com-
pared to adolescence and adults, is also observed in the Dutch population
(Boomsma & Van Baal, in press). This could be an effect of the rather uniform
elementary school education which does not permit a large influence of (genotypi-
cally driven) choices of parents or children.

The action of specific mechanisms by which differences in genotypes in
human behavior are expressed in phenotypic differences are still unclear. It is
hypothesized that genetic influences may work indirectly by determining the
effective psychological environment of the developing child (Scarr & McCartney,
1983). This is called passive genotype-environmental correlation or cultural
transmission. Another explanation for the high heritability for individual differences
in IQ a population could be that genetic differences might affect psychological
differences indirectly, by influencing the effective environment of the developing
child. An example is when higher than averaged ability children, in addition to
the inherited genes, also benefit a more enriched environment of books and
education etc. from there parents. Positive genotype-environmental correlations will
increase estimates of all the genetic components of variance in phenotypes (Neale
& Cardon, 1992). The genotype-environmental correlation declines from infancy
to adolescence and the importance of the active genetic-environmental correlation
(e.g. selection of schools and experiences) increases and exhibit stronger effects
(Scarr & McCartney, 1983).

One way to disentangle genetic and environmental influences is by studying
reared apart MZ and DZ twins. In studies of reared apart MZ twins, 70% of the
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variance in IQ was found to be associated genetic variation. On other psychological
traits reared apart MZ twins were as similar as MZ twins reared together. Corre-
lated placement (if the adoptive homes were selected to be similar in trait-relevant
features) did not seem to be the cause of psychological similarity. Social economic
status effects on IQ in adoption studies have been found in children but not in
adults. Another way to estimate the effects of genotype-environmental correlation
(cultural transmission) can be accomplished by including parents’ data in the twin
model. However, no evidence for possible cultural transmission was found in
parents and their children in a series of studies conducted in the Colorado
Adoption Project (e.g. DeFries, Plomin, & LaBuda, 1987).

An earlier large Dutch study on hereditary and environmental influences
upon intelligence was conducted by Vroon, de Leeuw and Meester (1986). Vroon
et al. analyzed IQ as measured by the Raven Progressive Matrices and measures
of educational and professional level in a sample of 2,847 fathers and sons, both
recruited for military service in the Netherlands between 1945 and 1982. A father-
son IQ correlation of .34 was reported. From a path analytic model in which
educational level and IQ of the father predicted IQ of the son, it was concluded
that only 3% of the variation in son’s IQ was explained by these variables. Neither
hereditary nor SES of the father was found to be responsible for IQ of the child.
However, the path analytic model used by Vroon et al. failed to correctly specify
the genetic relationship between parent and child. The observed correlation of .34
reported by Vroon et al. was in agreement with the DZ correlation for the Raven
score of the present study (r = .39, for 111 twin pairs). This correlation also was
in close agreement with the meta-analyzed father-son weighted correlation of .38,
based on 2,843 pairings (Bouchard & McGue, 1981), and, thus, was not specific
to the Raven test. In a paper by Rowe and Hay (1988) the method and conclusions
of the Vroon et al. study were criticised. Data from nuclear families, especially
when taking into account only one relation, are not sufficient to disentangle genetic
and environmental influences since parents and children share both genes and
environment. Fathers’ educational level was seen as an environmental variable,
but this variable can also contain genetic components. Contemporary behavior
genetics uses more sophisticated methods and has gone beyond examining parent-
child relationships to infer heritability estimates of behavioral traits.

From large studies conducted in the Netherlands it was concluded that IQ
does not seem to predict occupational success. The concept "Emotional Intelli-
gence’ (EQ), which is much more difficult to measure, was introduced to stress
the importance of psychological stability and social skills in social economic
achievement. IQ was claimed to account for just 20% of success in life. The other
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factors important for predicting success in life vary from *SES’ to "happiness’.
Results indicated that high IQ university students were not socially more successful
at middle age, compared to less skilled students (.

The relation between IQ and speed-of-information-processing

A theoretical explanation for the relationship between Reaction Times and IQ
was given by the neural efficiency model (Jensen, 1982; Vernon 1993), in terms
of three characteristics of Short Term Memory or ’working memory’ in which
basic cognitive operations are carried out. One of these is the limited storage
capacity (of approximately seven units of information) for which not much
variation is seen between individuals. The second is the rapid decay of information
in absence of continuous rehearsal and the third is the trade-off between the
amount of stored information units and the amount of information that can be
processed at the same time. A fourth property is proposed as a solution for the
limiting characteristics: the speed-off-information-processing. Because variation
among individuals in the three other properties is limited, it is reasonable to
assume that most variation will be observed in speed-of-information-processing.
Individuals differ in the speed with which basic cognitive operations can be
executed, a property that is related to individual differences in intellectual
functioning.

On test occasion I, substantial heritabilities were observed for the Reaction
Times (50% to 60%). The mean phenotypic correlation between the RTs and
Raven test score was -.24 and was exclusively mediated by genetic influences. On
test Occasion II, lower heritabilities were observed for the Reaction Times (32%
on average). The mean correlation with the WAIS subtests (-.18), lower compared
to test occasion I, was again solely determined by common underlying genetic
factors. This RT-IQ relation, therefore, does not seem to be based on correlated
environmental factors like training or practice effects on some kinds of test
characteristic. The RT-IQ relationship was independent of the nature of the test
(verbal or performance). In contrast to what was assumed by Vernon (1989), heri-
tability estimates were observed not to depend on the extent to which they tap
either a phenotypic General Speed factor and a General genetic factor. As loadings
on the General genetic factor were more or less equal for all RT tasks on test
occasion II, RT heritability estimates were more a function of the loadings on the
genetic Reaction Time factor. Specific genetic influences were low for all RT tasks
on both test occasions.
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Longitudinal analysis of Reaction Times

Genetic and environmental influences, which were expressed at test occasion
I and also effective at test occasion II, were significant for all RT tasks. There
seemed to be a trend of significant new genetic effects specific to test occasion
11 for the simple RTs, whereas these specific genetic effects were less significant
or not significant for the more complex RTs.

On the second visit, subjects were rewarded for each correct response, but
were also speeded up by feedback on their response time and were encouraged
to be faster than an established target reaction time value. This may have caused
different response strategies, for example faster responding with a bigger chance
of operating the wrong key. Evidence for this effect was shown by the lower mean
reaction times (faster responses) and a higher percentage of errors on all tasks. The
*environmental’ pressures on test occasion II (as a consequence of the modified
administration procedure) could have increased the unique environmental variance
observable in the individual differences in reaction times. This may be an explana-
tion of the significant decrease in heritabilities for the RTs (except Simple RT)
on test occasion IL

The relation between IQ and peripheral nerve conduction velocity

Test Occasion I

No significant correlation between PNCV and Raven test score was observed
at test occasion I (mean age, 16 years). Heritability estimates for Raven and PNCV
were 65% and 76%. Reed (1993), observed increased brain nerve conduction and
PNCYV in mice as a result of environmental enrichment and physical exercise. He
suggested that physical exercise level might increase PNCV and therefore should
be taken into account when studying the relationship between IQ and PNCV.
Physical activity scores from questionnaire data on sports participation did not
correlate with PNCV in our sample.

The experimental conditions of accessing PNCV were in close agreement with
the Vernon and Mori (1992) studies, which observed substantial correlations
between PNCV and IQ. Temperature, the main confounder of PNCV, was experi-
mentally controlled for and supramaximal nerve stimulation was applied.
Supramaximal stimulation ensures stimulation of all (slow and fast) fibres in the
nerve bundle (chapter 3). The other PNCV - IQ studies which failed to replicate
the results of Vernon & Mori (Reed & Jensen, 1991 and Barrett et al., 1990) had
also administered the Raven. An IQ test that more resembled the MAB (employed
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in the Vernon & Mori studies) was suggested to replicate the positive correlation
between PNCV and IQ.

Test Occasion 11

A low but significant correlation was observed between WAIS Full-Scale IQ
score and PNCV (r = .16). Heritability estimates for WAIS IQ and PNCV were
81% and 66%, respectively. The Raven score of test occasion I also showed a low
but significant correlation with the PNCV of test occasion II. This correlation was
almost as high as the correlation between the WAIS and PNCV of test occasion
II, suggesting that the lack of correlation between IQ and PNCV of the first
measurement was not due to the use of the Raven.

PNCYV heritability estimates on both test occasion were high but the test-retest
correlation between PNCVs of test occasion I and II turned out to be very low,
although no changes were made in experimental procedures. Lack of PNCV stabi-
lity caused by statistical artifacts as non-binormality were ruled out (chapter 4).
The question, then, was what other factors could have caused this observed
instability of the PNCV measure. One possible factor causing this instability, could
have been an unreliable PNCV acquisition procedure. However, the twin correla-
tion patterns of both occasions suggest otherwise. Measurement errors and techni-
cal pitfalls (causing unreliable acquisition) would have been evenly distributed
among all subjects and all groups. The high MZ correlation (on both test
occasions) suggests that the lack of test-retest correlation was not caused by
measurement error and the relatively low DZ correlations suggest that the high MZ
correlations are not a result of correlated measurement errors. Additional evidence
for the reliability of the PNCV acquisition procedure is provided by the high split-
half correlation for the 3 latencies (obtained from two nerve action potentials) for
both test occasion I and II.

It was speculated that the lack of correlation between PNCV at age 16 and
age 18 could be explained by ongoing maturation in this age interval. We therefore
investigated what is known about maturation in human peripheral nerves in this
age interval. Also, from the longitudinal PNCV measures difference scores between
occasion I and occasion II were computed for all subjects and similarity of this
difference score between MZ and DZ twins was explored.
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Maturation of peripheral nerve conduction in humans

There are only a few clinical maturation studies on PNCV reporting data of
sensory and mixed nerve conduction velocity in infants and children. In a study
by Gamstorp and Shelburne (1965), median and ulnar sensory PNCV (digit-wrist)
was studied in 72 normal children, aged 2 weeks to 15.5 years. The nerve con-
duction velocity of young infants was roughly 50% of the adult value. A rapid
increase during the first few years was followed by small changes through later
childhood and adolescence. The changes were interpreted as a functional expres-
sion of increasing, thickness and myelination of the nerve fibres.

In a second study by Cruz Martinez et al. (1978), normal values of sensory
PNCYV in distal and proximal segments of median, ulnar and sural nerves were
determined in 76 normal subjects from newborns to children of 14 years of age.
From infancy to age 14, sensory (digit-wrist) and mixed PNCV (wrist-elbow) can
be considered an index of maturation of the sensory peripheral nerve fibres. At
about 3 months of age the values were below 50% of adult values. PNCYV develops
in logarithmic function with age: PNCV increases about a 100% during the first
year of life and it continues to increase with a progressively slower rate. In young
adults normal sensory values are reached earlier in lower than in upper limbs, and
also earlier in proximal (wrist-elbow) than in distal (digit-wrist) segments in the
upper limbs. This is an indication that myelination starts proximally. Maximum
sensory PNCV from the proximal segment is higher than in the distal segment.
This difference increases with maturation of the peripheral nerve fibres. There are
indications that maturation in sensory fibres is slower than in motor fibres.

Oh (1993) summarized the results of PNCV maturation studies as follows: The
changes in PNCV are most profound in the first few years of life. PNCV in all
fibres is about 50% of the normal adult values in the full-term newborn baby, rea-
ching about 75% of the adult value at 1 year of age, and about 100% at 4-6 years
of age. Peripheral nerve conduction is suggested to increase in a logarithmic
function and is likely due to: (1) the increase in the number of large fibres between
birth and 8 years of age, when the number is the same as in adult nerves, and (2)
the complete myelination of nerve fibres by 5 years of age. No further increase
in PNCV between age 6 and 16 was noted (Oh, 1993). In adults PNCYV decrease
with age, possibly caused by an increased loss of large fibres or segmental
demyelination after age twenty. For mixed nerve conduction, the rates of decrease
are 4.0 m/sec in the median nerve per decade.

The main disadvantages of these PNCV maturation studies are the use of
rather small samples with a broad age range to establish normative values. It is
possible that subtle changes in PNCV were left undetected by the design of these
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studies. On the basis of our own results, we propose that PNCV might still
undergo maturation processes between age 16 and 18.

The maturation hypothesis of the relation between PNCV and IQ

To investigate the hypothesis that differences in maturation may have caused
the low test-retest correlations, difference scores in PNCV were computed
(measure assessed on occasion II - measure assessed on occasion I). PNCV did
not increase or decrease systematically, there were positive and negative difference
scores. Positive difference scores can be an indication that PNCV is still increasing
and has not yet reached the highest value, whereas negative scores might reflect
a phase beyond this point in which PNCV is decreasing.

Strikingly, the MZ correlations for this difference score were very high as
opposed to the relative low DZ scores. These results indicated that the causes for
the changes in PNCYV in the age interval 16 - 17.5 years were more alike for MZ
twin pairs compared to DZ pairs. These causes could be ongoing maturation pro-
cesses controlled by genetic influences. A reasonable assumption would be that,
with respect to PNCV development, individual growth curves show the same
morphology but slightly different slopes, indicating individual differences in speed
of maturation. Figure 8.1 shows a hypothetical PNCV growth curve for 3 indivi-
duals. In the next step we may assume that these maturation processes (biologically
determined) might be more alike in MZ twins compared to DZ twins. Genetic
analyses of the difference scores revealed this measure to be highly heritable
(86%). This means that PNCV value at age 18 is better predicted by the rise or
fall in PNCV of the co-twin than the own score at age 16.

It is possible that the variance in IQ determined by PNCV is only fully
observable when PNCV has reached its peak value as a consequence of new
genetic effects. This additional genetic variance in PNCV could be responsible for
the additional genetic variance in IQ and is supported by the increase of IQ
heritability in adults (Bouchard, 1993).

For intelligence there seems to be an increase in heritability from infancy to
childhood and a decrease in common environmental influences during adolescence
(Thompson, 1993). As children become older and enter schools and other social
institutions, the effects of common (parental) environment decrease and the effects
of genetic factors may, thus, increase. Longitudinal twin and family studies may
reveal the age-dependent changes in the relative contributions of genetic and
environmental effects to individual differences in IQ. A longitudinal study from
adolescence to early adulthood was conducted in a sample of Swedish male twins
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Figure 8.1
Hypothetical PNCV growth curves for three individuals. All three show the same morphology,
but slightly different slopes, indicating individual differences in speed of PNCV maturation.

between 12 to 18 years of age (Fishbein, 1979). Verbal ability and inductive
reasoning skills were examined. No longitudinal analyses were conducted, but
correlations for verbal ability were reported to increase slightly from .70 to .78
for MZ twins and decreased from .60 to .50 for DZ twins. For inductive reasoning
tests, correlations increased for both MZ and DZ twins, from .59 to .78 and from
46 to .56, respectively. Heritability, thus, for males seems to increase from around
20 to 40%.

Another way to derive heritability changes in IQ is by cross-sectional studies.
In a meta-analysis on age and development of IQ based on 103 studies published
between 1967 and 1985, a tendency of greater decrease in DZ compared to MZ
twin correlations and, consequently, an increase in heritabilities is noticed
(McCartney et al., 1990). Analysis of adoption data from the Colorado Adoption
Project indicates that genetic influence on IQ increases steadily between infancy
and middle childhood (Fulker et al., 1988). Although little adult twin IQ data are
available, MZ correlations appear to peak at about 16-20 years (Bouchard, 1993).

Thus, the increase in heritability of IQ in adolescence and adults, may provide
some evidence for additional genetic variance in IQ as a result of NCV maturation
that probably results from increasing thickness and myelination of the nerve fibres
not only centrally, but observable in the periphery as well. There are theories
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suggesting that higher intelligence might be associated with higher central
conduction speed. Miller (1994) proposed that this association could by related to
central myelination. The observed positive correlation between brain size (as
measured by Magnetic Resonance Imaging) and IQ (e.g. Wicket et al., 1994,
Willerman et al., 1991, Schultz et al., 1993) also supports the myelin hypothesis.
Thicker myelin sheathed nerves are faster, more accurate in signal processing and
might therefore be associated with faster information processing and higher scores
on IQ tests (Miller, 1994).

This myelin hypothesis is supported by recent studies on age-related changes
in cognitive functioning. The long-standing believe that cognitive changes in the
normal healthy elderly were caused by widespread neuron death is challenged by
recent findings based on more sophisticated neural imaging techniques (Wickel-
gren, 1996). The higher densities observed in young brain tissue compared to old
tissue (interpreted as cell loss) could have been an effect from commonly used
methods for preparing brain tissue for microscopy study in which young cortical
tissue simply shrank more than old tissue. New studies indicate no age-related
differences in cell number and some imaging studies indicate that age-related brain
shrinkage is almost exclusively due to loss of white matter, probably caused by
shrinkage of myelin.

Recent studies in monkeys suggest that a breakdown of myelin may account
for the cognitive changes in aging. No age-related differences in the volume of
the animals’ grey matter were observed. It was theorized that myelin breakdown
slows neural conduction along an axon and may influence problem solving speed
(Peters, 1996). This theory is in congruence with the observation that PNCV
decreases with age, as a possible cause of an increased loss of large fibres and
segmental demyelination after age twenty.

Final remarks

Traits that are influenced by multiple factors (like variation in intelligence) are
unlikely to show large correlations with a single causal factor. Consistently
replicable small significant correlations between psychometric and biological
variables may be of theoretical importance. This is especially true when these
correlations are shown to be genetically determined. Genetic analyses by means
of twin studies, thus, may play an essential role in the theoretical interpretation
of the relationships of biological and behavioral variables (Jensen & Sinha, 1993).
The small genetically mediated correlation in our study between PNCV and IQ
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contributes to theoretical knowledge in terms of the 'neural efficiency’ model. The
fact that this relationship was not observed at the first test occasion was explained
by ongoing maturation processes in PNCV between age 16 and 18. So, the correla-
tion between PNCV and IQ, as initially reported by Vernon and Mori (1992) has
been replicated and this correlation is indeed genetically mediated.

In accordance with other studies (Ho, Baker & Decker, 1988; Baker, Vernon
& Ho, 1991) the moderate correlations between Reaction Times and IQ, were
entirely mediated by genetic influences. There was no relationship between PNCV
and Reaction Times, which both seem to be independent correlates of human
intelligence. This observation, to some extent, agrees with the suggestion of
Vernon and Mori (1992). They found both RT and PNCV contributing to the
prediction of IQ in two studies (multiple R’s = .53 and .57) and hypothesized that
the relationship between IQ and speed-of-information-processing was, at least in
part, a function of each one’s correlation with PNCV. However, the partial RT -
IQ correlations remained significant after PNCV was controlled for. Vernon and
Mori concluded that intelligence and speed-of-information-processing may be
thought of as two types of related cognitive abilities (e.g. verbal and quantitative
abilities), which are both correlated with PNCV, but their relationship is not
attributable to PNCV.

The next question that rises is of what interest (theoretically or practically)
the observed correlation between PNCV and IQ can be? Multivariate genetic
analyses of cognitive abilities suggest a substantial overlap of genetic influences
and imply a common set of genes associated with these traits (Plomin, Owen &
McGuffin, 1994). Molecular techniques are now applied to identify multiple loci
affecting normal variation in psychometric abilities. The first allelic association
studies to identify quantitative trait loci (QTL) associated with intelligence have
been conducted (Plomin et al., 1994, Plomin et al., 1995) using markers related
to genes which are likely relevant to neural functioning. Two of the three initially
identified markers of the Plomin ef al., 1994 study (alcohol dehydrogenase 5 and
the beta polypeptide of nerve growth factor) yielded results in the same direction
but were not significant in the replication sample (Plomin et al., 1995). This was
possibly due to limited statistical power. The third marker (EST00083) of mito-
chondrial origin was also significant in the replication sample and the technique
was described in Skuder et al. (1995).

Recently, the specific hypothesis of the hierarchical genetic structure of
cognitive abilities (as suggested by multivariate quantitative genetic research) was
supported by means of QTL analyses. In cognitive abilities the genetic effects are
largely general, but some genetic effects are specific to certain abilities. Four
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markers were identified which showed similar predicting effects across the ability
scales (Verbal, Spatial, Perceptual Speed and Memory), suggesting that they are
related to general cognitive ability (g). These associations became negligible when
the effects of g (WISC-R IQ score) were removed. Three other markers continued
to be significantly associated with specific cognitive ability scales after the effects
of g were removed (Petrill et al., in press). QTL research concerning cognitive
disabilities did yield promising findings in the context of reading disabilities. A
QTL on chromosome 6 was identified to be associated with dyslexia (Cardon et
al., 1994). Recently, this result was replicated in a study by Grigorenko et al.
(1996) in which word segmentation (a basic process involved in reading) was
linked to markers on chromosome 6, whereas single word reading (presumably
a higher-order process) was linked to markers on chromosome 15. These findings
may in the future contribute to early diagnosis and intervention.

QTL studies with regard to PNCV have not yet been carried out. A well
established genetic correlation between PNCV and IQ could, from a speculative
point of view, make PNCV an additional (relatively easy obtainable) measure to
(physiologically) select extreme phenotypes and investigate linkage to markers
associated with genes which are thought to be important for myelination and neural
functioning. In this way a more particular set of genes (markers) may be identified
which can increase the power to detect QTLs for cognitive abilities.
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Er is weinig twijfel over het feit dat er individuele verschillen bestaan in de
prestatie op intelligentietests. Bestaande theorieén over de structuur van intelli-
gentie zijn niet in staat de onderliggende processen te verklaren die deze indi-
viduele verschillen veroorzaken. In de experimentele psychologie is men reeds
vele decennia op zoek naar mogelijke biologische determinanten die indivi-
duele verschillen in intelligentiescores zouden kunnen verklaren. Deze zoek-
tocht is ruwweg onder te verdelen in twee onderzoekstradities. De ene traditie
begon reeds in de vorige eeuw met de studies van Galton (1883) en onderzoekt
het verband tussen intelligentiescores en de snelheid waarmee elementaire
cognitieve taken (reactietijdtaken) worden uitgevoerd. De andere traditie richt
zich op het verband tussen individuele verschillen in intelligentiescores en
fysiologische (biologische) maten.

Biologische determinanten van cognitief functioneren worden vaak gezocht
in neurofysiologische en biochemische processen van het centraal zenuwstelsel.
Naast een groot aantal andere fysiologische maten werd zenuwgeleidingssnel-
heid in het centrale en perifere zenuwstelsel onderzocht als potenti€le biolo-
gische determinant van intelligentie (Reed & Jensen, 1989, 1991, 1993; Vernon
& Mori, 1992). Zenuwgeleidingssnelheid is de snelheid waarmee elektrische
impulsen worden doorgegeven in een zenuw (de zogenaamde nerve conduction
velocity: NCV). Deze snelheid wordt onder andere bepaald door de dikte van
de myelinescheden rondom de zenuwen. Perifere zenuwgeleiding (PNCV) is
een basale fysiologische maat en is perifeer in verschillende zenuwen te
bepalen met standaard neurologische meettechnieken (o.a. Oh, 1993). Reed
(1984, 1988) heeft als eerste geopperd dat NCV-variatie, in de normale range,
geassocieerd zou kunnen zijn met individuele verschillen in intelligentie en
informatieverwerking en gedeeltelijk de genetische invloeden op intelligentie
zou kunnen verklaren. Hij kwam tot deze hypothese op grond van enkele
observaties in dieronderzoek. Genetisch onderzoek in dierpopulaties leverde
redelijke erfelijkheidsmaten op (k2 = 20-30%) voor PNCV in de staart van
muizen (Hegmann et al., 1973; Reed, 1983). Ook werd geobserveerd dat
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PNCV-verschillen tussen selectielijnen van muizen geselecteerd op hoge en
lage caudale PNCV samen hingen met gedragsverschillen tussen deze lijnen
(Hegmann, 1979). Reed voorspelde een grotere erfelijkheid van PNCV (rond
de 50%) bij de mens en suggereerde dat individuele verschillen in intelligentie
bepaald zouden kunnen worden door genetische verschillen in de structuur en
de hoeveelheid ’transmissie-proteinen’ die individuele verschillen in de
snelheid en efficiency van informatieverwerking bepalen en op die manier het
cognitief functioneren beinvloeden. Dit wordt ook het ’neural efficiency model
of intelligence’ genoemd (Jensen, 1982; Vernon, 1983, 1985). De grote consen-
sus die bestaat over het verband tussen reactietijden op elementaire cognitieve
taken en intelligentiescores geeft additionele ondersteuning voor dit model
(Vernon, 1993). Snellere reacties bij het oplossen van elementaire cognitieve
taken (reactietijdtaken) worden immers verondersteld een snellere informatie-
verwerkingssnelheid te reflecteren.

Grotere efficiency van het zenuwstelsel zou ook in de perifere zenuwen
meetbaar kunnen zijn en het verband tussen individuele verschillen in deze
maat en individuele verschillen in intelligentie zou eenvoudig te onderzoeken
zijn. Deze hypothese werd voor het eerst getoetst door Vernon en Mori (1992).
In twee onafhankelijke onderzoeken werd een verband gevonden tussen peri-
fere zenuwgeleidingssnelheid (gemeten in de arm), intelligentie en reactietijden
op elementaire cognitieve taken. Op grond van dit onderzoek werd geconclu-
deerd dat een algemene ’neural efficiency factor’ de belangrijkste biologische
determinant is van individuele verschillen in psychometrische intelligentie.

Theorieén met als uitgang dat individuele verschillen in intelligentiescores
gedeeltelijk verklaard kunnen worden door individuele verschillen in fysiolo-
gische maten, worden ondersteund door de overtuigende resultaten van
gedragsgenetisch onderzoek naar intelligentie. Intelligentie is verreweg de
meest uitvoerig onderzochte variabele in de gedragsgenetica en kennis over de
genetische en omgevingsinvloeden op individuele verschillen in intelligentie is
omvangrijk. Ongeveer 50-60% van de fenotypische variantie in psychometri-
sche intelligentie wordt verklaard door genetische factoren (Bouchard et al.,
1990). Om de bijdrage van genetische en omgevingsinvloeden op een bepaalde
eigenschap te bepalen worden gegevens van genetisch verwante personen, zoals
tweelingen, gebruikt. De tweelingmethode vergelijkt de overeenkomst van een
bepaalde eigenschap tussen monozygote (MZ) en dizygote (DZ) tweelingen om
een schatting van de erfelijkheid te krijgen. MZ-tweelingen zijn 100% gene-
tisch gelijk, terwijl DZ-tweelingen gemiddeld 50% genetisch verwant zijn, net
zoals gewone broertjes en zusjes. Dit gegeven vormt de basis voor het opstel-
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len van een model waarmee de variantie in een geobserveerde eigenschap uit-
eengelegd kan worden in een deel dat wordt verklaard door erfelijke factoren,
een deel dat kan worden toegeschreven aan systematische effecten van een
gedeelde (gezins)omgeving en een deel dat samenhangt met omgevingsfactoren
die uniek zijn voor een individu. MZ-tweelingen zijn genetisch identick en als
ze in hetzelfde gezin zijn opgegroeid moeten verschillen tussen leden van een
paar veroorzaakt worden door de unieke omgevingsfactoren. Bij DZ-tweelingen
kunnen die verschillen zowel door de unieke omgeving als door erfelijke
factoren verklaard worden. In tegenstelling tot de unieke omgeving, dragen
gedeelde omgevingsinvloeden bij tot een grotere gelijkheid voor leden van
zowel MZ- als DZ-paren. Gedeelde omgevingsinvloeden zorgen voor een
grotere overeenkomst tussen individuen afkomstig uit een gezin en dus voor de
verschillen die bestaan tussen leden van verschillende gezinnen. Een grotere
overeenkomst tussen bijvoorbeeld intelligentiescores van MZ-tweelingen
vergeleken met die van DZ-tweelingen, vormt een eerste indicatie dat erfelijke
factoren een rol spelen. Als de overeenkomst tussen MZ- en DZ-tweelingen
gelijk is, vormt dat een aanwijzing dat gemeenschappelijke omgevingsfactoren
van belang zijn.

Behalve het onderzoeken van de mate waarin genetische en omgevingsfac-
toren individuele verschillen in gedrag of psychofysiologische eigenschappen
beinvloeden, kan ook worden onderzocht in welke mate het verband tussen
twee eigenschappen wordt veroorzaakt door genetische en omgevingsfactoren
(Martin & Eaves, 1977; Boomsma, Martin & Neale, 1989; Neale & Cardon,
1992). Twee eigenschappen kunnen correleren doordat ze beiden worden bein-
vloed door dezelfde genetische factoren maar ook doordat alleen de
omgevingsinvloeden correleren. Om een biologische maat te onderzoeken als
potentiéle determinant van intelligentie is het van belang na te gaan of de
relatie voornamelijk door onderliggende gecorreleerde genetische invloeden
wordt bepaald.

In dit proefschrift worden de resultaten beschreven van een onderzoek naar
de genetische (co)variantie van intelligentie, reactiesnelheid en zenuwgelei-
dingssnelheid in een groep van 213 Nederlandse tweelingparen. Deze groep is
tweemaal gemeten, eenmaal op zestien-jarige leeftijd en de tweede keer op
achttien-jarige leeftijd. Deze groep tweelingen participeerde: gelijktijdig ook in
een EEG/ERP-onderzoek naar de genetische en omgevingsinvloeden op de ont-
wikkeling van de hersenen (Van Beijsterveldt ef al., 1996). Dit is het eerste
onderzoek waarbij de genetische basis van zenuwgeleidingssnelheid werd
onderzocht in de mens.
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Multivariate analyse van de WAIS-subtests en de Raven

Een deel van dit proefschrift beschrijft de multivariate genetische analyses
van de individuele verschillen in scores op de elf subtests van de Nederlandse
versie van de WAIS (Wechsler Adult Intelligence Scale) afgenomen op
achttien-jarige leeftijd en de score op de Raven-test (afgenomen op zestien-
jarige leeftijd). Met dit soort analyses is het mogelijk de samenhang tussen de
subtests uit te splitsen naar een deel veroorzaakt door gecorreleerde genetische
en een deel veroorzaakt door gecorreleerde omgevingsfactoren. Gedeelde
gezinsfactoren bleken geen rol te spelen in de geobserveerde fenotypische
samenhang tussen de subtests. Genetische factoren en niet-gedeelde (unieke)
omgevingsfactoren bleken de onderliggende factoren in deze samenhang. De
genetische factoren konden worden onderverdeeld in een algemene, een
verbale, een performale factor en specifieke factoren. De algemene factor
representeert een soort (genetische) overlap van vaardigheden die belangrijk
zijn voor het uitvoeren van alle subtests. De verbale factor geeft de overlap aan
van subtests die te maken hebben met verbale (taal-) kennis, terwijl de perfor-
male factor het gemeenschappelijke deel verklaart van subtests die een beroep
doen op onder andere ruimtelijk inzicht. De specifieke factoren verklaren een
deel van de variantie in subtests die uniek is voor elke subtest en geen verband
houdt met de rest. Voor de niet-gedeelde omgevingsfactoren bleek er geen
evidentie voor een aparte verbale en performale factor. Slechts een algemene
factor en specifieke factoren verklaarden deze omgevingscomponent. De
gangbare opsplitsing van de WAIS in een verbale en performale schaal geeft
dus eerder de genetische dan de omgevingscovariantie weer tussen de subtests.

De fenotypische associatie tussen subtests van intelligentietests duidt op
het bestaan van een algemene intelligentiefactor g. Het construct g represen-
teert de overlap die bestaat tussen verschillende cognitieve tests. Multivariate
genetische analyses zijn belangrijk voor het onderzoeken van de aard van g
(Jenssen, 1993). De algemene intelligentiefactor bleek in dit onderzoek
voornamelijk uit genetische invloeden te bestaan, zoals bleek uit de grotere
ladingen van de subtests op de algemene genetische factor vergeleken met de
kleinere ladingen op de algemene niet-gedeelde omgevingsfactor. De associatie
tussen de Raven (een non-verbale redeneertest) en de WAIS-subtests werd
onderzocht door deze mee te nemen in de multivariate analyse. De lading van
de Raven op de algemene omgevingsfactor bleek niet significant, die op de
algemene genetische factor wel. Het verband tussen de Raven en de WAIS
bleek daardoor uitsluitend bepaald te worden door gemeenschappelijke geneti-
sche factoren.
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Intelligentie in de Nederlandse populatie

In dit onderzoek bleken individuele verschillen in de WAIS IQ-score sterk
door erfelijke factoren bepaald te zijn (h? = 82%). Deze waarde is hoger dan
die gewoonlijk in de literatuur gerapporteerd staan: 50% - 60%, verkregen uit
meta-analyses en 70% gemeten in gescheiden opgegroeide MZ-tweelingen
(Bouchard et al., 1990). Een hogere erfelijkheid voor de WAIS IQ-score is ook
gemeten in Noorse tweelingen (Tambs et al., 1984, 1986) en werd toegeschre-
ven aan de mogelijke gevolgen van de grote sociale gelijkheid in de Noorse
samenleving. De hoge erfelijkheid voor IQ zou op verschillende manieren
verklaard kunnen worden. Als culturele invloeden op een bepaald fenotype
belangrijk en relatief homogeen zijn, dan zal de omgevingsvariantie dalen en
zullen erfelijke invloeden stijgen. Een voorbeeld hiervan is de baseball-cultuur
in de Verenigde Staten. Omdat de meeste Amerikaanse jongens gelijke moge-
lijkheden hebben zich te ontplooien in het baseball-spel, is het waarschijnlijk
dat de erfelijkheid van baseball-talent bij jonge Amerikaanse mannen heel hoog
is (Bouchard et al., 1990).

Een tweede mogelijke verklaring voor de hoge erfelijkheid in individuele
verschillen in IQ-scores is dat erfelijke en omgevingsinvloeden op IQ gecorre-
leerd zijn (de zogenaamde G x E correlatie). In dat geval zijn omgevingsfac-
toren die een persoon beinvloeden niet willekeurig, maar bepaald door het
genotype van de persoon zelf of door dat van de ouders. Scarr & McCartney
(1983) differentiéren tussen twee vormen van genotypische beinvloeding van
de omgeving. De eerste is de indirecte (passieve) beinvloeding van de om-
geving van het kind, ook wel culturele transmissie genoemd. Een voorbeeld
hiervan is als kinderen met hogere intellectuele gaven, naast de geérfde genen,
ook profiteren van een intellectueel stimulerende omgeving die geschapen
wordt door de ouders en dus ook weer gerelateerd is aan hun genotype. Zo'n
positieve G x E correlatie leidt tot een overschatting van de genetische
component in de variantie (Neale & Cardon, 1992). Culturele transmissie kan
geschat worden door data van de ouders op te nemen in het model. Echter, een
serie studies uit het Colorado Adoption Project leverde geen evidentie voor het
bestaan van dit effect. De actieve vorm van de G x E correlatie speelt mogelij-
kerwijs een grotere rol bij adolescenten en volwassenen.

Een grotere sociale gelijkheid in een populatie biedt aan ieder individu
gelijke mogelijkheden wat betreft educatie en intellectuele ontplooiing, waar-
door het kiezen van een opleiding en het aantal jaren van scholing sterk (op
actieve wijze) bepaald zou kunnen worden door de genetische aanleg van het
individu zelf in plaats van door, bijvoorbeeld, de sociaal-economische status
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van de ouders. In dat geval zal men, wat betreft individuele verschillen in IQ,
een grotere rol van genetische invloeden observeren in een representatieve
steekproef van volwassenen.

Ondanks de geobserveerde hogere erfelijkheid voor IQ in dit onderzoek,
wordt (overeenstemmend met gegevens uit de literatuur) een grotere invloed
van gedeeldeomgevingsinvloeden op 1Q-scores bij jonge Nederlandse kinderen
waargenomen (Boomsma & Van Baal, in press). Bij zeven-jarigen zijn deze
gedeeldeomgevingsinvloeden al niet meer duidelijk aanwezig, waarschijnlijk als
gevolg van het begin van de formele basisschooleducatie.

De relatie tussen reactiesnelheid en intelligentie

Individuele verschillen in de snelheid en efficiency van informatiever-
werking (mogelijk bepaald door individuele verschillen in ’transmissie-protei-
nen’) beinvloeden het cognitief functioneren. Informatieverwerkingssnelheid
wordt doorgaans geoperationaliseerd in termen van reactietijden op elementaire
cognitieve taken, en er bestaat grote consensus over het verband tussen
reactietijden en intelligentiescores (correlaties tussen -.2 en -.3). Snellere
reacties bij het oplossen van elementaire cognitieve taken worden immers
verondersteld een snellere informatieverwerkingssnelheid te reflecteren. Een
theoretische verklaring voor het verband tussen reactiesnelheid en IQ-scores
werd gegeven met behulp van het 'neural efficiency model of intelligence’ in
termen van drie eigenschappen van het kortetermijngeheugen (Short Term
Memory, STM). Die eigenschappen zijn: de beperkte opslagcapaciteit van
informatieeenheden, het snelle verval van informatie als er geen herhaling
plaats vindt en de ’trade-off’ tussen de hoeveelheid opgeslagen informatie en
de hoeveelheid die tegelijk verwerkt kan worden. Deze eigenschappen worden
als limiterende factoren gezien die het informatieverwerkingssysteem zouden
kunnen laten ’overlopen’, ware het niet voor de vierde grootheid: de snelheid
waarmee basale cognitieve operaties wordt uitgevoerd. Omdat er waarschijnlijk
weinig variatie bestaat in de eerste drie eigenschappen van het kortetermijn-
geheugen, is het mogelijk dat mensen voornamelijk verschillen in de snelheid
van uitvoer van basale cognitieve operaties. Er bestaan individuele verschillen
in de snelheid waarmee basale cognitieve operaties uitgevoerd worden die
gerelateerd zijn aan individuele verschillen in intellectueel functioneren.

Bij de eerste meting werden aanzienlijke erfelijkheidsmaten gemeten voor
vijf reactietijdtaken (h? = 50 - 60%). De gemiddelde fenotypische correlatie
met de Raven-testscore was (-.24). Bij de tweede meting waren de erfelijk-
heidsmaten lager (gemiddeld 32%). Dit zou misschien een effect kunnen zijn
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van een wijziging in de afname-procedure van de tests, waarbij proefpersonen
werden gestimuleerd. sneller te reageren dan een gestelde streeftijd (grotere
omgevingsdruk). De gemiddelde correlatic met de WAIS-subtests was ook
lager (-.18). Echter, een belangrijke bevinding in het huidig onderzoek was de
replicatie van resultaten van twee voorgaande genetische studies naar het
reactiesnelheid-IQ verband (Ho, Baker & Decker, 1988; Baker, Vernon & Ho,
1991). Net als die twee studies wees in dit onderzoek de genetische covarian-
tie-analyses uit dat het verband tussen snelheid van informatieverwerking en
intelligentiescores (bij beide metingen) volledig door genetische factoren wordt
bepaald. Dat wil zeggen dat de reactietijd-IQ-relatie dus niet het gevolg is van
correlerende omgevingsfactoren (zoals praktische oefening en vaardigheid), die
gemeenschappelijke aspecten van beide soorten tests beinvloeden. De gemid-
delde genetische correlatie tussen de reactietijden en de Raven-testscore was
-42 en tussen de reactietijden en de WAIS verbale/performale subtests, -.46 en
-42, respectievelijk. Het is aannemelijk dat een deel van individuele verschil-
len in de prestatie op intelligentietests wordt verklaard door individuele
verschillen in de snelheid waarmee basale cognitieve operaties uitgevoerd
kunnen worden. De reactietijd-IQ-relatie (bij de tweede meting) was ook niet
afhankelijk van de aard van de tests (verbaal of performaal).

Vernon & Mori (1992) vonden een verband tussen reactietijden en perifere
zenuwgeleidingssnelheid, maar concludeerden dat de reactietijd-IQ-relatie niet
wordt veroorzaakt door individuele verschillen in perifere zenuwgeleidingssnel-
heid (PNCV), omdat deze relatie bleef bestaan nadat het effect van PNCV
uitgepartialiseerd was in een regressieanalyse. Reactiesnelheid en IQ kunnen
gezien worden als twee gerelateerde maten voor cognitief functioneren en
hebben eerder een aparte relatie met PNCV (Vernon & Mori, 1992). In ons
onderzoek is er bij beide metingen geen verband gevonden tussen PNCV en
reactiesnelheid.

De relatie tussen perifere zenuwgeleidingssnelheid en intelligentie

De resultaten van de eerste meting leverden geen bewijs voor een verband
tussen perifere zenuwgeleidingssnelheid in de arm en intelligentie zoals
gemeten met de Raven Standard Progressive Matrices Test. De Raven-test
meet het ’logisch-redeneren’. De PNCV bleek, zoals voorspeld, een hoog-
erfelijke maat (76%). De erfelijkheid voor de scores op de Raven-test was
65%. Er werd geopperd dat het gebruik van een test die algemene intelligentie
meet (zoals gebruikt in het onderzoek van Vernon en Mori, 1992) beter het
verband tussen IQ en PNCV tot uitdrukking zou kunnen brengen.
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Bij de tweede meting (leeftijd 18) werd wel een significant verband
gevonden tussen WAIS IQ en PNCV. Dit verband bleek puur door gemeen-
schappelijke genetische factoren bepaald te zijn. Echter, de overeenkomst
tussen PNCV gemeten op 16- en 18-jarige leeftijd bleek heel laag. Dit was niet
te verklaren door veranderingen in experimentele procedures. Gebrek aan
stabiliteit van de PNCV-maat bleek ook niet veroorzaakt te zijn door statis-
tische artefacten (als non-binormaliteit). Een onbetrouwbare meettechniek werd
uvitgesloten, omdat anders de huidige PNCV tweeling-correlaties (met name de
hoge MZ-correlaties) niet geobserveerd zou zijn. Op beide leeftijden werd een
hoge correlatie tussen de PNCV van leden van MZ-paren gemeten en een rela-
tief kleinere correlatie tussen leden van DZ-paren. Als er sprake zou zijn van
een onbetrouwbare meettechniek en apparatuur, zouden meetfouten gelijk
verdeeld moeten zijn over alle proefpersonen. De lage DZ-correlatie geeft dus
aan dat de grote overeenkomst tussen leden van MZ-paren niet het gevolg kan
zijn van gecorreleerde meetfouten. Er werd vervolgens geopperd dat het gebrek
aan overeenkomst tussen PNCV op 16- en 18-jarige leeftijd misschien het
gevolg zou kunnen zijn van rijpingsprocessen die nog niet helemaal voltooid
zijn. In de literatuur is over de maturatie van PNCV in dit specifieke leef-
tijdsinterval niets bekend. Veranderingen in PNCV worden verondersteld het
gevolg te zijn van een toename in het aantal grote zenuwvezels en door de
afgeronde myelinesatieprocessen. Aangenomen wordt dat PNCV van baby’s
ongeveer 50% van de volwassen waarde heeft, dat deze zeer snel toeneemt in
de eerste levensjaren en dat dan de snelheid minder of nauwelijks toeneemt
tijdens de late kinderjaren en de tienerjaren (Oh, 1993). Het nadeel van deze
maturatiestudies is het gebruik van kleine groepen proefpersonen met een breed
leeftijdsinterval waardoor eventuele subtiele veranderingen in PNCV tussen
leeftijd 16 en 18 ongedetecteerd zouden kunnen blijven.

Bij nadere inspectie bleek de groep adolescente tweelingen opgesplitst te
kunnen worden in personen met een positieve of negatieve PNCV-verschil-
scores (= PNCV(18 jaar) - PNCV(16 jaar)). Deze verschillen zijn uitgelegd in
termen van rijpingsprocessen van de PNCV. Van de personen met een nega-
tieve verschilscore werd verondersteld dat de maturatie van de PNCV reeds
voltooid is en zelfs al aan het afnemen is, terwijl een positieve verschilscore
zou inhouden dat de PNCV nog niet de hoogste waarde heeft bereikt. Verbluf-
fend was het feit dat de overeenkomst voor PNCV-verschilscores tussen leden
van MZ-paren heel groot bleek te zijn vergeleken met de overeenkomst in DZ-
paren. De PNCV-score op 18-jarige leeftijd van een lid van een paar is dus een
betere voorspeller van de verandering in PNCV van het andere lid, dan
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zijn/haar eigen PNCV-score op 16-jarige leeftijd. Het is een redelijke gedachte
dat er individuele verschillen in het verloop van het PNCV-rijpingsproces
bestaan en dat individuele groeicurven van MZ-tweelingen een grotere over-
eenkomst vertonen vergeleken met die van DZ-tweelingen. Uit de genetische
analyses van de PNCV-verschilscores bleek dat deze een hoog-erfelijke maat
was (h? = 86%). Het is mogelijk dat het deel van de variantie in IQ dat
bepaald wordt door PNCV pas te meten is als de PNCV uitgerijpt is en de
hoogste ‘waarde heeft bereikt. De gedachte dat door de voltooide rijping van
PNCV een additionele genetische variantie wordt toegevoegd aan IQ, zou
passen in de observatie dat de erfelijkheid van IQ nog toeneemt in adolescen-
ten en jong-volwassenen (Bouchard, 1993). Additionele genetische variantie
door PNCV zou het resultaat kunnen zijn van de toenemende dikte van
myelinescheden rondom de zenuwvezels, niet alleen centraal, maar ook perifeer
waarneembaar. Zenuwvezels met een dikkere myelineschede zijn sneller en
accurater en kunnen daarom geassocieerd zijn met snellere informatiever-
werking en hogere IQ-scores (Miller, 1994). Deze myeline-hypothese wordt
ondersteund door recent onderzoek op het gebied van cognitieve verouderings-
processen. Nieuwe neurale imagingtechnicken tonen aan dat de afname in
hersenvolume bij ouderen eerder het gevolg is van een afname van myeline
dan van het afsterven van neuronen (Wickelgren, 1996). Een afname in
cognitief functioneren zou dus geassocieerd kunnen zijn met afname in dikte
van myelinescheden op centraal niveau. Andere evidentie wordt geleverd door
de observatie dat cognitieve veranderingen bij oudere apen gepaard blijken te
gaan met afname in volume van de ’witte stof’ (myelinescheden) en niet van
het aantal neuronen (Peters, 1996).

Slotopmerkingen

De vraag is wat het belang is van een geobserveerde correlatie tussen
PNCV en IQ. De grote overlap in genetische invloeden, betrokken bij tal van
taken die verschillende aspecten van intelligentie meten, suggereert beinvloe-
ding van een gemeenschappelijke verzameling genen. Moleculair-biologische
technieken worden nu toegepast voor het identificeren van de genen (zoge-
naamde QTL = Quantitative Trait Loci) die normale verschillen in IQ bepalen.
Kandidaat-markers worden ingezet die gerelateerd zijn aan genen die belangrijk
zijn voor het neuraal functioneren. Twee van de drie aanvankelijk geidentifi-
ceerde markers uit de Plomin et al. (1994) studie (alcohol dehydrogenase-5 en
de beta-polypeptide van de nerve growth factor) gaven in een replicatiestudie
(Plomin et al., 1995), hoewel niet significant, resultaten in gelijke richting. De
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derde marker (EST00083) bleek wel significant in een replicatiestudie (Skuder,
et al., 1995).

Resultaten van recentelijk QTL-onderzoek ondersteunen de hypothese dat
in de hiérarchische structuur van cognitieve vaardigheid de genetische effecten
voornamelijk algemeen van aard zijn met additionele genetische factoren,
specifiek voor bepaalde vaardigheden. Vier markers werden geidentificeerd die
geassocieerd waren met de verschillende vaardigheden (verbaal, ruimtelijk
inzicht, perceptuele snelheid en geheugencapaciteit) wat er op wijst dat ze
gerelateerd zijn aan algemene intelligentie g. Deze associaties verdwenen als de
effecten van g (Full-Scale IQ-score op de WISC) werden verwijderd, echter,
drie andere markers bleven significant geassocieerd met specifieke cognitieve
vaardigheden (Petrill et al., in press). Wat betreft cognitieve stoornissen is er
een QTL gevonden op chromosoom 6 die geassocieerd is met dyslexie (lees-
stoornissen) (Cardon et al., 1994). Onlangs is dit resultaat gerepliceerd voor
één component van dyslexie, woord-segmentatie, die waarschijnlijk een basaal
leesproces representeerd. Daarnaast werd ook een QTL geidentificeerd op
chromosoom 15 voor het het hoger leesproces, woord-lezen (Grigorenko et al.,
1996).

Er is tot nu toe nog geen QTL-onderzoek verricht op het gebied van peri-
fere zenuwgeleidingssnelheid. Een betrouwbare (genetische) relatie tussen
PNCV en IQ zou PNCV wellicht tot een interessante eigenschap maken voor
QTL-onderzoek naar IQ. Door voor extreme fenotypische PNCV-waarden
linkage te onderzoeken met markers, geassocieerd met genen waarvan ver-
ondersteld wordt dat ze bijdragen tot myelinevorming en neuraal functioneren,
zou men misschien een kleinere, specifieke groep markers kunnen identificeren
die het zoekproces naar QTLs voor intelligentie zouden kunnen versnellen.
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