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Letter

Geographical structure and differential natural
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Population structure can provide novel insight into the human past, and recognizing and correcting for such stratification is
a practical concern in gene mapping by many association methodologies. We investigate these patterns, primarily through
principal component (PC) analysis of whole genome SNP polymorphism, in 2099 individuals from populations of Northern
European origin (Ireland, United Kingdom, Netherlands, Denmark, Sweden, Finland, Australia, and HapMap European-
American). The major trends (PC1 and PC2) demonstrate an ability to detect geographic substructure, even over a small area
like the British Isles, and this information can then be applied to finely dissect the ancestry of the European-Australian and
European-American samples. They simultaneously point to the importance of considering population stratification in what
might be considered a small homogeneous region. There is evidence from FST-based analysis of genic and nongenic SNPs that
differential positive selection has operated across these populations despite their short divergence time and relatively similar
geographic and environmental range. The pressure appears to have been focused on genes involved in immunity, perhaps
reflecting response to infectious disease epidemic. Such an event may explain a striking selective sweep centered on the
rs2508049-G allele, close to the HLA-G gene on chromosome 6. Evidence of the sweep extends over a 8-Mb/3.5-cM region.
Overall, the results illustrate the power of dense genotype and sample data to explore regional population variation, the events
that have crafted it, and their implications in both explaining disease prevalence and mapping these genes by association.

[Supplemental material is available online at www.genome.org. The genotype data from this study have been submitted to
the European Genotype Archive (http://www.ebi.ac.uk/ega/page.php), under accession no. EGAS00000000033.]

Patterns of genetic variation within and between human pop-

ulations have long provided novel insights into the origin

and history of different groups. The advent of whole genome

association (WGA) mapping has also highlighted the practical

importance of identifying and understanding these patterns. A

mismatch in the ancestry of individuals in a simple case/control

association paradigm can lead to false positives and/or reduced

power to detect associations.

Studies of population-level whole genome (WG) polymor-

phism were initially restricted to the International HapMap pop-

ulations (Yoruban, Japanese, Chinese, and European-Americans)

but provided valuable information on intercontinental variation

across the human genome, including structural variation, re-

combination, and selection (International HapMap Consortium

2005, 2007). The whole genome approach has now begun to be

applied to more nuanced intracontinental variation within
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Europe. First generation studies using European-Americans or

small numbers of in situ Europeans (but with relatively few

markers) quickly identified a clear North–South split in the con-

tinent’s population and hinted at further structure (Seldin et al.

2006; Bauchet et al. 2007; Price et al. 2008; Seldin and Price 2008;

Tian et al. 2008). Analysis of WG variation in larger numbers of

individuals sampled in situ from multiple European populations

has recently extended these findings. Using principal component

analysis (PCA) of up to »300,000 SNPs, they have shown a re-

markable correlation of an individual’s position in genetic space

to their geographic origin (Heath et al. 2008; Lao et al. 2008;

Novembre et al. 2008).

We continue this progression by exploring subcontinental

WG (300K) variation in 2099 individuals from six Northern Eu-

ropean populations (Ireland, United Kingdom, Netherlands, Swe-

den, Denmark, and Finland), as well as two descendent New World

populations (European-Australians and the European-American

HapMap sample). The data demonstrate and confirm an ability to

dissect regional to subregional geographic structure and also point

to the discernable impact of differential natural selection on the

recently diverged Northern European populations. Both of these

observations have important present-day consequences in ex-

plaining disease incidence and in mapping complex traits through

association methods.

Results

Principal component analysis of Northern Europeans

We initially investigated the genetic structure of eight European

population samples (Netherlands, Sweden, Denmark, Ireland,

United Kingdom, Finland, HapMap European-American [CEU],

and Australia) using principal component analysis (PCA) of

296,553 autosomal SNPs. We did not prune the genotypes with

respect to linkage disequilibrium (LD) prior to PCA since this

allows us to investigate both population substructure and large

genomic structural/haplotypic variation. The novel genotype data

from this study are deposited at the European Genotype Archive

(see Methods).

The top 100 PCs were generated using the EIGENSOFT

package (Patterson et al. 2006; Price et al. 2006); however, we fo-

cused on the top five since the eigenvalues remain relatively

constant in subsequent PCs (Supplemental Fig. S1). PC1 and PC2

are plotted together in Figure 1A. Individuals from the different

populations are largely separable, although there is clearly some

overlap, suggesting that variation is generally continuous rather

than discrete. Mantel testing (Mantel 1967) confirms that differ-

ences in individual PC1 or PC2 scores are strongly correlated with

the geographic distance between sampled individuals (r = 0.76, P <

0.0001 and r = 0.36, P < 0.0001, respectively). PC1 most obviously

separates the Finnish individuals from the other Northern Euro-

peans and, more subtly, these from each other. Remarkably, given

the smaller geographic distances, this pattern is apparent even

within Finland once regional origins are considered (Supplemen-

tal Fig. S2). PC2 tends to separate the insular Irish and U.K. pop-

ulations from each other and from their closest continental

neighbors. We repeated PCA excluding the Finns, given their rel-

atively outlying positions, and were still able to discern good

separation between the remaining populations with the originally

observed PC2 becoming the most prominent pattern in the data

(PC1 in Supplemental Fig. S3).

As previous studies have noted (Bauchet et al. 2007; Lao et al.

2008), the position of CEU HapMap individuals in the genetic

space is consistent with their putative Northwest European an-

cestry. This illustrates the potential for ancestry reconstruction

given sufficient numbers of markers and appropriate comparative

populations, an application we used next to investigate the origin

of a large Australian population sample.

Population structure of Australia and the British Isles

Approximately 85% of current Australians are descendents of

European settlers who began arriving in 1788. The vast majority of

these originated in Britain or Ireland but were joined by smaller

numbers of Germans, Greeks, Italians, and Eastern Europeans

(among others) in the 19th and 20th Centuries.

Fourteen individuals from our Australian sample (n = 465)

were identified as outliers in eigenvector analysis, and subsequent

checks revealed that these had self-reported non-European or

Southern European ancestry. Virtually all of the remaining Aus-

tralians are distributed in the PC1–PC2 regions occupied by the

Figure 1. PCA of Northern European population structure. (A) PC1
versus PC2 from 2051 individuals genotyped for 296,553 autosomal
SNPs. PCA was conducted including the Australian sample (n = 451), but
these are not shown here (see Supplemental Fig. S4). (B) PC1 versus PC2
focused on the United Kingdom, Irish, and Australian populations. For
ease of illustration, PC1 has been constrained to between 0.02 and�0.06
and PC2 to between 0 and 0.025. Only those U.K. samples with birth-
place information are displayed (n = 143), and these are distinguished as
England, Scotland, and Wales. Australian samples whose four grandpa-
rental ancestries are from one country are also shown.
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United Kingdom (noting its overlap with the Dutch sample) and

Irish populations (Fig. 1B; Supplemental Fig. S4). PC2 is most in-

formative at distinguishing the United Kingdom and Irish pop-

ulations. The mean Australian PC2 value (�0.01) is closer to the

United Kingdom (�0.003) than Ireland (�0.036), with the differ-

ence between Australia and the United Kingdom ;22% of the

total distance between the United Kingdom and Irish means

along this axis. Interestingly, this figure coincides with the frac-

tion of all British Isles self-reported ancestry mentions that are

Irish (Source: 2006 Census, Australia Bureau of Statistics; http://

www.abs.gov.au/).

Several previous studies, using single marker systems and

most recently whole genome SNP data (Wellcome Trust Case

Control Consortium 2007), have noted a gradient of genetic var-

iation running approximately Southeast to Northwest across

Britain or the British Isles. Although we did not have detailed re-

gional ancestry information for the United Kingdom or Irish

samples, we used place of birth, which was available for a subset of

the United Kingdom sample (n = 143) to divide these into English

(n = 133), Scottish (n = 4), and Welsh (n = 6) cohorts. Although

numbers are small, the mean PC2 values for the Scottish and

Welsh cohorts are intermediate between those of England and

Ireland (Fig. 1B).

We also availed of detailed self-reported ancestry for the

Australian sample to distinguish three further cohorts whose four-

grandparental ancestries are English (n = 61), Irish (n = 12), or

Scottish (n = 10). There is a significant correspondence of this self-

reported ancestry with PC2 scores (one-way ANOVA, P < 0.0001).

Once again the average intermediate position of the Australian-

Scots (mean PC2 score of �0.019 vs. �0.005 in the English and

�0.035 in Irish-Australian cohorts) is evidence that further sub-

regional patterns can be discerned across the British Isles (Fig. 1B).

Ancestry informative markers and structure

We next explored whether smaller numbers of SNPs, which are

most differentiated between our populations, are effective at

capturing the variation revealed by the full 296K markers. Panels

of Ancestry Informative Markers (AIMs) could have important

practical applications in detecting and correcting for variation in

individual ancestry that can confound some association gene

mapping methods by increasing false positive results and/or re-

ducing power. This is particularly the case in candidate gene-

driven studies or follow-up replication attempts where a full suite

of genome polymorphism is not available.

The Northern European sample population was divided in

half to give a discovery (n = 770) and a test panel (n = 1281, which

included Australia and CEU). FST values between populations in

the discovery panel were used to select 500, 1500, 2500, and 5000

top-ranked SNP markers as AIM sets with the additional condition

that no marker was within 250 kb of another, a measure taken to

minimize LD between SNPs. The performance of these AIM panels

was then assessed in the test data set. All panels returned PC1

scores for individuals that were significantly correlated to the

values revealed by the full data set, both when the Finns were

included and excluded (r $ 0.91 and r $ 0.67, respectively, with

minimum r values observed using the 500 SNP sets). All sets per-

formed substantially better than random marker sets of the same

size especially as AIM panel size decreased (Supplemental Fig. 5A).

In a similar analysis of PC2, the 5000 AIM set preserved a moderate

correlation (r = 0.649, P < 0.05) to the full SNP test set, but further

reductions in AIM number led to a steep decline in correlation,

and they are no longer significant for sets of 1500 or 500 markers

either FST-based or randomly selected (Supplemental Fig. 5A).

We also explored the performance of the AIM panels using an

alternative Bayesian modeling approach implemented in the

structure package (Pritchard et al. 2000; Falush et al. 2003). We

examined each AIM panel over K = 2 to K = 5 in the test sample set,

where K is the predefined number of populations into which the

data are to be split (Supplemental Figs. 5B and 6). At K = 2, all AIM

panels were able to distinguish the Finnish samples from other

populations. At K = 3, there was little obvious coherent division of

the remaining European samples for AIM sets of 500 to 2500 SNPs.

However, at 5000 markers, some distinction between the British

Isles (especially the Irish) and non-Finnish continental samples

became apparent (Supplemental Fig. 5B). This is reminiscent of

PC2, and the results again appear to demonstrate the majority

British Isles ancestry of the Australian sample. We also repeated

the AIM selection and structure analysis for 5000 SNPs ex-

cluding the Finnish sample and discerned some tendency for the

separation of the British Isles (especially Irish) from the conti-

nental Europeans over various K values (Supplemental Fig. 5C).

Overall, the results illustrate the potential to develop a single AIM

set that will be informative on even subtle Northern European

variation, an ability that will increase as bigger sets of initially

genotyped markers (in more populations) become available. (A

list of the top 10,000 SNPs by FST value is given in Supplemental

Table 1.

Extent of population stratification

Mismatched ancestry between cases and control groupings in

a standard whole genome association study is a potential source of

Type 1 and 2 errors. However, balanced against this concern are

the potentials to increase power by combining (often rare) cases

across populations and achieve significant cost savings by reusing

standard sets of controls. The genomic control inflation factor

(lgc) is one way to quantify the impact of population stratification

between cases and controls (Devlin and Roeder 1999). However,

this is highly dependent on sample sizes as well as the level of

ancestry mismatch between groups as measured by FST. As theory

suggests (and as we empirically observe—see Supplemental Fig. 7),

the relationship between lgc, FST, and total sample size (n indi-

viduals) is approximately E(lgc) ; 1 + (n * FST) when FST is small

(such as the levels between European populations) and the num-

bers of ‘‘cases’’ and ‘‘controls’’ are the same.

As an illustration of the potential impact of Northern Euro-

pean stratification, we calculated expected pairwise lgc values

between populations (equivalent to a situation in which cases and

controls come entirely from different populations) given the FST

values in Table 1 and assuming a total sample size of 1000 indi-

viduals. These show that a random United Kingdom population

sample is well matched to the Australians (lgc = 1.025) after ob-

vious outliers are removed from both, either by self-reported an-

cestry or by EIGENSTRAT. However, other combinations show

substantial inflation and corresponding potential for false pos-

itives (Table 1).

Differential natural selection among Northern Europeans

While the differentiation/structure observed between our pop-

ulations is expected to be mainly a consequence of neutral evo-

lution (drift) and demographic processes like migration, it is

also possible that natural selection has played a role in shaping

the diversity of some SNPs. One simple expected signature of

McEvoy et al.
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differential positive selection—the action of a selective force in

some populations but not others—is the overrepresentation of

SNPs with high FST values in genic regions, since these are a (albeit

imperfect) proxy for functional polymorphism. A recent study

demonstrated this effect for an FST comparison between the Hap-

Map populations (Barreiro et al. 2008).

We divided FST values calculated at each autosomal SNP in

our six in situ European populations (Denmark, Ireland, Nether-

lands, Finland, United Kingdom, and Sweden) into 10 bins of

increasing (0.002 increment) FST floor and noted a significant

excess of genic SNPs in the top FST

(>0.016) category (x2 = 7.4; d.f. = 1; P =

0.0071; Fig. 2A). The x2 test may be

nonconservative in these circumstances

given the potential nonindependence of

markers due to LD. However, this is

mitigated to some extent by the ‘‘tag-

ging’’ criteria inherent in the selection

of SNPs for the genotyping platform.

Furthermore, stringent pruning for LD

would bias the genic/nongenic test

against detecting selection since the

‘‘hitchhiking’’ effect is a key footprint of

its action. The effect was still detectable

but weaker after the Finnish population

was removed (x2 = 4.9; d.f. = 1; P = 0.028).

However, given the relative genetic dis-

tinction of the Finnish, the absolute FST

value for each SNP is generally lower after

their exclusion, and only 50 SNPs exceed

FST of 0.016 (compared to 1358 includ-

ing Finland). Rescaling to a cut-off of

FST > 0.01 still preserves the enrich-

ment trend (x2 = 4.0; d.f. = 1; P = 0.046).

Interpretation of these findings re-

quires a consideration of any ascertain-

ment bias underlying the inclusion of

genic versus nongenic SNPs on the gen-

otyping platform and whether any sys-

tematic bias in the relationship of minor

allele frequency (MAF) to FST exists. The

overall genic/nongenic distribution of

SNPs is very weakly but significantly dif-

ferent (Kolmogorov–Smirnov test: D =

0.0117, P = 7.5 3 10�9; Supplemental Fig.

S8A) owing to a slight excess of genic

SNPs in the lower MAF categories. We

therefore randomly sampled from the

nongenic SNPs to ensure that the number in each MAF bin was

exactly equal (even though this involves discarding »20% of the

SNPs and potentially reducing the power to detect any effect).

Based on 1000 such replicate analyses, we continue to observe

a similar trend of genic enrichment in relation to high FST (P =

0.017). Furthermore, the average FST estimate was similar across

most FST categories, suggesting that difference in MAF could not

explain the finding (Supplemental Fig. S8B). Indeed, there is

some evidence of systematically lower FST values in lower MAF

categories, which would bias against detecting the observed excess

Figure 2. Northern European FST values by genomic location. (A) Proportion of SNPs that are inside
(genic) or outside (nongenic) genes by FST bin category. X-axis FST values refer to the lower boundary of
the bin. (B) Genome-wide distribution of the top 10,000 FST (>0.00888) values by chromosome and
genomic position.

Table 1. Population pairwise FST (above the diagonal) and expected lgc values (below the diagonal)

Population Australia CEU-HapMap Denmark Finland Ireland Netherlands Sweden UK

Australia 0 0.00027 0.00056 0.00636 0.0004 0.00045 0.00098 0.00003
CEU-HapMap 1.27 0 0.00046 0.00637 0.00092 0.00043 0.00086 0.00021
Denmark 1.56 1.46 0 0.00551 0.00141 0.00036 0.00035 0.00045
Finland 7.36 7.37 6.51 0 0.00721 0.00627 0.00437 0.00642
Ireland 1.40 1.92 2.41 8.21 0 0.00131 0.00181 0.00055
Netherlands 1.45 1.43 1.36 7.27 2.31 0 0.00082 0.00034
Sweden 1.98 1.86 1.35 5.37 2.81 1.82 0 0.00091
UK 1.03 1.21 1.45 7.42 1.55 1.34 1.91 0

Expected lgc values based on a case-control experiment of 500 cases and 500 controls, using E(lgc) = 1 + 1000 * FST.

Structure and selection in Northern Europeans
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(since genic SNPs are somewhat overrepresented in these lower

categories).

The genomic locations of the top 10,000 SNPs by FST value are

shown in Figure 2B (with a more detailed view available in Sup-

plemental Table 1). There is clustering of high FST values at certain

locations, and, while it is impossible to definitively ascribe any

particular region of high FST values to positive selection, these may

be considered candidate regions for its action. We identified the

most prominent of these (which had a peak FST within the top 100

ranked values or FST > »0.028; Table 2). Consistent with similar

analysis in the United Kingdom population (Wellcome Trust Case

Control Consortium 2007), the human-leukocyte-antigen (HLA)

region of chromosome 6 is the most obvious candidate. However,

the enrichment of genic SNPs in the top FST category remains

significant (x2 = 6.2; d.f. = 1; P = 0.011) even when a large region

around the top HLA SNP is removed from the analysis. There is

also a prominent peak on chromosome 5 (around rs9784675/po-

sition 132.1 Mb). Several genes in this area are, like many of those

in the HLA region, involved in immune response including several

interleukins and their receptors. A further peak on chromosome 4

is close to several Toll-like receptors and was also identified as

highly differentiated between United Kingdom regions (Wellcome

Trust Case Control Consortium 2007). Guided by these anecdotal

observations, we tested whether SNPs in the highest FST category

(>0.016) were overrepresented among genes of a particular func-

tional class by using the PANTHER gene ontology database

(Thomas et al. 2003). The ‘‘Immunity and Defense’’ (BP00148)

category is the only one of the 23 ontological terms (with suffi-

cient numbers to be tested) to show a significant enrichment of

high FST SNPs after correction for multiple testing (P = 0.0012,

adjusted significance level = 0.0022). As a contrast, we examined

the ontology of the 1358 SNPs with the lowest FST values (FST » 0)

and found that no category was close to either nominal or mul-

tiple test adjusted significance.

While this suggests that the selective signal is focused on

immune function, it does not preclude the action of differential

selection at some other individual loci. For example, the distri-

bution of top FST points to one cluster of high values centered on

the HERC2 gene on chromosome 15. HERC2 is close to OCA2,

which substantially controls eye color (Sturm et al. 2008) and has

been identified in several studies as a selection target in Europeans

(Voight et al. 2006). Several additional peak SNPs do not fall

within 250 kb of known (or validated) genes. These may simply be

poorly localized by the peak SNP, false positive signatures of se-

lection, or a sign that remote regulatory elements/and or other

noncoding DNAs are also selective targets. The lactase gene (LCT)

on chromosome 2, which is a well-established target of selection,

is not prominent in this survey, an observation probably ex-

plained by a similar strength of selection across Northern Europe.

PC3 and PC4 reflect large-scale genome structural variation

PC5 displays a significant correlation with geographic distance,

although it is substantially weaker (Mantel test: r = 0.067; P <

0.0001) than those observed with PC1 and PC2. Accordingly, the

geographic patterning is less obvious and defies simple description

(Supplemental Figs. S3 and S9). It appears to somewhat separate

Ireland and Sweden from the remaining populations. The expla-

nation for this is unclear although it does not seem to be a geno-

typing artifact since individual PC5 scores are not correlated with

missing data, nor is the observation consistent with any potential

batch effect. Further PCs (6–10) were found not to correlate with

geography.

Interestingly, PC3 and PC4 were also not stratified by pop-

ulation label, but, rather, PC4 shows a neat three-way split of

individuals, a pattern reminiscent of that seen in the third PC of

a similarly genotyped European-American data set (Fig. 3A; Tian

et al. 2008). This reflected the division of individuals based on the

three possible genotypes of a large (»4 Mb), polymorphic in-

version on chromosome 8p23.1 (between 8 and 12 Mb). We

confirmed that the same feature was responsible for our PC4 by

dividing individuals into two extreme cohorts based on their

PC4 score (<�0.02, n = 385 and >0.01, n = 647) and calculating

the allele frequency difference (d) between groups for each SNP.

The top 554 SNPs localize to chromosome 8 between 8.135 and

11.90 Mb.

PC3 also appears to split individuals, regardless of population

origin, into at least two groups. Reasoning that it might also reflect

Table 2. Genomic regions showing high FST clustering

Peak SNPa Peak FST
a Chromosome Positionb Genesc

rs1388612 0.0298 3 62219484 PTPRG, C3orf14, CADPS
rs878456 0.052 4 38208152 KLF3, TLR10
rs2088092 0.0365 4 70333310 UGT2B11, UGT2B28, UGT2B4, UGT2A1
rs9784675 0.036 5 132097638 KIF3A, IRF1, IL5, RAD50, IL13, IL4, CCNI2,

ANKRD43, SHROOM1, GDF9, UQCRQ, AFF4, LEAP2
rs2071593 0.0406 6 31620778 ATP6V1G2, HLAd

rs4738873 0.0439 8 62248730 RLBP1L1
rs3739555 0.0345 9 128980237 RALGPS1, ANGPTL2, GARNL3, SLC2A8, ZNF79
rs1454027 0.0341 11 83565887 DLG2
rs9563972 0.03 13 62207209 —
rs1667394 0.0303 15 26203777 HERC2, OCA2
rs4075612 0.0418 18 69103200 —

aRegions were identified from a visual inspection of a plot of the top 10,000 FST values against genomic position. Reported SNP and FST values are the
highest observed in that cluster.
bNCBI 36 build of the human genome.
cGenes within 250 kb either side of the peak SNP are listed. Where the SNP falls within a gene, the gene symbol is indicated in bold.
dA further 59 genes within this region are in proximity (6250 kb) to the peak SNP: AIF1, APOM, ATP6V1G2, BAT1, BAT2, BAT3, BAT4, BAT5, C2, C4A, C4B,
C6orf21, C6orf25, C6orf26, C6orf27, C6orf47, C6orf48, CCHCR1, CDSN, CFB, CLIC1, CSNK2B, CYP21A2, DDAH2, DOM3Z, EHMT2, HCG27, HCP5, HLA-B,
HLA-C, HSPA1A, HSPA1B, HSPA1L, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, MCCD1, MICA, MICB, MSH5, NCR3, NEU1, NFKBIL1, POU5F1,
PSORS1C2, RDBP, SKIV2L, SLC44A4, STK19, TCF19, TNF, TNXB, VARS, ZBTB12.
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large structural variation, we divided samples into two extreme

PC3 score cohorts (high: >0.02, n = 376 and low: <0, n = 1256) and

again calculated d for each autosomal SNP. Of the top 1000 d

values, 975 fall within an 8-Mb region of chromosome 6 (25.1 Mb–

33.2 Mb) encompassing the HLA region. However, the distribution

of values is distinct from that observed on chromosome 8 (Fig.

3B,C). The highest d values in the chromosome 8 region are dis-

tributed across the 4-Mb block consistent with a discrete inversion

structure. Those in the chromosome 6 region, however, display

a marked decrease both 59 and 39 of the maximum d value ob-

served at the rs2508049 SNP (position 29931862), consistent with

a large haplotype decaying with increased recombination distance

from this core.

There is a strong association between rs2508049 genotype

and PC3 scores (ANOVA, P = 3.2 3 10�293; Supplemental Fig. S10)

with copy number of the G allele (present at a frequency of 18.3%

in our entire population sample) correlated with higher PC3

scores. Deleting SNPs from a 20-Mb region of chromosome 6 (20

Mb to 40 Mb) abolishes PC3 as originally observed.

Selective sweep around rs2508049 in Northern Europeans

We investigated the structure of this region further by phasing

a 20-Mb segment of chromosome 6 centered on rs2508049

(6p22.3–21.2 from 20 Mb to 40 Mb,

encompassing 3080 SNPs), followed

by extended haplotype homozygosity

(EHH) analysis. EHH measures the prob-

ability that two haplotypes with the

same core allele (in our case, either G or A

at rs2508049) will be identical to a de-

fined distance or particular SNP (Sabeti

et al. 2002). Figure 4A shows EHH

scores for each core allele across a 5-cM

(9-Mb) region of chromosome 6 for

all the Northern European populations as

well as the African (YRI) and Asian (ASN)

HapMap populations. The rs2508049-G

core shows substantially higher levels

of EHH than its sister rs2508049-A

allele in all European samples over a

region spanning ;3.5 cM/8 Mb. While

European populations and the African

and Asian samples share a similar

rs2508049-A EHH pattern, the low fre-

quency of the G allele in the Asian pop-

ulation (1%, or two chromosomes out of

178) and its absence in the West African

Yoruba sample preclude any meaningful

analysis of the rs2508049-G EHH in these

populations.

To determine whether the structure

around rs2508049 is unusual in the

Northern European genome, we used

an empirical ‘‘significance’’ approach us-

ing the pre-phased chromosome 6 CEU

HapMap data (see Methods). A total of

15,325 SNP alleles were identified with

a similar frequency (62.5%) to the

rs2052089-G allele (18.3%). The empiri-

cal distributions of the 30,650 EHH

observations (an upstream and down-

stream value for each SNP), over a range of distances from the

cores, were used to construct a 95% boundary curve. The EHH

pattern around rs2508049 in these data is similar to that observed

in the other European, including the CEU, populations that were

phased separately (Fig. 4B). Furthermore, the EHH values of the

rs2508049-G allele run substantially ahead of the empirically de-

rived 95 percentile over a 2-cM region 39 of the core SNP. The 59

pattern is more complex with rs2508049-G EHH values running

consistently ahead up to 0.167 cM from the core and then again

from 0.34 cM to 1.1 cM. In the interval it is close to the 95th

percentile, criss-crossing slightly above and under at various dis-

tances. However, the overall pattern is supportive of an usually

long rs2508049-G haplotype over at least a 3.1-cM span (»7.5 Mb,

from position 25.5 Mb to 33 Mb).

In a previous analysis of about 3.4 million autosomal

SNPs in the HapMap populations, rs2508049 showed a locus-

specific branch length (an FST-based measure of population-

specific divergence) within the top 5% of values observed in

Europeans (McEvoy et al. 2006). The virtual absence of the

rs2508049-G allele outside of Europe together with its extreme

haplotype structure within the continent is consistent with

a strong positive selective sweep in which an advantageous variant

was driven to a higher frequency, dragging linked variation along

with it.

Figure 3. PC3 and PC4 in Northern European populations. (A) PC3 versus PC4 derived from 2051
individuals genotyped for 296,553 autosomal SNPs. (B) An 8-Mb section of chromosome 8 (6 Mb to 14
Mb) showing the distribution of SNP d values derived from extreme PC4 cohorts. (C) A 10-Mb section of
chromosome 6 (24 Mb to 34 Mb) showing the distribution of SNP d values derived from extreme PC3
cohorts. Whereas d values remain high over the entire chromosome 8 inversion region (8 Mb to 12 Mb),
those on chromosome 6 show a gradual decay upstream and downstream from the peak d value ob-
served at rs2508049 (position 29.99 Mb).
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Discussion

We examined whole genome polymorphism for several pop-

ulation samples either from, or largely descendent from, Northern

Europe. In common with recent similar studies, we demonstrated

that it is possible to discern clear differences among individuals

from very closely related populations and even to observe strati-

fication within the same population. The nature and relative im-

portance/order of PCs will, of course, be affected by the

populations and individuals included. Within our data, the dis-

tinctive position of Finland in PC1 may be the consequence of

migrational contact with Northern Asians or admixture from the

Saami population, who are known European genetic outliers. The

differentiation apparent within Finland along a Northeast to

Southwest axis is consistent with such a genetic diffusion.

PC2 largely separates Ireland from Britain and these from

mainland Europe, and it is possible to discern further British Isles

structure within this trend despite our limited information on the

local ancestry of these individuals. This pattern is similar to the

culmination of the Southeast to Northwest continental wide

trends observed with Y chromosomes

(Hill at al. 2000; Rosser et al. 2000; Capelli

et al. 2003) and classical gene frequencies

(Cavalli-Sforza et al. 1994). Although its

origin is debated, it may be consistent

with suggestions that Western European

fringe populations, like Ireland, retain

a closer genetic continuity to an earlier,

perhaps pre-Neolithic European pop-

ulation (McEvoy et al. 2004). However,

caution is warranted in interpreting these

patterns since PCA trends need not be the

result of a specific grand migration but

can also occur under simpler de-

mographic scenarios such as isolation by

distance models (Novembre and Ste-

phens 2008). Whatever their ultimate

causes in the past, these patterns have

important present-day practical ram-

ifications in gene mapping by associa-

tion. Our example of pairwise genome

inflation factors between these pop-

ulations is a reminder to consider struc-

ture even when combining individuals

from a small and prima facie homoge-

neous area. As sample sizes are in-

creased to detect associated variants of

smaller effects, so the risk of confounding

by even subtle stratification increases

(Marchini et al. 2004).

In addition to the expected predom-

inant role of neutral evolution (random

genetic drift proportional to divergence

time), and possibly migration, it appears

that differential selection has had a dis-

cernable action between these Northern

European populations. A previous study

pioneered a similar genic/nongenic FST

SNP test to demonstrate the role of

selection between the HapMap pop-

ulations (Barreiro et al. 2008). However,

these populations diverged tens of thou-

sands of years ago and have since occupied distinct geographic

areas. The close relatedness of Northern Europeans and similar

ecological range might suggest less opportunity for different ex-

ogenous conditions to exert a selective influence. In addition, the

present study used up to 10-fold fewer SNPs than were available for

the HapMap comparison, potentially weakening the power to

detect such signals.

Accordingly, the general signal of positive selection in our

intracontinental analysis is very modest compared to the in-

tercontinental HapMap-based study. The top FST bin floor is

much less here (>0.016 vs. >0.85), for instance, and the genic

fraction never exceeds the nongenic fraction in Europeans as

seen with the HapMap populations. The observation that the

genic enrichment among SNPs with high FST is largely focused on

genes from a single ontology category (‘‘immunity and defense’’)

is support that the signal, while subtle, is real and robust. Fur-

thermore, this category simultaneously provides a biologically

plausible explanation for the detectable selection signal. Vari-

ability in the geographic extent of infectious disease outbreaks as

well as potentially strong selection coefficients associated with

Figure 4. EHH patterns around rs2508049 on chromosome 6. (A) EHH for the rs2508049 G and A
alleles over a 5-cM (or »9 Mb, from 25.06 Mb to 33.93 Mb) region around the SNP in all Northern
European populations. The EHH pattern for rs2508049-A in the HapMap Yoruban and Asian (Chinese
and Japanese) is also shown, although the absence or very low frequency of the G allele precludes
similar analysis of it in these populations. (B) EHH for the rs2508049-A and G alleles using the pre-
phased CEU HapMap data, over a 4-cM region (or »8 Mb, from 25.06 Mb to 33.07 Mb). A 95 percentile
boundary curve from an empirical EHH distribution of 15,325 chromosome 6 SNPs (30650 observa-
tions), calculated at 0.1-cM intervals over a 2-cM distance from the cores, is also indicated. Population
codes are as follows: (ASN) East Asian HapMap; (AUS) Australia; (CEU) European-American HapMap;
(DEN) Denmark; (FIN) Finland; (IRL) Ireland; (NET) Netherlands; (SWE) Sweden; (UK) United Kingdom;
(YRI) Yoruba HapMap.
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such epidemics are a simple means by which selection could

have a detectable effect within such a limited temporal and geo-

graphic range.

While the genic FST test is collective evidence for positive

selection, our study identified one specific example of a probable

selective event/sweep around the rs2508049-G allele in the HLA

region of chromosome 6. The exceptionally long span of haplo-

type homozygosity suggests relatively recent and/or intense se-

lection across all Northern Europeans (although we cannot

distinguish whether this was before or after population di-

vergence). Unusual patterns of genetic variation within this region

are well established, and it has likely been affected by a complex

palimpsest of processes that seem to include positive and balanc-

ing selection (de Bakker at el. 2006; Voight et al. 2006; Sabeti et al.

2007).

It is somewhat difficult to compare homozygosity results

across studies since the number of markers genotyped can in-

fluence the result. However, it appears that the rs2508049-G

haplotype is one of the largest spans at appreciable frequency yet

observed. To illustrate, we examined EHH, using similar marker

density and the CEU data set, around the rs4988235 SNP (also

known as �13910 G/T) associated with the lactase (LCT) persis-

tence trait in Europeans. The region is thought to have been in-

tensely selected during the Neolithic period (<10,000 yr ago) to

allow the population to avail of milk and other dairy foods into

adulthood (Bersaglieri et al. 2004). The like-for-like span (defined

as the interval between the 59 and 39 points from the core where

the EHH falls below 0.25) for the persistence allele, rs4988235-T

(1.3 Mb/0.4 cM), is substantially less than that observed with

rs2508049-G (2 Mb/1.1 cM). However, rs4988235-T is nearly

fourfold more frequent in the CEU population sample than

rs2508049-G. These observations (longer span and lower allele

frequency) may suggest that any selective pressure underlying the

rs2508049 region was both more recent and/or of shorter duration

than that at LCT.

The unusual characteristics of the rs2508049-G region are

consistent with an episode of positive selection, and the pattern of

haplotype decay is consistent with a target in the vicinity of

rs2508049. The SNP is located 25 kb downstream from the HLA-G

gene, one of the HLA class I heavy chain paralogs that play a role

in antigen presentation and recognition and that has also been

associated with asthma (Nicolae et al. 2005), HIV susceptibility

(Lajoie et al. 2006), and various pregnancy outcome phenotypes

(Favier et al. 2007). Two other genes of the same family (HLA-A,

HLA-F) are also located close by. However, the region (6250 kb)

also encompasses loci with various other roles including a gamma-

aminobutyric acid neurotransmitter receptor (GABBR1). There-

fore, while one selective explanation is a response to infectious

disease, it is clearly not the only possible scenario. The region has

also been repeatedly implicated in many disorders, many of which

like asthma, multiple sclerosis, and schizophrenia, occur at

a higher frequency in Europeans. While these disorders are likely

to be complex, it is interesting to speculate that some of the risk

may be an evolutionary hangover of selective hitchhiking.

Conclusions

Our analysis of several Northern European populations demon-

strates once again the remarkable ability of dense data, in terms

of both genome and population coverage, to dissect a range of

events from selection to migration over a recent timeframe and

across very limited geographic areas. The results also highlight the

present-day legacy of the recent population past both in potential

disease risk and in attempts to map complex trait loci through

whole genome association.

Methods

Samples and genotyping
This study primarily used members of national twin cohorts that
are part of the GenomEUtwin project (Peltonen 2003) (http://
www. GenomEUtwin.org). Genotyped individuals are one mem-
ber of a monozygotic twin pair from Australia, United Kingdom,
Denmark, Sweden, Netherlands, or Finland (n = 1862). We also
included an Irish population sample used as controls in a previous
case/control study of Amyotrophic lateral sclerosis (Cronin et al.
2008), as well as the European-American HapMap population
(CEU) (n = 60). Subsets of the HapMap data for the East Asian
(ASN) (Japanese + Chinese) and West African Yoruban (YRI) pop-
ulations were also used for some analysis. All samples were col-
lected with informed consent and appropriate ethical approval.
The novel genotype data are deposited in the European Genotype
Archive (http://www.ebi.ac.uk/ega/page.php), under the accession
number EGAS00000000033, where it may be retrieved for legiti-
mate research purposes.

Twin samples were genotyped using the Infinium II assay on
the HumanHap300-Duo Genotyping Beadchips (Illumina, Inc.).
Around two-thirds of the subjects were genotyped at the Finnish
Genome Center (Helsinki) and the remainder at the SNP Tech-
nology Platform, Uppsala University (Uppsala, Sweden). In total,
318,237 SNPs were genotyped. There was a 99.99% reproducibility
rate between SNPs in 14 duplicate samples typed at both sites.
Within each center, 26 samples were genotyped in duplicate with
a 99.99% consistency rate. SNPs and individuals with >10%
missing data were excluded for the purposes of the analysis de-
scribed herein. The Irish sample had been typed using the Illu-
mina Infinium II 550 K SNP platform. When integrating the
GenomEUtwin, Irish, and HapMap samples, we included only
those SNPs genotyped in all three groups where unambiguous
allele matching could be made. We checked allele flipping errors in
this process by screening for gross outliers in pairwise SNP FST

values between the GenomEUtwin and the Irish or HapMap
populations. A total of 305,320 SNPs passed this process, but only
those with an autosomal location were included in most analysis
(296,553 SNPs).

FST and d

Genetic distances as FST values were calculated for each SNP
according to Weir and Cockerham (see Weir 1996) and averaged to
obtain a single estimate for each pairwise population combination
or a global value over all populations. FST values normally range
between 0 and 1, but small negative values are possible. As pre-
viously noted (Barreiro et al. 2008), this reflects the predominance
of sampling error over very weak population subdivision and has
no biological interpretation. d is defined as the absolute difference
in allele frequency between any two predefined groups. FST and d

were calculated using purpose written Perl scripts.

Principal component analysis (PCA)

We used the EIGENSOFT package (Patterson et al. 2006; Price et al.
2006), and its default parameters, to calculate up to 100 eigen-
vectors or principal components (PC). We first ran an exploratory
analysis to identify and remove individuals who were greater than
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6 standard deviations from the mean along any of the top 10 PCs
(n = 48). Using detailed self-reported ancestries where available
(from the United Kingdom and Australian populations), it could
be shown that these individuals typically had at least partial non-
European or Southern European ancestry. The total (n = 2051)
cleaned sample sizes are: Australia (n = 451), United Kingdom
(n = 433), Denmark (n = 161), Sweden (n = 302), Netherlands (n =

284), Finland (n = 149), Ireland (n = 211), and CEU-HapMap (n =

60). As a quality control measure, we tested for any significant
correlation between individual scores across the top 10 PCs and
individual rates of missing genotype data but observed no signif-
icant relationship.

We investigated the correspondence of PC values and geog-
raphy using Mantel tests of correlation between two matrices
(Mantel 1967). A matrix of geographic distances between indi-
viduals (in kilometers) was generated from generic coordinates
for each European population (excluding Australia and CEU) as
follows (Latitude/Longitude): Ireland: 54/�7; United Kingdom:
53/�1; Netherlands: 52/5; Denmark: 56/10; Sweden: 60/�15;
Finland: 63/�27. Negative longitude values indicate Western
Hemisphere locations. For each PC, a matrix of absolute in-
terindividual differences in PC score was created. Mantel correla-
tion significance was quantified by random permutation of matrix
elements over 10,000 replicate analyses.

Ancestry informative markers

To develop and test sets of ancestry informative markers (AIMs),
we divided, at random, the complete sample data set into dis-
covery and test cohorts. The discovery data set (n = 770) consisted
of half of each of the United Kingdom, Denmark, Sweden, Finland,
Ireland, and Netherlands samples, thus preserving the relative
population sample sizes of the full data set. A global FST value was
calculated for each SNP using the discovery set and values ranked.
Sets of the top 500, 1500, 2500, and 5000 SNPs were selected as
AIM panels with the additional proviso that no marker was within
250 kb of another, a measure taken to minimize LD between SNPs.
These sets were used in PCA and structure analysis of the test data
set. We included all the Australian and CEU-HapMap samples in
the test data set (n = 1281) since, as admixed groups, they
might skew FST calculations, and, secondly, we are interested in
investigating their ancestry in the Northern European genetic
context.

structure

In addition to PCA, we applied an alternative Bayesian clustering
approach, as implemented in the program structure (v2.1), to in-
vestigate population stratification (Pritchard et al. 2000; Falush
et al. 2003). The method does not rely on a priori population labels
but instead infers a specified K number of population clusters from
the genotype data essentially using departures from Hardy–
Weinberg equilibrium. We applied the conditions used in a similar
previous analysis of European-Americans (Tian et al. 2008). Briefly,
this involved using the admixture model (which allows fractional
assignment of an individual’s genome to different clusters) with-
out using any population label information. To facilitate compu-
tational tractability, the entire data set (296,553 SNPs) was not
used, but, rather, we examined the performance of each of the
previously described AIM sets (500, 1500, 2500, and 5000 SNPs) in
the test sample set (composed of half of the Europeans and all
Australians and HapMap European-American individuals). A sin-
gle run, consisting of a burn-in of 5000 replicates followed
by 10,000 iterations, was carried out for each AIM set over K = 2
to K = 5.

Extended haplotype homozygosity

Extended haplotype homozygosity (EHH) is the probability that
two randomly chosen chromosomes with the same allele at
a particular core (be it a single SNP or a small haplotype) will be
identical (at all genotyped SNPs) to a certain distance, either up-
stream or downstream, from that core (Sabeti et al. 2002). As such,
it can be used to identify a selective sweep signature. In order to
compute EHH scores, we first phased a large region (up to 20 Mb)
around a core SNP of interest, for each population separately, us-
ing the fastPHASE 1.2 algorithm and its default settings (Scheet
and Stephens 2006). EHH scores were then calculated using
a purpose written Perl script.

EHH is often expressed as a ratio of the value at an allele of
interest to the average at all other alleles, as a method of con-
trolling for variation in recombination rate when comparing EHH
scores across loci (relative EHH or rEHH). Where the core is a single
SNP, this is simply the ratio of allele A to allele B. However, once
the EHH score for the comparative allele reaches zero, the ratio
becomes undefined, and this problem increases with distance
from the core. To avoid this, we work with raw EHH scores,
matched for recombination distance when comparing across loci
using genetic map information from the HapMap (release #22)
CEU and YRI populations.

EHH significance

There are two general approaches to gauge the significance of an
observed EHH score based on either simulated or observed data.
Simulation requires specification of demographic parameters
(bottlenecks, expansions, etc.) that are generally unknown. Em-
pirical data, in contrast, are the realization of these events, and loci
that stand apart from the distribution of observed EHH values are
possible targets of selection. While not a formal test of signifi-
cance, we used an empirical approach to assess the ‘‘unusualness’’
of the rs2508049 EHH result on chromosome 6. The pre-phased
genotype information for chromosome 6 in the CEU population
was retrieved (Release #22), and those alleles with a similar fre-
quency to the initial core allele of interest were identified. Treating
each of these as a core in turn, EHH was calculated at 0.1-cM
intervals up to 2 cM upstream and downstream of this position.
The genotype coverage was pruned (reduced) by a factor of 12
during EHH calculations to achieve similar SNP density to that in
the 305K data set. The empirical distribution of the values (in-
cluding two—upstream and downstream—observations per SNP)
at each distance was used to construct a 95th percentile boundary
curve.

Gene annotation and selection analysis

To investigate a general signature of selection across the North-
ern European genome, we examined the distribution of SNP FST

values conditioned on their location inside or outside genes.
We used SNP annotation information previously compiled for
Affymetrix, Illumina, and Perlegen genotyping platforms (https://
slep.unc.edu/evidence/files/README_annotations.pdf). These SNP
annotations were created using the TAMAL database (Hemminger
et al. 2006) based chiefly on UCSC Genome Browser files, Hap-
Map, and dbSNP. A genic SNP was defined as one falling anywhere
in the transcribed portion of a gene.

We further investigated the distribution of SNP FST values
with respect to the function of the genes they fall in by using the
PANTHER gene ontology database, which assigns many genes to
one or more ‘‘biological processes’’ (Thomas et al. 2003). The full
list of 25,431 human genes (and their genomic locations) classed
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under 31 different ontological terms was retrieved from http://
www.pantherdb.org/. Analysis was restricted to those genes
(21,407) with a given autosomal map location. We used the pro-
portion of the 296,553 autosomal SNPs in or in close proximity
(610 kb) to genes in each ontology class as the basis for the
expected value in a x2 test against the numbers observed in the top
FST (>0.016) category.
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