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Abstract

Background: Mendelian randomization (MR) is widely used to unravel causal relation-

ships in epidemiological studies. Whereas multiple MR methods have been developed to

control for bias due to horizontal pleiotropy, their performance in the presence of other

sources of bias, like non-random mating, has been mostly evaluated using simulated

data. Empirical comparisons of MR estimators in such scenarios have yet to be con-

ducted. Pleiotropy and non-random mating have been shown to account equally for the

genetic correlation between height and educational attainment. Previous studies probing

the causal nature of this association have produced conflicting results.

Methods: We estimated the causal effect of height on educational attainment in various

MR models, including the MR-Egger and the MR-Direction of Causation (MR-DoC) mod-

els that correct for, or explicitly model, horizontal pleiotropy.

Results: We reproduced the weak but positive association between height and education

in the Netherlands Twin Register sample (P¼3.9 3 10–6). All MR analyses suggested that

height has a robust, albeit small, causal effect on education. We showed via simulations

that potential assortment for height and education had no effect on the causal parameter

in the MR-DoC model. With the pleiotropic effect freely estimated, MR-DoC yielded a null

finding.

Conclusions: Non-random mating may have a bearing on the results of MR studies

based on unrelated individuals. Family data enable tests of causal relationships to be

conducted more rigorously, and are recommended to triangulate results of MR studies

assessing pairs of traits leading to non-random mate selection.
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Introduction

Causal inference based on observational data is challeng-

ing because of genetic and environmental confounding.

Mendelian randomization (MR) has tremendous potential

in addressing causality in the presence of confounding, and

currently enjoys considerable methodological and substan-

tive interest (for example Hemani et al.1, Verbanck et al.2).

MR employs genetic variants associated with a given

exposure as randomization instruments to detect the causal

effect of the exposure on disease/outcome in non-

experimental settings.3,4 Specifically, MR exploits the fact

that the genetic variants’ meiosis is random with respect to

environmental and social confounders,5,6 and they are not

modified by disease outcomes (i.e. are not subject to re-

verse causality). The MR design yields information about

causality, under the assumptions that the (genetic) instru-

ment: (i) is well-associated with the exposure; (ii) is inde-

pendent of confounders; and (iii) affects the outcome

exclusively via the exposure variable (i.e. there is no hori-

zontal pleiotropy). Although assumptions (i) and (ii) are

likely to be tenable,7,8 assumption (iii) is unlikely to hold

on account of the ubiquity of pleiotropy.9–12 As a result,

multiple MR methods have been developed to control for

bias due to horizontal pleiotropy.8,13–17

Yet another source of bias that may have a bearing on

the results of MR studies is assortative mating18 (i.e. ‘the

tendency of like to marry like’). MR approaches assume

that the genetic variants used to instrument the analysis are

randomly distributed in the population. This assumption

draws heavily on random mating,8 the absence of inbreed-

ing and the absence of selection on the genetic instrument.

There is extensive evidence for assortative mating, specifi-

cally for height and education (for example Courtiol et

al.,19 Hugh-Jones et al.,20 Yengo et al.21) as well as cross-

trait,22 but also within (and between) psychiatric disorders

like substance use.23,24 Recently, Hartwig and colleagues18

showed by means of simulations that assortative mating

may bias the causal estimate in two-sample methods that

are robust to pleiotropy, like MR-Egger or inverse variance

weighted regression. Empirical comparisons of MR estima-

tors in such scenarios have yet to be conducted.

Here we assess the performance of several methods ro-

bust to horizontal pleiotropy in the presence of assortative

mating. Pleiotropy and assortative mating have been shown

to account equally for the genetic correlation between height

and educational attainment.22 We therefore consider these

traits for our illustrative analyses. Empirical evidence has

shown that height predicts attained education at different

ages throughout the lifetime.25–28 There are several explana-

tions for the height-educational attainment association.

The first is that stature has a causal effect on educa-

tion.22,29–35 The reverse hypothesis that educational attain-

ment causally influences height is arguably too implausible

to merit consideration (but see Supplementary material,

available as Supplementary data at IJE online, for a sensi-

tivity check). The third ‘underlying factor’ hypothesis is

that the association is due to common factors influencing

both traits. Twin studies22,32 and studies in unrelated indi-

viduals which used measured genetic variants to disentan-

gle the sources of this correlation33 showed that the

correlation between the two traits is entirely explained by

shared genetic factors.22,32,33 This genetic correlation can

arise from vertical pleiotropy (i.e. the genetic effects on

height are manifest in educational attainment due to the di-

rect causal effect of height on education). The correlation

may also be due to horizontal pleiotropy, i.e. due to over-

lap in the set of genes affecting brain size, intelligence and

height, given the significant bivariate correlations observed

between these traits (note that both intelligence and height

are genetically correlated with brain volume36–41; see also

Figure S1, available as Supplementary data at IJE online).

Alternatively, cross-trait assortative mating,18,22 dynas-

tic effects and population structure42 may also induce ge-

netic correlation between these traits. We consider these

competing explanations in several MR models including

MR-Egger14 and MR-direction of causation (MR-DoC)

models16,17 that correct for, or explicitly model, horizontal

pleiotropy. We also use simulations to assess the MR-DoC

model’s robustness in the presence of assortative mating

Key Messages

• We compare empirically the performance of various Mendelian randomization (MR) models in the presence of non-

random/assortative mating.

• We show that non-random mating may generate data that are consistent with a causal relationship between height

and educational attainment, and may have a bearing on the results of MR studies.

• MR models based on family data allow tests of causal hypotheses to be conducted in the presence of non-random

mating (and other confounders such as dynastic effects). Summary statistics-based MR methods might be con-

founded in such scenarios.
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and finally, we employ the latent causal variable (LCV)

model43 to account for potential bias arising from partici-

pant overlap44 in the two-sample MR approaches.

Methods

Ethical approval

The NTR study was approved by the Central Ethics

Committee on Research Involving Human Subjects of the

VU University Medical Centre, Amsterdam, an Institutional

Review Board certified by the US Office of Human

Research Protections (IRB number IRB-2991 under Federal-

wide Assurance-3703; IRB/institute codes, NTR 03–180).

All subjects provided written informed consent.

Sample

We evaluated the association of height and educational at-

tainment (EA) in a Dutch sample from the Netherlands

Twin Register (NTR).45,46 For the phenotypic association

analysis, we selected 5899 Dutch adults (of whom 3184

were twins) with information on height and EA, relevant

covariates (i.e. year of birth and sex) and observed genotypic

data. EA was measured using a seven-category variable

(1¼ primary school only; 2¼ lower educational schooling;

3¼ lower vocational schooling; 4¼ intermediate vocational

schooling; 5¼ intermediate/higher secondary schooling;

6¼ higher vocational schooling; and 7¼ university). The

availability of repeated measures allowed us to run a series

of consistency checks (see Supplementary material, available

as Supplementary data at IJE online). Given the choice of

the scheme used to code EA (1 through 7), and the fact that

the underlying assumption of equivalent distances between

adjacent EA categories is unlikely to hold in the case of ordi-

nal data,47 we converted the seven-category variable to sex-

and birth-cohort specific ridit scores47,48 as described in van

Dongen et al.49 The resulting scores reflect males’ and

females’ hierarchy of attained education in accordance with

the societal values and historical conditions that define a

given birth cohort. In short, we calculated the sex- and

cohort-specific ridit scores for each EA category j by sum-

ming the proportion of cases below that category and one

half the proportion of cases in the category47,48

Supplementary Table S1, available as Supplementary data at

IJE online, shows descriptive statistics for the sample used in

the analyses. Genome-wide single nucleotide polymorphisms

(SNP) data were collected in the NTR sample on various

genotyping platforms.45 Missing data were cross-platform

imputed with the Genome of the Netherlands as the refer-

ence set.50–52 MaCH-Admix53 was used for phasing and

imputation. We refer to the Supplementary material, avail-

able as Supplementary data at IJE online, for details on qual-

ity control checks performed before and after imputation.

Statistical analyses

Phenotypic association

Education was regressed on height and on the following

covariates: age, sex and birth cohort (see Supplementary

material, available as Supplementary data at IJE online for

details). To correct for the effect of family clustering, we

employed a generalized estimation equation linear model54

with an exchangeable model for the background familial

covariance matrix and robust standard errors.55–57

Causality testing: one- and two-sample MR

We tested the causal effect of height on education in one-

and two-sample MR models. The one-sample MR was

based on the two-stage least squares (TSLS) procedure (but

standard MR can also be performed using the Wald esti-

mator) and on the MR-DoC model.17 As an instrumental

variable we used a polygenic score, i.e. a weighed linear

combination of SNPs. The weights used in calculating the

polygenic score were obtained from the largest to date

GWAS of height58 (excluding the NTR participants, see

Supplementary material, available as Supplementary data

at IJE online). Causality was tested in a subset of the sam-

ple comprising 3184 twins born between 1926 and 1989.

The covariates used in the causality analysis were the

dummy coded birth cohorts, age, sex, and 10 principal

components (to correct for potential Dutch population

structure). To increase the ethnic homogeneity of the sam-

ple, we removed ethnic outliers (see59 and Supplementary

material, available as Supplementary data at IJE online).

The two-sample MR was based on MR-Egger,14 the in-

verse variance weighted approach, mode-60 and median-

based MR methods.13,15 We assessed the suitability of

summary data for conducting MR-Egger using the I2
GX

statistics.61 We also employed heterogeneity tests and

Rucker’s framework62 to further assess pleiotropy and for

model selection. To account for potential sample overlap

that may bias the MR results, we used the latent causal

variable (LCV) model43 (see Supplementary material,

available as Supplementary data at IJE online). The

two-sample MR used summary statistics for the SNPs

available for both traits, downloaded from Wood et al.58

and from Okbay et al.,41 respectively. We refer to [https://

gitlab.com/camish/empiricalcomparisons] for the R-script

used in the analyses and to the Supplementary material,

available as Supplementary data at IJE online, for more

details on the methods employed.
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Simulation: checking the robustness of MR-DoC in the

presence of assortative mating

To evaluate the effect of assortative mating in the MR-

DoC model, we created genotypes based on 150 diallelic

loci (all minor allele frequencies¼0.5) in 50 000 parent

pairs. Of the 150 loci, 50 affected height, 50 affected edu-

cation and 50 had pleiotropic effects (i.e. affecting directly

both height and EA). All 150 loci were used to compute

polygenic scores, which were subsequently sorted ascend-

ingly and used to divide the samples of mothers and fathers

into five quintiles. Mate selection was contingent upon ge-

netic similarity: males and females with the same quantile

score were allowed to form parent pairs. To control the de-

gree of assortative mating, we used a mover-stayer transi-

tion probability matrix to allow the males and females to

switch to any other quintiles; the probability of switching

to any other quantile equalled 0.05. Based on the resulting

matings, we created two offspring per parent pair. The off-

spring were subsequently randomly assigned to pairs and

the assortative mating procedure was repeated. After 10

generations, the familial (co)variances reached the

expected equilibrium values63 such that parent-parent ge-

netic correlations equalled about 0.4 and the sibling corre-

lations equaled about 0.7. Half of the resulting sibling

pairs were used to create MZ twin pairs, by duplicating the

first genotype. Phenotypic data were next created based on

the genotypes and environmental variation. Polygenic

scores computed using the 20 (horizontally) pleiotropic

loci were used as the genetic instrument in the MR-DoC

model.

Results

The observational regression analysis in the NTR sample

showed that height is associated with educational attain-

ment (Wald v2(1) ¼ 21.3; P ¼3.9 3 10–6; R2 ¼ �0.3%).

TSLS indicated that height has a causal effect on educa-

tional attainment (bcausal ¼ 0.004; standard error (SE) ¼
0.001; Wald v2(1) ¼6.7; P ¼ 0.0096). Table 1 includes the

results obtained using two-sample MR methods. The I2
GX

statistic equalled 0.84—a value close to the recommended

value of 1—providing no evidence of regression dilution,

and supporting the use of MR-Egger. Consistent with the

TSLS and with the other pleiotropy-robust methods results

(see Table 1), MR-Egger implied a causal effect of height

on EA. The MR-Egger intercept provided no evidence of

detectable directional pleiotropy (resulting in the mean

value of the pleiotropy distribution deviating from zero).

In line with the MR-Egger intercept result, the funnel plot

suggested the ‘no directional pleiotropy’ assumption is

likely to be satisfied (Figure 1).

The Cochran’s Q test of heterogeneity64 detected het-

erogeneity (P<10–4). Here we assume this is due to bal-

anced pleiotropy (i.e. the pleiotropy distribution has a zero

mean); yet we note that heterogeneity may arise due to fac-

tors other than pleiotropy.62 The Rucker’s model selection

framework (see Supplementary material, available as

Supplementary data at IJE online, for details) showed there

is no detectable directional pleiotropy, and indicated that

an inverse variance weighted (IVW) random effects model

adequately accommodated the heterogeneity present in the

data (Qdiff(1) ¼ 1.4; P¼ 0.2; where diff stands for the dif-

ference between the Cochran’s Q statistic—that tests for

heterogeneity about the IVW model, and Rucker’s Q’ sta-

tistic—that tests for heterogeneity about the MR-Egger

model). Consistent with these results, the MR-Egger inter-

cept indicates that directional pleiotropy does not bias the

estimate, and the Steiger test65 (which removes SNPs with

potential reverse-causal effects) supports the conclusion

that causation flows from height to EA. It can be seen from

Figure 2 that all approaches based on summary statistics

yielded consistent results.

The LCV model (see Supplementary material, available

as Supplementary data at IJE online, for details), which is

robust to sample overlap, found a genetic correlation of

qg ¼ 0.15, and a genetic causality parameter GCP¼0.27

(SE¼ 0.08; z-score¼2.93; one-tailed P¼ 0.002), but did

not reach the GCP value of at least 0.6 to claim robust pos-

itive finding.

MR-DoC: simulation and empirical results

Simulation results showed that non-random mate selection

had no detectable effect on the causal effect estimate in the

MR-DoC model when the pleiotropic effect is freely esti-

mated (i.e. parameter b2 in Figure S2, available as

Supplementary data at IJE online). The estimate of the

causal effect (g1 in Figure S2, available as Supplementary

data at IJE online) was close to its true value of zero (the

statistical test of the hypothesis g1 ¼ 0 was not rejected

given alpha¼ 0.05). Interestingly, in the MR-DoC model

with a non-pleiotropic polygenic score computed based on

the 20 loci unique to height, non-random mating resulted

in a pleiotropic effect (the statistical test of parameter b2 ¼
0 was rejected given alpha¼ 0.05). This suggests that as-

sortative mating is accommodated by the b2 parameter.

The MR-DoC model17 explicitly estimates the amount of

horizontal pleiotropy, but has to assume, for reasons of

identification, that the unique environmental component

influencing the exposure does not directly influence the out-

come (other than through its effect on the exposure, i.e.

re¼0, see Figure S2, available as Supplementary data at IJE

online). With the parameter re constrained to 0, we tested
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the causal effect of height on EA while explicitly modelling

horizontal pleiotropy (estimating the direct effect of the in-

strumental variable on the outcome). MR-DoC yielded a

null finding: the causal effect was not different from zero at

alpha¼0.05 (g1 ¼ 0.0019; SE¼ 0.002; standardized g1 ¼
0.017; SE¼ 0.025; likelihood ratio test v2(1) ¼ 0.46;

P¼ 0.49). When we assumed there is no horizontal pleiot-

ropy (the parameter b2 in Figure S1, available as

Supplementary data at IJE online, was fixed to zero), we

detected a causal effect of height on EA (g1 ¼ 0.004;

SE¼ 0.001; standardized g1 ¼ 0.039; SE¼ 0.015; v2(1) ¼
6.9, P¼0.0085). The test of the pleiotropic effect failed to

reject the null hypothesis of ‘no pleiotropy’ (b2 ¼ 0.01;

SE¼ 0.01; v2(1) ¼ 1.08; P¼ 0.29). Constraining b2 to zero

and testing whether re¼ 0 suggested that the assumption is

tenable (v2(1) ¼ 1.08; P¼ 0.29). However, the null findings

concerning absence of non-shared environmental confound-

ing and absence of directional pleiotropy may also reflect a

lack of power (see Supplementary material, available as

Supplementary data at IJE online). Importantly, constrain-

ing the parameter b2 to zero is not recommended in the light

of ubiquity of pleiotropy across the human genome, and

given that this parameter also accommodates potential non-

random mating effects.

Discussion

We assessed the performance of several MR approaches in

empirical data, in the presence of non-random mating.

Table 1. Two-sample MR results of the height-educational attainment analysis

Analysis method Estimate SE 95% CI-lower 95% CI-upper P-value

IVW fixed effects 0.04 0.002 0.036 0.043 3 3 10�53

IVW random effects 0.04 0.0047 0.030 0.049 2 3 10�17

MR-Egger regression fixed effects: slope 0.03 0.006 0.018 0.041 9 3 10�6

intercept 0.0003 0.0001 �0.00006 0.0006 0.10

MR-Egger regression random effects: slope 0.03 0.012 0.006 0.053 1.8 3 10�02

intercept 0.0003 0.0003 �0.0004 0.001 0.39

Simple median 0.043 0.005 0.033 0.052 2 3 10�13

Weighted median 0.037 0.005 0.027 0.046 1 3 10�9

Penalized weighted median 0.033 0.005 0.023 0.042 2 3 10�8

Simple mode 0.058 0.027 0.005 0.110 2 3 10�2

Weighted mode 0.066 0.023 0.020 0.111 1.8 3 10�3

CI, Confidence intervals; SE, standard error; IVW, inverse variance weighted model; MR, Mendelian randomization.

Figure 1. Funnel plot for the height - educational attainment Mendelian

Randomization analysis based on summary statistics. The dots repre-

sent the instrumental variable effects estimated based on each single

nucleotide polymorphism (bIV), plotted against their precision (the stan-

dard error of the effect estimate, SEIV). The vertical solid gray line repre-

sents the MR-Egger intercept, the vertical gray dashed line represents

the inverse variance weighted estimate. The plot resembles a symmet-

rical funnel suggesting there is no evidence for directional pleiotropy.

Figure 2. Scatterplot of the effect sizes on height and educational attain-

ment of each of the 931 independent single nucleotide polymorphisms.

Effect sizes are extracted from the genome-wide association study

(GWAS) of height and from the GWAS of educational attainment.
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Recently, Hartwig and colleagues18 showed by means of sim-

ulations that non-random mating may bias the two-sample

MR results based on summary statistics. Building on this

work, the current study presented an empirical comparison

of various one- and two-sample MR models when addressing

the causal nature of the relationship between height and

education (two traits extensively documented to lead to non-

random mate selection). Previous studies addressing this rela-

tionship produced conflicting results. Tyrell et al.29 suggested

that the observational association between height and educa-

tional attainment (indexed by a continuous variable repre-

senting time spent in full-time education) is causal in nature.

Using MR-Egger regression and a TSLS model in the UK

Biobank sample, they showed that taller individuals complete

a larger number of years of formal education. Conversely,

based on the IVW MR,15 Hagenaars et al.66 found no sup-

port for a causal effect flowing from height to education

(indexed by a four-category variable representing degree level

in the UK biobank). However, the authors noted that pheno-

type definition (i.e. using as the exposure a four-category var-

iable instead of a continuous one as Tyrell et al. did), in

conjunction with the use of weak genetic instruments may

explain their null findings.66

Assuming all SNPs meet the three standard instrumental

variable assumptions (see Introduction), the current one-

sample TSLS results implied that height has a small posi-

tive causal effect on EA. This conclusion was reinforced by

several alternative MR approaches robust to certain

forms of pleiotropy, like IVW, median- and mode-based

approaches and MR-Egger. Whereas the mode- and

median-based approaches can each handle certain propor-

tions of pleiotropic SNPs, MR-Egger explicitly tests for di-

rectional pleiotropy. The MR-Egger test showed there is

no detectable directional pleiotropy. It is, however, impor-

tant to note that the power of the MR-Egger test to detect

pleiotropy may be low (see Table 1 in Bowden et al.14). We

used heterogeneity tests as additional means to assess plei-

otropy. Although pleiotropy might be present, we found

that this is likely to be balanced, and may be adequately

modelled by a random effects IVW model.

Sample overlap may affect the conclusions of summary

statistics-based MR approaches, with large overlap biasing

the causal effect estimate towards the observed association

(because of weak instruments). The LCV model is robust

to sample overlap and to other factors that may bias two-

sample MR methods, like heritable confounding, differen-

ces in polygenicity or unequal sample sizes (see O’Connor

and Price43 for details). This model provided weak evi-

dence for the hypothesis that height affects education caus-

ally (genetic causality parameter GCP¼ 0.27; P¼ 0.002).

Height and college completion are two of the traits studied

by O’Connor and Price in their empirical applications in

the UK Biobank.43 They found a genetic correlation be-

tween these traits of qg ¼ 0.17 and a GCP of 0.33. The

positive GCP value lends some support to the hypothesis of

height affecting education, but these values are rather too

small to claim a robust positive finding. O’Connor and

Price recommended absolute GCPs values larger than 0.6

as unlikely to be false-positives, and concluded that this

low GCP value likely reflects shared developmental path-

ways rather than a direct causal effect. Further consider-

ation of the GCP statistic supports this recommendation: a

heritable latent confounder affecting height with a path co-

efficient of 0.55 and education with a path coefficient of

0.3 could yield a genetic correlation of qg ¼ 0.17 and a

partial genetic causality parameter of GCP¼0.33. If the

former coefficient were higher (say, at least 0.8), then one

could reasonably argue that, although height is not literally

a cause of education, it is nevertheless a very good proxy

for some other variable that is a true cause.

The MR-DoC model is also useful when the confound-

ing is predominantly genetic. The MR-DoC model has not

detected a causal effect of height on EA (v2(1) ¼ 0.46;

P¼ 0.49), unless we assumed directional pleiotropy was

absent. The test of the pleiotropic effect could not reject

the null hypothesis that the effect equals zero—a result

consistent with the MR-Egger test result. The test of the

parameter b2 suggests that the effect resulting from non-

random mating is probably too weak to be picked up by

the current sample. Notwithstanding this result, we argue

against fixing this parameter to zero given the simulation

results reported in Minic�a et al.16 (which showed that the

estimate of the causal effect g1 is unbiased provided the

pleiotropic effect b2 is freely estimated), and given the cur-

rent simulation results (which showed assortative mating is

accommodated by the b2 parameter). Estimating the b2 pa-

rameter might reduce power (if, indeed, pleiotropy is ab-

sent), but we rather err on the conservative side, given the

ubiquity of pleiotropy across the human genome and given

that non-random mating may presumably bias the causal

effect if we do not model the directional pleiotropy path.

The usefulness of family data in addressing the non-

random mating assumption was also demonstrated by

Hartwig and colleagues.18 They showed, using data on

trios, that height had no causal effect on education when

correcting for possible effects of non-random mating (by

using TSLS and adding the parental polygenic scores).

However, as the authors acknowledge, it is worth noting

that the small sample employed in this analysis may have

resulted in imprecise estimates. The structural equation

model developed by Warrington et al.,67 to estimate jointly

maternal and fetal effects on birthweight, may also be ex-

tended to provide another means to address the potential

bias induced by non-random mating.
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Family data can additionally address bias in MR studies

arising from dynastic/genetic nurture effects that may also

confound the association between height and educa-

tion.18,42,68 For instance, when available, trios data enable

causality tests robust to dynastic effects;18,68 while providing

a straightforward means to address dynastic effects and

non-random mating; this approach requires trios data and

needs to assume absence of horizontal pleiotropy. The

within-family-based approach described by Brumpton

et al.42 may also address dynastic effects. These within-

family estimates of SNP outcome and SNP exposure effects

obtained in separate sibling samples can be used, in a second

step, with pleiotropy-robust summary data estimators; yet,

as the authors note, these family-based estimates are likely

to be underpowered to allow for both family structure and

pleiotropy. It is important to note that the MR-DoC model

in some scenarios has to make the strong assumption that

there is no appreciable non-shared environmental confound-

ing16 However, the model does account for environmental

confounding shared by twins. In so doing, MR-DoC also

controls for dynastic effects because twins share the environ-

ments created by parents. As twins share a womb and a

household/neighbourhood, often until age 18, this is non-

trivial. Dynastic effects are not controlled for in MR on

unrelated individuals.69,70

To conclude, one should remain cautious when addressing

the nature of the relationship between height and education

as there are other confounders (beside horizontal pleiotropy)

that may yield the observed association. This empirical exam-

ple showed that non-random mating and, possibly, dynastic

effects may generate data that are remarkably consistent with

a causal model for the relationship between height and educa-

tion. These factors—and others like fine-scale population

structure42,71—may affect this relationship, and pleiotropy-

robust methods are not necessarily robust to these forms of

confounding. Structural equation models67 and MR models

that exploit family data16,18,42 should enable tests of causal

relationships to be conducted more rigorously, and are rec-

ommended to triangulate72 results of MR studies assessing

pairs of complex traits leading to non-random mate selection.

Supplementary data

Supplementary data are available at IJE online.
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Introduction

It has long been a central goal of social science research to

understand the causes and consequences of schooling and

educational inequality. In large part, this fascination is due

to education’s association with a wide array of economic

and social returns within and across generations. The pro-

duction of such benefits, however, is far from straightfor-

ward, as educational institutions at once contribute to

social mobility and social inequality—that is, depending

on the context and outcome in question, schools may exac-

erbate, buffer against or simply reflect background depri-

vation.1 Although scholars continue to debate the relative

influence of these competing forces, it is clear that dispar-

ities in cognitive and non-cognitive traits—both crucial for

academic success—begin to arise within family environ-

ments before enrolment in formal schooling. Thus, it has

proven incredibly challenging to improve the developmen-

tal trajectories of disadvantaged children, as well as miti-

gate the downstream contribution of social origins to

population inequalities in socioeconomic status, health and

mortality.

Despite recognition of the need for more effective edu-

cation policies, plausible causal inference approaches in

this area of research remain elusive, in perennial
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