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ABSTRACT

In linkage analysis of quantitative, complex, traits the power to detect loci that
explain a small to medium proportion of the genetic variance is problematic.
In this paper we address the question how genetic analysis of multivariate
data can be employed to increase the power to detect a quantitative trait locus
using identity-by-descent mapping in sibling pairs, or dizygotic twins. "These
analyses are carried out with structural equation modeling, using the Mx
computer program. Power calculations show that structural equation
modeling is superior to the Haseman and Elston regression method.
~ Furthermore, the power to detect a QTL can be substantially increased by
‘consxiermg multiple indicators of the phenotypic trait of interest. In the
models used the gain in power beyond three or four indicators was, however,
~ minimal. Detection of a dominant gene effect was shown to be unrealistic
- because of the large numbers needed.

Structural equation modeling or genetic covariance structure modeling (GCSM),
provides a general and flexible approach to analyze data gathered in genetically
informative samples'2. In applying GCSM to such data, genotypic and environ-
mental effects are modeled as the contribution of latent (unmeasured) variables to
the (possibly multivariate) phenotypic individual differences. These latent factors
represent the effects of many unidentified influences. In the case of a genetic
factor, these effects are due to a possibly large, but unknown, number of genes
(polygenes). The contributions of the latent variables are estimated as regression
coefficients in the linear regression of the observed variables on the latent vari-
ables. Given an appropriate design, providing sufficient information to identify
these regression coefficients, actual estimates may be obtained using a number of
well disseminated computer programs, such as LISREL?, or Mx* (Neale, 1997).
These programs allow estimation of parameters by means of a number of esti-
mators including normal theory maximum likelihood (ML) and weighted least
squares (WLS). The latter can be applied to analyze correlations among discrete
variables (e.g. tetrachoric or polychoric correlations) and nonnormal variables. A
very useful estimator in the Mx program is the normal theory raw data likelihood
estimator. This estimator enables one to handle missing data and to model
selected samples.
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Identification of quantitative genetic models is achieved, for example, by inclusion
of monozygotic (MZ) and dizygotic (DZ) twins into the study. MZ twins are
genetically identical while DZ twins (and siblings) share on average 50% of their
segregating genes. If MZ twins are found to resemble each other more closely than
DZ twins, this suggests that genetic influences are contributing to the phenotypic
individual differences in the trait under consideration. One advantage of GCSM is
that this approach can be generalized readily to multivariate and longitudinal data.
Just as twin data can be used to decompose the variance for a single trait into a
genetic and a non-genetic part, multivariate twin data can be used to decompose
the covariance between traits, or between repeated measures of the same trait, into
a part due to genetic covariance and a part due to environmental covariance
between variables!?.

DETECTION OF QTLS

The flexibility of GCSM is also evident in the relative ease with which observed
genotypic or environmental information can be incorporated into the analysis. An
important recent development involves the incorporation of genetic information
derived from marker data, which makes it possible to detect quantitative trait loci®S.
A quantitative trait locus (QTL) represents a stretch of a chromosome, which
includes a segregating gene that contributes to individual differences in the
phenotype of interest. The segregating gene has a relatively large contribution to
the phenotypic variance compared to the contributions of each polygene making
up a genetic latent variable. However, compared to the total effects of the polyge-
netic and environmental effects, the effect of the QTL may be quite small. For
instance, the QTL may account for a mere 5%, or 10% of the phenotypic variance.
In GCSM, the QTL is treated in the same way as a polygenetic or an environ-
mental factor, i.e., as a latent variable. The relationship between the QTL and the
phenotypic individual differences is also modeled using linear regression. The
correlation between QTL factors of siblings is obtained from measured genotypic
(marker) data.

The simultaneous analysis of DNA marker data and phenotypic information from
sib-pairs, or dizygotic twins, to test for the presence of a QTL was developed by
Haseman and Elston’. In addition to the measured phenotype in the sib-pairs, the
Haseman and Elston method requires data relating to the siblings’ genotypes at
specific loci in the vicinity of the QTL. Such loci serve as markers, i.e., genetic
polymorphisms with known and detectable alleles. Using the marker data, it is
possible to establish the expected proportion of alleles at a given marker locus that
the sibs share identical by descent (IBD, see below). The Haseman and Elston
method’ involves regressing the squared phenotypic difference score of the sibs on
this proportion.
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The detection of a QTL has been viewed as problematic, because of its expected
relatively small effect size, and the requirement of extensive (and expensive)
marker data. However, several developments have made QTL analysis feasible: the
availability of marker sets consisting of many highly informative markers
distributed throughout the genome (and the increasingly cheap methods of marker
typing); the development of multi-point mapping methods to obtain optimal esti-
mates of IBD status throughout the genome!*'%; the development of selective
sampling strategies to identify the most informative sib-pairs'*!; and, finally, the
replacement of the Haseman and Elston regression method with genetic
covariance structure modeling®®.

The use of GCSM, instead of the Haseman and Elston regression method, allows
one to model the effects of a single QTL on the bivariate distribution of the sib-
pairs, and to simultaneously analyze multiple indicators of a given phenotype®.
Analyzing the bivariate distribution instead of the squared phenotypic sib-pair
difference score has been shown to be more powerful”. As the use of multiple indi-
cators is known to increase power in factor analysis to detect a latent factor®, it is
likely that the multiple indicators will also increase the power to detect the
presence of a QTL.

MODELS

In this chapter we investigate how the use of multivariate data, compared to
univariate data, increases the statistical power to detect a QTL. Multivariate data can
be collected by measuring the same variable at different time points or by measuring
different (correlated) variables at the same time point. The present power calcula-
tions supplement those presented in Boomsma and Dolan?. Boomsma and Dolan %
considered 3 and 4 indicator models and two linear combinations of the indicators.
Their calculations are limited to a codominant QTL. Here we also consider a 4 indi-
cator model. However, we consider a dominant QTL in addition to a codominant
QTL, and we investigate the effects on the power of introducing additional indi-
cators to the model. The specific design that we focus on in this chapter is one in
which the same trait is measured repeatedly across time. We assume that the time-
interval between measurement occasions is short and that observed phenotypic
individual differences are due to the same genes (QTL and background genetic
effects) at each time-points, and that no new genetic influences are expressed across
time. Measurement error (or time-specific environmental influences) thus is the
only source of discontinuity across time.

Before introducing the models employed in the power calculations, we explain
briefly the meaning of the term ‘identity by descent’ (IBD), as this is a central
concept in QTL analysis. The two parents of a sib-pair are characterized by two
alleles at each marker locus (say, A, A and A, A). Each member of a sib-pair
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inherits a single allele from his mother (A, or A)) and a single allele from his father
(A, or A). The sib-pairs may both have inherited the same allele from their father
and the same allele from their mother (e.g. AA, and AA)). In this case, the sib-pair
is characterized by IBD status 2 at the marker locus. Alternatively, the sibs may
share the same allele from the mother (Ai), but each sibling inherited a different
allele from the father (A, and A; resulting in genotypes AA, and AA, in the
offspring). They are then characterized by IBD status 1. Finally, they may have
inherited a different allele from the father and a different allele from the mother. In
this case they are IBD 0 at the marker locus (AA, and AA,). The reader is referred
to Table 17.2 in Haseman and Elston® for an exhaustive list of possibilities. Note
that:

1. IBD status is a characteristic of a sib-pair, not of an individual sibling;
IBD status at a given marker may be hard, if not impossible, to establish if, for
example, alleles of the parents are identical (see Haseman and Elston’® Table 17.2);

3. aparent and child have by definition IBD status 1 and MZ twins have IBD
status 2 across all loci;

4. IBD status tells you nothing about the actual genotype of the sib-pairs.

If a marker is situated at a large distance from the QTL, the IBD status at the
marker locus will be uninformative of the IBD status at the QTL due to recombi-
nation. However, if the marker is close to the QTL, the IBD status at the marker
locus can serve as a proxy for the IBD status at the QTL. The IBD status at the
marker locus can then be used to determine the degree of genetic relatedness at the
QTL, just as the degree of genetic relatedness between additive polygenetic values
of sib-pairs is expressed by the correlation of 0.5. It is this information that is
exploited in both the Haseman and Elston regression method and in structural
equation modeling methods to identify the regression coefficients in the regression
of the phenotype(s) on QTL.

In practice, the marker data of the sibs and, if available, from their parents, are used to
estimate the proportion of alleles shared IBD by the sibs (e.g. Kruglyak and Lander,
1995). These proportions corresponding to IBD=0, IBD=1 and IBD=2, are 0, 0.5
and 1 respectively. The probability that a sibpair shares a specific proportion of alleles
IBD (either p[0], p[¥2], or p[1]) is calculated for each sibpair conditional on their
marker data. The unconditional values of these probabilities, i.e. the expected values
in the population, equal p[0]=.25, p[/2]=.5, and p[1]=.25.

IBD marker probabilities provide information about the contribution of the QTL
to the phenotypic resemblance of the sib-pair. If the QTL is codominant, the
correlation between the QTL effects of sibpair i is equal to the estimate of the mean
proportion of alleles shared IBD in sibpair i, m,, and can be given by:2!

T, = p[2]*.5 + p[1]

i
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The effects of a dominant QTL are modeled in two parts: an additive part and a
dominant part. The additive part is represented by the so-called breeding value and
the dominant part, by the dominance deviation. The correlation between the sibs in
breeding value still equals 7, but the correlation of the dominance deviations equals
p[1].. In summary, the correlation between the latent variables of the sibpair i are:

latent variable correlation
polygenic additive latent factor 0.5
unshared environmental factor 0

additive QTL part (breeding values) T,

QTL dominance deviation pl1],

In practice, both 7, and p[1], may vary between 0 and 1 (although values of w, do
constrain values of p[1],, and vice versa). As explained below, we introduce simpli-
fying assumptions, that result in 7, and p[1]; assuming a limited number of values.
This greatly facilitates the power calculations. To indicate the expected (popu-
lation) value of p[1], and , we drop the subscript i. These values are ©=.5 and
p[1]=.25.

Haseman and Elston Model

The original Haseman and Elston? sib-pair approach to linkage analysis with quan-
titative traits estimates the regression of the squared difference between trait values
of siblings on the proportion of alleles shared IBD at a marker locus:

Y, = o+ Br.

Let P(ij) denote the zero mean phenotypic scores of sib j (j=1,2) in sibship 1
(i=1,N), then Y, equals [P(i,1) — P(i,2)]? and m, is the proportion of alleles shared
IBD by the sibs in sibship j at the marker locus. If the regression is negative and
significant, this is evidence for linkage. If there is no recombination between the
marker and the QTL locus, B is a direct estimate of -2Vq, where Vq is the variance
attributable to the QTL. The expectation for the squared difference score of two
siblings, E[Y], may be written as:

E[Y] = Var(P(i,1)) + Var(P(i,2)) — 2cov(P(i,1), P(i,2))
= 2(Ve + Va + Vq) —2(0.5Va + 1 Vq)
=2Ve + Va + 2Vq-271 Vg, 1)
where Ve denotes variance due to environmental effects not shared by family
members, Va denotes variance due to background genetic effects, Vq denotes the

QTL variance. It may be seen from this expression that, when working with
squared difference scores, Ve and Va are not separately identified.
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If we consider the possibility that the effect of the QTL on the phenotype consists
of an additive (codominant) genetic component and a non-additive (recessive or
dominance) part, the expectation for'Y can be written as:

E[Y] = 2Ve + Va + 2Vq + 2Vd - 21 Vq - 2p[1]Vd, )

where Ve again denotes environmental variance, Va, the variance due to back-
ground genetic effects, and Vq and Vd now represent additive and non-additive
genetic variance attributable to the QTL. Equation (1) is usually fitted by ordinary
least squares, and the significance of the parameter 3 is established by means of the
t-test.

GENETIC COVARIANCE STRUCTURE MODELING
INCLUDING A QTL

A structural equation modeling approach to QTL analysis with univariate sib-pair
data involves the model:

P(ij) = A, AGj) + A E@1y) + A, Q@) + A, D(iy) A)

where P(i,j), is a function of the sibs additive QTL value (Q), non-additive QTL
value (D), the scores on the latent genetic background (A) and on the environ-
mental factor (E). A path diagram for this model is given in Figure 17.1. In this
model, we assume that all variables have zero mean. We also assume that the latent
variables (A, E, Q, D) are standardized, so that the phenotypic variances and covari-
ances only depend on the regression coefficients (A, A, Kq, A,). Finally, we assume
that the latent variables are uncorrelated. As shown in equations 4 and 5, these
parameters express the influence of the latent variables on the phenotype.

Var[P(i,1)] = Var[P(i2)] = A2 + A2+ A2+ A2 (4)
Cov[P(i,1),P(i,2)] =0.5A2 + A2 + p[1] A2 (5)

This model is usually fitted using a program for covariance structure modeling,
such as LISREL? or Mx*. If the phenotypes are approximately normally distributed,

maximum likelihood estimation can be used and the significance of the regression
coefficients can be tested by means of the loglikelihood ratio test.

The structural equation modeling approach to linkage analysis of multivariate
phenotypes is a generalization of the univariate case:

P(ij) = A, A(iy) + A E@1y) + A, Q1Y) + A,D(iy) (6)
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Here P(i,j) represents the (px1) random vector of phenotypic (centered) scores of
sib j in sibship i. The (p X n,) matrix A, contains regression coefficients relating the
p phenotypes to n, latent additive genetic factors in the n, X 1 vector A(i,j). The
matrices A, A, and A, are defined in the same manner. Similarly, the vectors E(i,j)
(n, X 1), Q(iy) (n, X 1), and D(ij) (n, X 1), are vectors containing unshared envi-
ronmental deviation scores, QTL additive deviation scores, and QTL dominance
deviation scores. As above all the deviation scores have zero mean and are stan-
dardized. The partitioned (2px2p) covariance matrix, X of the multivariate
phenotypic scores P(i,1) and P(i,2) equals:

DI Y1
EV = 1172 11
! |: EZliEZZijl
where X, = X,,. Assuming the latent variables (A, D, E, Q) are uncorrelated, the
(pxp) covariance matrix X, ,. equals:

= AA + AN+ AA + A A (7)

111

and the (pxp) cross covariance matrix X, equals:

z

oy = A BRI A, + A [RRI]A + A, [p[1]RI] A, (8)
where & is kronecker matrix multiplication and I is the identity matrix of appro-
priate dimension (the result of [.5&]1] is a diagonal matrix with .5 on the diagonal).
Assuming the phenotypic data is approximately normally distributed, parameters in
the matrices A, A, A, and A, can be estimated by maximizing the raw data loglike-
lihood function, and tests of significance based on the loglikelihood ratio test.

SIMPLIFYING ASSUMPTIONS AND MODEL
PARAMETER VALUES

We assume that the QTL has 2 equi-frequent alleles and that its alleles are either
codominant, or dominant. We assume that we have a marker situated zero cM
away from the QTL, i.e. the QTL and the marker are adjacent on the chromosome.
The marker has an infinite number of alleles (polymorphic information content,
or PIC = 1), 16 alleles (PIC = .934), or 8 (PIC = .861). Regardless of the PIC
value, the marker alleles are equi-frequent.

Under these simplifying assumptions, Table 17.2 in Haseman and Elston® can be
used to derive a limited number of expected groups which are defined by different
combinations of the values for m, and p[1],. The number of sib-pairs within each
group depends directly on the number of equi-frequent alleles at the marker locus,
or, equivalently on the PIC value of the marker®. Depending on whether the
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@

Sib 1 Sib 2

Figure 17.1 — Path diagram with observed phenotypes in sib 1 and sib 2 represented by
squares and latent variables E (individual-specific environment), A (additive genetic back-
ground), Q (additive QTL effects) and D (non-additive QTL effects) represented by
circles. The correlation between additive genetic background influences is 0.5, the corre-
lation between additive QTL effects equals the proportion of alleles shared
identical-by-descent and the correlation between non-additive QTL effects is p[1]: the
probability that siblings share all alleles identical-by-descent.

number of markers, m, is infinite or not, and depending on whether the QTL is
codominant or dominant, Table 17.1 shows that we have 3 (when m=), 5 (when
PIC < 1 and there is no dominance), or 7 distinct groups (PIC < 1 and dominance
at the QTL locus). Because m, and p[1], only assume the 7 combinations shown in
Table 17.1, we can use multi-group covariance structure modeling to estimate
parameters.

For the power calculations we considered a scenario in which the QTL effect
explains 25% of the total variance in a trait. Background genetic influences also
account for 25% of the variance so that the total heritability of the trait is 50% and
the amount of variance explained by (random) environmental factors is also 50%
(actual values for variances used to construct the simulated covariance matrices
were Vq = A% = 3 (for the non-additive QTL Vq =A2=2andVd =172 =1),Va

=A2=3 and Ve = A2 = 6. In the univariate covariance structure model we have:
A, \/3 A, =V, andk =V/3, and A, =0, for the codominant QTL, or A, =V/2,
and A \/1 for the dommant QTL.

In the multivariate case, we have 4 phenotypes. The interrelationship between
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these phenotypes are determined by the matrices of regression coefficients. We
introduce the following values in the case of a codominant QTL:

A =[V3 V3 V3 V3]

V2 V4 0 0 0
V2 0 V4 0 0
A=lV2 0 0 V4 0
V2 00 0 V4

A =[V3 V3 V3 V3]
In the case of a dominant QTL:

A =[V2 V2 V2 V2],
and

A =[V1 V1 V1 V1)

d

In the multivariate case, we assume that the 4 variables are influences by a single
additive polygenic factor, and a single QTL. The unshared environmental influ-
ences are in part common to the 4 phenotypes, and in part specific to the 4
phenotypes. As mentioned in the Introduction, the model may arise when a
phenotype is measured repeatedly over a short time span.

POWER CALCULATIONS

We refer to the true model, including the QTL factor, as H1, and we refer to the
false model, excluding the QTL, as HO. Power equals 1-f, where B is:

B = prob(accepting HO | H1 is true),

i.e., the probability of a type II error. In the present context this means that there is
a QTL effect, but that it is not detected. To calculate the power we follow the
procedure described in Neale and Cardon? (1992, p. 190 ft.; see also 3.22). First we
construct covariance matrices according to the true model, which includes the
QTL. Next we use the Mx program? to fit the false model to these matrices using
maximum likelihood (ML) estimation. The total number of sib-pairs, N, is chosen
arbitrarily in fitting this model (say, 1000, or 5000). As is clear from Table 17.1, the
distribution of this total N over the groups depends on the number of equi-
frequent marker alleles and on the gene action of the QTL (codominant or
dominant). The distribution of the goodness of fit index under the false model is
distributed as a non-central chi-square variate. The exact form of the distribution
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Table 17.1 — Distribution of 7 and p[1] given m, number of equi-frequent marker
alleles, for m=8 (PIC=.861), m=16 (PIC=.934), m=32 (PIC=.968), and m= »
(PIC=1)*.

group T pl1] frequency m=8 m=16 m=32 m=[]
1 0 0 Va(m3-2m2+1)/m* 1879 .2188 .2343 0.25

2 0.25 0 (m-1)/m? .1093 .0585 .0302 0

3 050 O Vo(m2-2m+1)/m? .3828 4394 4692 0.5

4 0.50 0.25 1/m? .0156 .0039 .0009 0

5 0.50 0.50 V2(m-1)/m? .0068 .0018 .0004 0

6 0.75 0.50 (m-1)/m? .1093 .0585 .0302 0

7 1 1 Va(m3-2m2+1)/m*  .1879 .2188 .2343 0.25

* In the event of PIC = 1, we have three groups (1,3,7); in the event of PIC<1 and a codominant QTL, we
have 5 groups (groups 3,4,5,are collapsed into a single group); in the event of PIC < 1 and a dominant (or
recessive) QTL, we have 7 groups.

depends on the number of degrees of freedom, and the so-called non-centrality
parameter (NCP). The number of degrees of freedom is simply the difference in
the number of parameters between the true model (including the QTL) and the
false model (without the QTL). The NCP equals the chi-square for the false
model as reported by the program (ie., Mx). Given N, the non-centrality
parameter and the pre-specified a (e.g., .05, or .001), one can calculate the power to
reject the false model, and one can calculate the required N to reject the false
model, given a predetermined power. Conveniently, Mx carries out all the
necessary calculations automatically. Below we report the required number of sib-
pairs to reject the false hypothesis, given a power of .80 and an « of .001.

RESULTS AND DISCUSSION

Table 17.2 and 17.3 contain the number of sibling pairs needed to detect the effect
of a QTL explaining 25% of the phenotypic variance. Table 17.2 summarizes the
power calculations for a codominant QTL. As is expected (Fulker and Cherny,
1996), fitting the bivariate model gives better results in terms of power than
analyzing squared difference scores. Regardless of PIC, the latter requires about a
factor 1.35 more subjects than the former to achieve the same power. Multivariate
model fitting involving all 4 phenotypes gives a substantial increase in power: 65%
fewer subjects are required than in the univariate analysis. If the loadings of the
QTL on the repeated measures of the phenotype can be constrained equal to each
other, the increase in power is even larger, because the QTL effect can then be
tested against 1 degree of freedom. The eftect of PIC is as expected: the more
informative the marker is, the more powerful the test of the QTL. Regardless of
the test used, the reduction in the number of required sibpairs is about the same
(from PIC=.93 to 1.0, about a factor .93). In terms of an ANOVA, one could say
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that PIC and ‘type of test’ both have a main eftect on the required number of
sibpairs, but that an interaction is absent.

Table 17.3 presents the number of sibling pairs required to detect the presence of a
dominant QTL effect, the additive QTL component and the test of a QTL effect
when dominance is ignored when fitting the full model (last 4 rows in Table 17.3).
First, it is clear that the detection of the dominance variance of the QTL requires
very large sample sizes. Multivariate modeling does substantially reduce the
number of required sibpairs, but even the most powerful test still required over
16000 sibpairs. The power to detect the presence of the additive and dominance
QTL variance simultaneously is much greater (second 4 rows in Table 17.3). Here
the required samples sizes are comparable to those shown in Table 17.2. As it is
very difficult to detect the dominance deviation, we finally investigate the power to
detect the dominant QTL, under the circumstance that it is fit as a codominant
QTL. This means that we model the QTL effect using a single parameter. The
result (last 4 rows in Table 17.3) are very similar to those shown in Table 17.2. As
in Table 17.2, there does not seem to be any interaction between the effects of PIC
and the effects of ‘type of test’.

The considerable increase in power associated with the multivariate test, suggest
that it is advisable to collect multiple indicators of the phenotype under consider-
ation or measure the phenotype repeatedly at multiple timepoints. An interesting
question concerns the returns in terms of power of adding indicators. Figure 17.2
displays the required number of subjects to detect the codominant QTL when 1 to
9 indicators are analyzed. Again we consider the same three PIC values.

In Figure 17.2 we see that there is a dramatic increase in power when going from
1 to 2 and from 2 to 3 indicators. Beyond 3 indicators the increase in power is
small, and beyond 5 indicators, the power actually decreases. Although the
minimum number of required subjects is observed at 5 indicators, 3 or 4 indi-
cators are sufficient. Needless to say, these particular results cannot be
generalized to other parameter values, or genetic covariance structure models.
However, it is very likely that the observed diminished returns will hold
regardless of the details relating to the model.

In an earlier paper® we explored several strategies to analyze multivariate pheno-
types. We found that when the multivariate information was summarized into a
genetic factor score?? no information was lost compared to fitting the complete
multivariate model. This is a useful result because working with multivariate
phenotypes may pose a problem in studies that selectively genotype extreme
scoring sibling pairs. Multivariate selection of such pairs can be carried out on a
genetic factor score which represents a subjects score on the latent genetic factor
underlying the observations.

There are several ways to include a QTL in GCSM, which can be denoted the pi-
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Table 17.2 — Number of sib-pairs to detect a codominant QTL with power=.80 and
a=0.001. The QTL accounts for 25%, background genes for 25% and environment
for 50% of the total variance. For the multivariate data these effect sizes are the same
for all 4 variables; environmental influences are split into variable specific effects
(33%) and a common factor effect (17%).

analysis PIC=1 PIC=.93 PIC=.86
Squared Difference score (df = 1) 2434 2598 2819
SEM Univariate (df = 1) 1795 1915 2077
SEM Multivariate (df = 4) 1155 1234 1340
SEM Multivariate (df = 1) 854 912 990

Table 17.3 — Number of sib-pairs to detect a QTL with equal allele frequencies,
QTL additive effect = 16.6%, QTL non-additive effect = 8.3% (other effect sizes as
in table 17.2; power=.80 and a=0.001).

PIC=1 PIC=.93 PIC=.86

Dominance effect

Difference score (df = 1) 47,534 53,755 61,477
SEM Univariate (df = 1) 33,039 37,442 42,947
SEM Multivariate (df = 4) 22,052 24,928 28,522
SEM Multivariate (df = 1) 16,300 18,426 21,083
Dominance+Additive effect

Difference score (df = 2) 2664 2861 3123
SEM Univariate (df = 2) 1961 2103 2291
SEM Multivariate (df = 8) 1324 1423 1554
SEM Multivariate (df = 2) 936 1005 1098
Total (D+A) effect

Difference score (df = 1) 2432 2605 2836
SEM Univariate (df = 1) 1795 1920 2086
SEM Multivariate (df = 4) 1157 1240 1350
SEM Multivariate (df = 1) 855 916 998

hat approach and the IBD-distribution, or mixture, approach®’?. As it was more
convenient for our present purposes, we have used the pi-hat approach in our
power calculations. In unselected samples, these two approaches produce almost
identical results.

In conclusion, on the basis of the present results, it appears that GCSM has more
power than the original Haseman and Elston regression method” and that multi-
variate GCSM is more powerful than univariate GCSM?.
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that PIC and ‘type of test’ both have a main effect on the required number of
sibpairs, but that an interaction is absent.

Table 17.3 presents the number of sibling pairs required to detect the presence of a
dominant QTL effect, the additive QTL component and the test of a QTL effect
when dominance is ignored when fitting the full model (last 4 rows in Table 17.3).
First, it is clear that the detection of the dominance variance of the QTL requires
very large sample sizes. Multivariate modeling does substantially reduce the
number of required sibpairs, but even the most powerful test still required over
16000 sibpairs. The power to detect the presence of the additive and dominance
QTL variance simultaneously is much greater (second 4 rows in Table 17.3). Here
the required samples sizes are comparable to those shown in Table 17.2. As it is
very difficult to detect the dominance deviation, we finally investigate the power to
detect the dominant QTL, under the circumstance that it is fit as a codominant
QTL. This means that we model the QTL eftect using a single parameter. The
result (last 4 rows in Table 17.3) are very similar to those shown in Table 17.2. As
in Table 17.2, there does not seem to be any interaction between the effects of PIC
and the effects of ‘type of test’.

The considerable increase in power associated with the multivariate test, suggest
that it is advisable to collect multiple indicators of the phenotype under consider-
ation or measure the phenotype repeatedly at multiple timepoints. An interesting
question concerns the returns in terms of power of adding indicators. Figure 17.2
displays the required number of subjects to detect the codominant QTL when 1 to
9 indicators are analyzed. Again we consider the same three PIC values.

In Figure 17.2 we see that there is a dramatic increase in power when going from
1 to 2 and from 2 to 3 indicators. Beyond 3 indicators the increase in power is
small, and beyond 5 indicators, the power actually decreases. Although the
minimum number of required subjects is observed at 5 indicators, 3 or 4 indi-
cators are sufficient. Needless to say, these particular results cannot be
generalized to other parameter values, or genetic covariance structure models.
However, it is very likely that the observed diminished returns will hold
regardless of the details relating to the model.

In an earlier paper® we explored several strategies to analyze multivariate pheno-
types. We found that when the multivariate information was summarized into a
genetic factor score?®?* no information was lost compared to fitting the complete
multivariate model. This is a useful result because working with multivariate
phenotypes may pose a problem in studies that selectively genotype extreme
scoring sibling pairs. Multivariate selection of such pairs can be carried out on a
genetic factor score which represents a subjects score on the latent genetic factor
underlying the observations.

There are several ways to include a QTL in GCSM, which can be denoted the pi-
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Table 17.2 — Number of sib-pairs to detect a codominant QTL with power=.80 and
a=0.001. The QTL accounts for 25%, background genes for 25% and environment
for 50% of the total variance. For the multivariate data these effect sizes are the same
for all 4 variables; environmental influences are split into variable specific effects
(33%) and a common factor effect (17%).

analysis PIC=1 PIC=.93 PIC=.86
Squared Difference score (df = 1) 2434 2598 2819
SEM Univariate (df = 1) 1795 1915 2077
SEM Multivariate (df = 4) 1155 1234 1340
SEM Multivariate (df = 1) 854 912 990

Table 17.3 — Number of sib-pairs to detect a QTL with equal allele frequencies,
QTL additive effect = 16.6%, QTL non-additive effect = 8.3% (other effect sizes as
in table 17.2; power=.80 and a=0.001).

PIC=1 PIC=.93 PIC=.86

Dominance effect

Difference score (df = 1) 47,534 53,755 61,477
SEM Univariate (df = 1) 33,039 37,442 42,947
SEM Multivariate (df = 4) 22,052 24,928 28,522
SEM Multivariate (df = 1) 16,300 18,426 21,083
Dominance+Additive effect

Difference score (df = 2) 2664 2861 3123
SEM Univariate (df = 2) 1961 2103 2291
SEM Multivariate (df = 8) 1324 1423 1554
SEM Multivariate (df = 2) 936 1005 1098
Total (D+A) effect

Difference score (df = 1) 2432 2605 2836
SEM Univariate (df = 1) 1795 1920 2086
SEM Multivariate (df = 4) 1157 1240 1350
SEM Multivariate (df = 1) 855 916 998

hat approach and the IBD-distribution, or mixture, approach®’?. As it was more
convenient for our present purposes, we have used the pi-hat approach in our
power calculations. In unselected samples, these two approaches produce almost
identical results.

In conclusion, on the basis of the present results, it appears that GCSM has more
power than the original Haseman and Elston regression method’ and that multi-
variate GCSM is more powerful than univariate GCSM%.
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Figure 17.2 — number of sibpairs required to attain =.001 and 1-B=.80 as a function of
the number of phenotypic indicators (parameter values are the same as those in Table
17.1). The three plots (top to bottom) correspond to PIC=1, PIC=.93, and PIC=.86,
respectively.
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