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Aim: To assess the extent to which a multivariate approach to modeling interrelated 
hematological indices provides more informative results than the traditional approach 
of modeling each index separately. Materials & methods: The effects of demographics 
and lifestyle on ten hematological indices collected from a Dutch population-based 
sample (n = 3278) were studied, jointly using multivariate distance matrix regression 
and separately using linear regression. Results: The multivariate approach highlighted 
the main effects of all predictors and several interactions; the traditional approach 
highlighted only main effects. Conclusion: The multivariate approach provides 
more power than traditional methods to detect effects on interrelated biomarkers, 
suggesting that its use in future research may help identify subgroups that benefit 
from different treatment or prevention measures.

First draft submitted: 12 October 2016; Accepted for publication: 20 March 2017; 
Published online: 23 June 2017

Keywords:  age • BMI • hematological profile • MDMR • multivariate analysis • multivariate 
multiple regression • sex • smoking

Hematological indices are complex, heritable [1–
3] and tightly regulated human phenotypes [4]. 
The set of blood cells targeted in a standard 
laboratory blood test provides information on 
a wide range of functions, including immune 
response, hormone regulation, osmotic balance 
and coagulation regulation [5,6]. Abnormal val-
ues on hematological indices that fall outside 
the reference range may be indicative of under-
lying disease [7]. Because the standard hemato-
logical profile is relatively easy and inexpensive 
to obtain, it provides the basis for many com-
monly used tests in diagnoses.

Many hematological variables are related 
to demographics and lifestyles. For instance, 
red blood cell count, hematocrit and hemo-
globin have been shown to be associated with 
age, sex, smoking and BMI  [8]. Age and sex 
have also been found to be strongly related 
to platelet count, and age- and sex-specific 
reference ranges have even been proposed [9]. 
White blood cell count and platelet numbers 

are increased in obese participants [10], and in 
fact most hematological parameters show an 
association with BMI  [11]. Smoking has also 
been associated with increases in white blood 
cell count, and changes in smoking behav-
ior result in changes in the number of white 
blood cells [12].

Most studies concerning associations 
with hematological variables have taken an 
approach of investigating one hematological 
variable at a time. This approach is appropri-
ate if a researcher is interested in the effects 
on a specific individual blood characteristic. 
If, however, the goal is to identify predic-
tors associated with multiple blood charac-
teristics, then the strategy of modeling each 
hematological variable in isolation is subopti-
mal. A more efficient strategy to accomplish-
ing this goal is to test the association between 
a set of covariates and subjects’ hematologi-
cal profiles. Here, a hematological profile is 
defined as a set of scores on multiple observed 
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hematological variables. Analyzing blood character-
istics jointly rather than individually is theoretically 
appealing because it facilitates the identification of 
predictors (and interactions between predictors) that 
influence multiple blood traits jointly. Furthermore, 
considering blood counts as a multivariate outcome 
is statistically beneficial because it allows researchers 
to conduct a single test assessing the effects of a set of 
covariates on all outcomes simultaneously rather than 
separate association tests for each blood count vari-
able. The latter, more traditional, approach requires an 
adjustment to the standard criterion for statistical sig-
nificance in order to correct for multiple testing [13]. No 
such correction is necessary when conducting a single 
multivariate test, thereby resulting in the potential for 
increased statistical power.

An important benefit of the multivariate approach 
is that it facilitates the identification of characteristic 
profiles for subgroups, for example, characteristic pro-
files of subjects with high versus normal BMI levels in 
males and females. Differences among these profiles 
can be highly informative and useful in the distillation 
of personalized treatments. For example, they can char-
acterize risk for maladaptive levels of particular blood 
counts in subgroups of the population that may other-
wise tend to appear normal on many other hematologi-
cal indices. The first step in this process is to identify 
predictors that are relevant in explaining differences in 
the hematological profiles. Once established, profiles 
can be compared across subgroups.

In this study, we establish hematological profiles and 
investigate whether hematological profiles are associ-
ated with age, sex, BMI, smoking and any potential 
interactions between these covariates. This question is 
addressed using the standard univariate approach, as 
well as a multivariate approach that employs Multivari-
ate Distance Matrix Regression (MDMR) [14,15] to test 
the association of the predictors with individual differ-
ences between the blood profiles as a whole. Beyond 
the specific application presented in this paper, the 
invocation of the multivariate approach and its com-
parison to the more traditional univariate approach is a 
critical focus of the current research. By illustrating the 
inferential advantages of the multivariate approach, the 
analyses presented here are partially intended to serve 
as a proof of concept motivating researchers to utilize 
multivariate regression techniques in future studies of 
interrelated biological indices.

Materials & methods
Participants
The participants in the study are registered with The 
Netherlands Twin Register (NTR) and took part in 
NTR biobank projects. The study design and settings 

have been discussed in detail in references  [16–19]. In 
these projects, blood samples were collected during a 
home visit, and a brief interview was conducted to col-
lect information on health status, lifestyle and body 
composition. All participants provided informed con-
sent and the project was approved by The Medical Eth-
ics Committee on Research Involving Human Subjects 
of the VU University Medical Center, Amsterdam.

Hematological data were collected within a large 
biobank study that included twin families from the 
general population in The Netherlands. Individuals of 
18 years or older from the NTR were invited into the 
study. Letters were sent to 14,093 participants. Of the 
11,753 individuals who could be contacted by phone, 
8126 (69%) agreed to participate, 193 (2%) had prob-
lems deciding and 3434 (29%) did not want to partici-
pate. A home visit could not be scheduled for 453 indi-
viduals willing to participate, so 7673 subjects were 
included following this procedure. Additionally, twin 
mothers and their family members who were recruited 
for a twinning project (n = 1059) were contacted, as 
well as young adults who were registered as children 
by their parents (n = 434). A number of spouses and 
family members of those contacted spontaneously 
indicated that they were also willing to enter the study 
(n = 364). For a second Biobank study  [16,18], adult 
participants were invited by letter followed by a phone 
call. Of those participants reached by phone, 71% (517 
individuals) agreed to take part in the study. In total, 
9989 individuals participated in one or both biobank 
projects, and usable hematological data were available 
for 9672 of these individuals.

Among the group of individuals with hematological 
data (n = 9672), several exclusion criteria were applied. 
First, we excluded subjects with: blood C-reactive pro-
tein greater than or equal to 15 (mg/l), basophil count 
≥0.3 (109/l), illness within 1 week of measurement, 
cancer treatment, use of anti-inflammatory medica-
tion and use of iron supplementation. The resulting 
sample was comprised of 8176 subjects. Participants 
may have had reported or unreported medical condi-
tions beyond those enumerated above, but these condi-
tions were not encoded or utilized in the analysis. Note 
that no patient groups were explicitly sampled in this 
population-based sample.

Next, subjects who had at least one blood cell score 
beyond ± 5 standard deviations from that variable’s 
mean were excluded. The resulting sample was com-
prised of 7999 subjects from 3278 families. The final 
dataset (n = 3278) was formed by randomly sampling 
one member from each family to ensure independence 
of observations because MDMR cannot currently be 
adjusted to account for familial clustering.
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Data collection
Blood sampling & hematological indices
Participants were visited at home between 7:00 and 
10:00 am after overnight fasting. They were asked to 
refrain from strenuous exercise and, if possible, medi-
cation as of the evening before the visit, and smokers 
were instructed to refrain from smoking 1 h prior to 
the home visit. Prior to the visit, participants received 
a confirmation letter asking them to have all their 
medication available at the time of data collection. 
For all medicines, doses, brand names and chemical 
names were recorded by a nurse from the medication 
packaging. Fertile women who were not using oral 
contraceptives were visited on a fixed day of the cycle 
when possible. Women using oral contraceptives were 
visited in a pill-free week, and they were asked about 
the brand of the oral contraceptives that they were tak-
ing, and use of other kinds of hormonal contraceptives 
was noted. Participants were interviewed about their 
physical health [18].

During the home visit, peripheral venous blood sam-
ples were drawn by safety-lock butterfly needles into 
anticoagulant vacuum tubes in the following sequence: 
2 × 9 ml EDTA, 2 × 9 ml lithium heparin (only one 
tube in a subset), 1 × 9 ml sodium heparin (in a subset 
only), 1 × 4.5 ml CTAD, 1 × 2.5 ml PAX (in a subset 
only), 1 × 4.5 ml serum and 1 × 2 ml EDTA tube. After 
collection, all tubes were inverted about ten-times to 
prevent clotting and then transported to the laboratory 
in Leiden.

Hematological parameters
The 2-ml EDTA tubes were transported at room 
temperature and upon arrival in the laboratory used 
to determine the hematological parameters using the 
Coulter system (Coulter Corporation, FL, USA). 
These parameters consisted of the total white blood 
cell count, percentage and absolute cell counts of five 
subtypes of white blood cells (neutrophils, lympho-
cytes, monocytes, eosinophils and basophiles), red 
blood cell count, hemoglobin, hematocrit, mean cor-
puscular volume, mean corpuscular hemoglobin, mean 
corpuscular hemoglobin concentration, red blood cell 
distribution width, platelet count and mean platelet 
volume.

C-reactive protein
C-reactive protein (CRP) level was obtained from a 
plasma subsample that came from a 9 (ml) heparin tube 
that was transported in melting ice to the laboratory. 
The plasma subsample was snap-frozen and stored at 
-30°C. Upon defrosting one of these subsamples, CRP 
was determined by the 1000 CRP assay (Diagnostic 
Product Corporation, CA, USA).

Health, BMI & smoking
During the visit, a brief interview was conducted. Par-
ticipants provided information on their current medi-
cation use and disease status and were asked about 
their smoking history. Height was reported and weight 
was measured. BMI (kg/m2) was calculated from 
weight (kg) divided by the square of height (m2). Based 
on their current self-report smoking behavior, partici-
pants were divided nonsmokers and current smokers. 
Current smokers were defined as those who reported 
to smoke regularly, while ex-smokers were categorized 
as nonsmokers independent of whether or not they 
smoked in the past.

Statistical analyses
Selecting outcome variables
To avoid the possibility of analyzing highly collin-
ear variables that measure extremely similar traits, 
we excluded several hematological variables that dis-
played large (>0.70) correlations with other candi-
date outcome variables. This cutoff was selected par-
tially to target theoretically redundant variables and 
partially based on the fact that only a few pair-wise 
correlations were above 0.70, whereas the rest were 
substantially lower. Specifically, we removed white 
blood cell count, red blood cell count, mean corpus-
cular hemoglobin and hematocrit ratio. In addition, 
basophil level was not included because variation in 
the basophil numbers was limited. This resulted in 
ten hematological outcome variables in total: neu-
trophil count (#neut), lymphocyte count (#lymph), 
monocyte count (#mono), eosinophil count (#eos), 
hemoglobin level (hemo), mean corpuscular volume 
(MCV ), mean corpuscular hemoglobin concentra-
tion (MCHC), red blood cell distribution width in 
percent (RDW%), platelet count (#plt) and mean 
platelet volume (MPV ). Figure 1 illustrates the cor-
relations among these outcome variables.

Univariate association tests
Standard multiple regression with a univariate hema-
tological outcome was used to investigate the effects 
of age, sex (62.6% female), smoking (77.6% current 
nonsmoker), BMI and their two-way interactions on 
ten hematological variables (see Table 1 for descrip-
tive statistics). The main interest of the analyses was 
to investigate interactions in order to explore potential 
risk groups. There was no missing data on any of the 
four predictors, but some response profiles were par-
tially missing. Each multiple regression model was fit 
using as much data as possible rather than excluding 
subjects from all models based on partial missingness. 
Missingness rates for each blood index are given in 
Table 1.
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Figure 1. Correlations among the analyzed blood indices.
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Because ten different models are to be fit using a 
single sample, each of which involves the estimation 
of many parameters, it is critical to control for multi-
ple testing in these analyses to avoid inflated Type-I 
error rates. To do so, the statistical significance of each 
predictor on each outcome was evaluated using two 
different univariate significance criteria, each of which 
uses a Bonferroni correction. First, the criterion αf

u = 
0.05/10 = 0.005 controls the family-wise Type-I 
error rate at 0.05. That is, αf

u sets the probability of 
committing a Type-I error on a particular predic-
tor to 0.05, which is accomplished by dividing 0.05 by 
the number of fitted regression models. Second, αpcu  = 
0.05/(10 × 10) = 0.0005 controls the per-compar-
ison Type-I error rate at 0.05. This stricter criterion 
controls the probability of committing any Type-I 
errors across all ten models that each use ten predictors.

Multivariate association tests
MDMR  [13,14] is a procedure that permits testing the 
association of hematological profiles based on multiple 
blood cell indices with predictor variables. More spe-
cifically, differences between each pair of subjects’ pro-
files are collected in symmetric n × n ‘distance matrix’. 
Distance matrices are often subjected to cluster analy-
sis [20], but MDMR utilizes them in a regression frame-
work instead in order to test the effects of covariates 
on the profiles. This is done by partitioning the sums 
of squares of the distance matrix into a portion due 
to regression and a portion due to error. This decom-
position is analogous to the partitioning of the sums 

of squares of a univariate outcome in standard linear 
regression.

Importantly, differences between profiles on mul-
tiple variables can be quantified using different mea-
sures of dissimilarity (i.e.,  distance). In this study, 
two different distance metrics were computed to 
characterize the dissimilarity between subjects’ blood 
profiles, and the two resulting distance matrices were 
regressed onto the set of predictors using MDMR. 
The first metric considered was the Euclidean dis-
tance. If y

i
 and y

j
 denote vectors of scores along q 

outcome variables for subjects i and j, the Euclidean 
distance between these two subjects’ response profiles 
is defined as,

d i j y ye ik jk

k

q

,( )= −( )
=
∑

2

1

It can be shown that Euclidean MDMR is the same 
model as multivariate multiple regression, so this 
approach also represents the natural multivariate 
extension to the standard linear regression used in the 
univariate analyses described above. Second, Manhat-
tan distances were considered. The Manhattan dis-
tance between subjects i and j is defined as the sum of 
their absolute item-wise differences:

d i j y ym ik jk

k

q

,( ) = −
=
∑
1

(1)

(2)
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These distances are less sensitive to outliers and there-
fore more robust than Euclidean distances because 
they are based on absolute rather than squared dif-
ferences. That is, the use of Euclidean distances 
(and standard linear regression) can result in spuri-
ously significant effects due to outlying observa-
tions, but Manhattan distances are less prone to this 
phenomenon.

When conducting MDMR, one model is fit to all 
ten outcome variables jointly. This approach therefore 
requires a less stringent correction for multiple testing 
than the univariate approach. More specifically, the 
criterion αf

m = 0.05 controls the family-wise Type-I 
error rate (i.e.,  family-wise false discovery rate) of 
MDMR at 0.05 because only one model is fit to all 
outcome items jointly. Similarly, αpc

m  = 0.05/10 = 
0.005 controls the probability of committing a 
Type-I error on any of the ten predictors at 0.05 
(i.e., per-comparison false discovery rate).

All analyses were conducted in R [21] using the MDMR 
package, which is freely available on The Comprehen-
sive R Archive Network [22]. This package is the software 
companion to McArtor et al. [23], where the reader can 
also find a more detailed discussion of MDMR. Note 
that all 3278 individuals were utilized to fit the MDMR 
models despite some response profiles being partially 
missing because distance matrix computations can 
address partial missingness through a pseudo-imputa-
tion procedure. When computing the distance between 
two response profiles in cases where one or both are par-
tially missing, the observed scores values are utilized and 

the resulting distance is then inflated proportionally to 
the number of missing observations.

Results
Univariate association tests
Table 2 reports the result of the univariate analyses in 
the form of p-values, and Table 3 gives the standard-
ized regression coefficients and variance explained. 
One or more main effects were significant for all 
hematological variables. Results indicated that age, 
sex and high BMI are associated with elevated levels 
of most hematological variables, while smoking was 
found to be related to roughly half of outcomes. The 
effects of smoking and BMI tended to be positive in 
direction such that smokers with higher BMI tended 
to have higher blood counts on most outcomes, but 
the direction of age and sex effects differed across 
outcomes. The majority of the two-way interactions 
assessed with the univariate regression models were 
not marked as significant using either of the univari-
ate significance criteria. Only hemoglobin was sig-
nificantly predicted by multiple interaction effects 
(age:sex, age:smoker, sex:smoker); neutrophil count 
was found to be significantly associated with the 
interaction of age and sex, and the sex-by-smoking 
interaction was marked as a significant predictor of 
lymphocyte count at αf

u. Figure 2 illustrates the 
nature of these five interaction effects on their 
corresponding univariate outcome. None of the 
other hematological variables were found to be 
significantly predicted by any interaction effects.

Table 1. Descriptive statistics for the numeric predictors and the hematological outcome variables.

Variable  Mean SD Min First 
quantile

Median Third 
quantile

Max # Missing

Predictor variables

Age 42.279 15.075 13.000 30.000 39.000 55.000 90.000 0

BMI 24.951 4.140 14.906 22.018 24.403 27.166 49.071 0

Hematological outcome variables

#neut (109/l) 3.473 1.268 0.300 2.600 3.200 4.100 9.700 10

#lymp (109/l) 2.230 0.682 0.300 1.798 2.100 2.600 5.900 10

#mono (109/l) 0.534 0.171 0.000 0.400 0.500 0.600 1.400 10

#eos (109/l) 0.200 0.128 0.000 0.100 0.200 0.300 0.900 10

hemo (mmol/l) 8.798 0.769 6.100 8.300 8.700 9.400 11.100 1

MCV (fl) 91.536 4.534 69.300 88.800 91.600 94.400 113.500 2

MCHC (g/dl) 20.721 0.549 16.600 20.400 20.700 21.000 23.000 2

RDW (%) 12.364 0.743 10.700 11.900 12.200 12.700 16.600 360

#plt (109/l) 253.807 59.702 51.000 212.000 248.000 287.000 537.000 3

MPV (fl) 8.889 1.069 6.300 8.200 8.700 9.400 14.000 162

The first two rows (Age, BMI) correspond to the numeric predictors, and the remaining rows correspond to the hematological outcome variables.
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Multivariate association tests
Both Euclidean and Manhattan MDMR resulted in 
extremely small p-values for all four main effects. How-
ever, Euclidean MDMR also detected three interactions 
with age (age:sex, age:BMI, age:smoker) that were sig-
nificant at αpcm, and two more that were significant at αfm 
(sex:BMI, sex:smoker). Manhattan MDMR found 
the same three highly significant interaction effects 
involving age, and one more that was significant at αfm 
(sex:BMI). BMI and smoking were the only two pre-
dictors that did not combine to yield a statistically sig-
nificant interaction effect from at least one of the 
MDMR models. See Table 4 for all MDMR p-values.

Significant effects imply substantial differences 
between participants in their hematological profiles 
based on the ten observed blood variables. To visu-
alize these interacting effects across different strata, 
we conducted a median split on each of the two pre-
dictors comprising a significant interaction (with 
the resulting groups labeled young/old, thin/heavy, 
male/female and nonsmoker/smoker) and plotted 
the average blood profiles in each of the resulting 
four groups (high/low × high/low on each pair of 
predictors). Figure 3 displays these ‘prototypical’ or 
‘average’ hematological profiles for each resulting 
group. Note that the decision to bin the continuous 
covariates according to a median-split was largely 
arbitrary; the ‘average profile’ in each group involv-
ing age or BMI depends on the cutoffs used to define 
the groups.

The five subplots comprising Figure 3 elucidate the 
five significant two-way interaction effects and the 
main effects of each predictor by illustrating how dif-
ferences in the predictor variables relate to differences 
in the blood profiles. For example, the top-left subplot 
illustrates the effects of age, sex and their interaction on 
the multivariate outcome. There are clear differences in 
hematological profiles among younger females, older 
females, younger males and older males, but the differ-
ences between groups are not constant among the ten 
indices defining the profile. That is, it is not the case that 
one group tends to score uniformly higher or lower than 
another on all ten outcomes. The multivariate effects 
have complex patterns that allow for potentially differ-
ent effects on each variable comprising the outcome. For 
example, both age and sex seem to have comparatively 
small effects on mean platelet volume (all four groups 
tend to score similarly), age seems to have a main effect 
on mean corpuscular hemoglobin concentration (young 
people tend to score higher regardless of sex), sex seems 
to have a strong main effect on hemoglobin level (males 
tend to score higher regardless of age) and the interaction 
between these two predictors is important in predicting 
eosinophil count (younger females tend to score lower 
than the other three groups). The differential effects of 
age and sex on the remaining six hematological variables 
are also illustrated in the top-left subplot of Figure 3, and 
the other four subplots illustrate the differential effects 
of the other pairs of predictors that comprise a signifi-
cant interaction effect.

Table 2. p-values from the linear regression models predicting individual hematological indices

Effect  #neut  #lymp  #mono  #eos  hemo  MCV  MCHC  RDW%  #plt  MPV 

Full model <1e-16 <1e-16 <1e-16 <1e-16 <1e-16 <1e-16 7.10e-13 <1e-16 <1e-16 4.10e-15

Main effects

Age 3.40e-05 1.20e-10 0.014 0.003 0.91 5.20e-62 8.20e-11 1.80e-19 3.10e-05 7.70e-14

Sex 2.80e-05 2.20e-09 5.60e-24 9.70e-08 <1e-70 0.10 0.0015 0.0077 1.80e-41 0.025

BMI 4.00e-31 1.80e-13 4.00e-08 0.00059 1.10e-11 2.10e-06 0.55 0.0017 9.30e-11 0.90

Smoker 3.00e-66 2.50e-58 4.90e-43 2.50e-14 1.30e-18 1.80e-45 0.016 0.20 0.039 0.89

Interaction effects

Age:sex 1.50e-09 0.41 0.92 0.16 9.80e-15 0.15 0.13 0.01 0.49 0.11

Age:BMI 0.79 0.054 0.73 0.15 0.85 0.039 0.011 0.41 0.034 0.018

Age:smoker 0.30 0.96 0.21 0.45 1.90e-05 0.087 0.053 0.036 0.57 0.0093

Sex:BMI 0.032 0.14 0.37 0.67 0.028 0.34 0.48 0.25 0.0087 0.012

Sex:smoker 0.77 0.0036 0.48 0.96 1.90e-05 0.16 0.13 0.23 0.94 0.38

BMI:smoker 0.54 0.84 0.41 0.0094 0.36 0.51 0.58 0.61 0.39 0.51

Each column corresponds to a model fit to one of the outcome variables. The first row corresponds to the p-value of the model as a whole, rows 2–5 correspond to 
the p-value of a main effect and rows 6–11 report the p-values of each interaction effect. Values smaller than the Bonferroni-adjusted significance criterion to ensure 
that each predictor has a Type-I error rate of 0.05 (i.e., 
αf
u
 = 0.05/10) are emphasized with italic font. Values smaller than the Bonferroni-adjusted significance criterion to ensure that the probability of any Type-I error is 
0.05 (i.e., αpc

u
 = 0.05/100) are emphasized with bold font.
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Discussion
In line with previous research, our univariate analyses 
confirmed that age, sex, BMI and smoking are related 
to individual hematological parameters. This set of 
analyses, however, did not provide strong evidence for 
interactive effects of these predictors. On the other 
hand, focusing on differences among subjects’ hema-
tological profiles rather than differences in individual 
hematological indices was shown to yield sufficient 
power to detect interactions among predictors in the 
model. By using information from all of the outcomes 
jointly, the multivariate approach can detect smaller, 
but still meaningful, effects more efficiently than the 
traditional univariate approach, which can only con-
sider each effect in isolation. The ‘average profiles’ 
illustrated in Figure 3 highlight differences between 
typical hematological profiles among patient groups 
that might be deemed indistinguishable by more 
traditional univariate methodology.

For example, the interaction of age and BMI was not 
marked as significant in any of the univariate analy-
ses, but this interaction was found to be significantly 
related to the hematological profiles as a whole. This 
phenomenon can be understood by examining the 
upper-rightmost plot of Figure 3, which illustrates the 
effects of age and BMI on the hematological profiles. 
While no single outcome variable is characterized by a 
large interaction effect, the top-right panel of Figure 3 
illustrates the finding that the interaction of age and 
BMI has a modest effect on many of the blood vari-

ables. These small interaction effects are most visible 
when inspecting eosinophil count, hemoglobin level 
and red blood cell distribution. Participants who were 
both younger and thinner than average were found to 
have lower eosinophil counts than the rest of the sam-
ple (the black circle is lower than all other points). Age 
was not predictive of hemoglobin levels for patients 
with above-average BMI, but among the lower-BMI 
subgroup, older participants had lower hemoglobin 
levels than younger participants (squares overlap, but 
the gray dot is lower than the black dot). Similarly, 
BMI was not predictive of red blood cell distribution 
among the younger participants, but it increased as a 
function of BMI among the older participants (black 
points overlap, but the gray square is higher than the 
gray circle).

Beyond facilitating higher statistical power than 
the standard univariate approach, using the multivari-
ate approach to identify ‘prototypical profiles’, such as 
those illustrated in Figure 3, may be useful for clini-
cians in the future. These profiles could be used to 
formulate expectations about patient groups in a more 
fine-grained manner than could be achieved based on 
analyses of individual outcome variables.

Furthermore, the benefits of this multivariate 
approach invites future research on personalized 
treatment that directly utilizes multivariate associa-
tion tests. Jointly modeling several outcomes facili-
tates the simultaneous study of multiple biological 
responses to a treatment. The multivariate approach 

Table 3. R2 and standardized regression coefficients from the linear regression models predicting 
individual hematological indices.

Effect  #neut  #lymph  #mono  #eos  hemo  MCV  MCHC  RDW%  #plt  MPV 

R2 0.133 0.102 0.105 0.044 0.467 0.138 0.024 0.048 0.07 0.029

Main effects

Age -0.073 -0.115 0.044 0.055 0.002 0.296 -0.121 0.183 -0.076 -0.147

Sex 0.069 0.100 -0.17 -0.092 -0.645 -0.027 -0.055 0.05 0.233 0.04

BMI 0.208 0.134 0.099 0.064 0.095 -0.084 0.011 0.062 0.119 -0.002

Smoker 0.29 0.276 0.234 0.133 0.114 0.236 0.042 0.023 0.035 0.002

Interaction effects

Age:sex -0.105 0.014 0.002 -0.026 0.105 -0.025 0.028 -0.051 -0.012 -0.031

Age:BMI 0.004 0.034 0.006 0.026 0.003 -0.035 0.046 0.017 -0.038 0.047

Age:smoker 0.019 -0.001 0.023 -0.014 0.060 0.031 0.037 0.043 -0.01 0.052

Sex:BMI 0.040 -0.028 -0.017 0.008 -0.032 -0.018 -0.014 0.023 0.05 -0.05

Sex:smoker 0.005 0.048 -0.012 0.001 0.054 0.022 0.026 -0.021 0.001 0.015

BMI:smoker -0.011 -0.004 -0.015 -0.048 -0.013 -0.012 -0.011 -0.01 0.016 -0.013

R2 is shown in the first row, standardized regression coefficients of each main effect in rows 2–5, and all two-way interaction effects in rows 
6–11. Values smaller than the Bonferroni-adjusted significance criterion to ensure that each predictor has a Type-I error rate of 0.05 (i.e., αf

u = 
0.05/10) are emphasized with italic font. Values smaller than the Bonferroni-adjusted significance criterion to ensure that the probability 
of any Type-I error is 0.05 (i.e., αpc

u  = 0.05/100) are emphasized with bold font.
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Figure 2. Illustration of significant interaction effects found in the univariate linear regression models. Each panel illustrates 
predicted values (vertical axis) across two variables (horizontal axis and line type) that interacted to predict a hematological variable. 
All predictors not involved in an illustrated interaction were kept fixed at their sample means.

-0.5

0.0

1.0

0.5

#n
eu

t

Median hematological pro�les by age & sex

M
ed

ia
n

 Z
-s

co
re

#e
os

#m
on

o

#l
ym

ph

m
cv

he
m

o

rd
w

%

m
ch

c

m
pv#p
lt

#n
eu

t

#e
os

#m
on

o

#l
ym

ph

m
cv

he
m

o

rd
w

%

m
ch

c

m
pv#p
lt

-0.5

0.0

1.0

0.5

#n
eu

t

Median hematological pro�les by age & smoking

M
ed

ia
n

 Z
–s

co
re

#e
os

#m
on

o

#l
ym

ph

m
cv

he
m

o

rd
w

%

m
ch

c

m
pv#p
lt

-0.5

0.0

1.0

0.5

#n
eu

t

Median hematological pro�les by sex & smoking

M
ed

ia
n

 Z
–s

co
re

#e
os

#m
on

o

#l
ym

ph

m
cv

he
m

o

rd
w

%

m
ch

c

m
pv#p

lt

#n
eu

t

#e
os

#m
on

o

#l
ym

ph

m
cv

he
m

o

rd
w

%

m
ch

c

m
pv#p
lt

Young female
Old female
Young male
Old male

Non-smoking female
Smoking female
Non-smoking male
Smoking male

-0.5

0.0

1.0

0.5

Median hematological pro�les by age & BMI

M
ed

ia
n

 Z
–s

co
re

Young thin
Old thin
Young heavy
Old heavy

-0.5

0.0

1.0

0.5

Median hematological pro�les by sex & BMI

M
ed

ia
n

 Z
–s

co
re

Thin female
Heavy female
Thin male
Heavy male

Young non-smoker
Old non-smoker
Young smoker
Old smoker

future science group

Research Article    McArtor, Lin, Hottenga, Boomsma, Willemsen & Lubke



10.2217/bmm-2016-0285www.futuremedicine.comfuture science group

Modeling the hematological profile    Research Article

can, therefore, be used to test the effectiveness of a 
treatment on several target variables while also con-
sidering potential treatment interactions with demo-
graphic variables. For example, the multivariate 
approach could be used to model phenotypes that are 
known to be impacted as a side effect of a treatment 
in conjunction with the variable(s) that are targeted 
by the treatment. This allows the identification of 
subgroups of individuals within a population who 
respond well to the treatment while also uncovering 
subgroups who are particularly susceptible to its side 
effects.

Importantly, the multivariate approach may also 
be useful in the context of genetic association stud-
ies. The effects of individual genetic variants on 
complex human traits are usually small [24]. Genome 
wide association studies for hematological param-
eters have now implicated several loci in the regula-
tion of hematological indices, but the power is cur-
rently insufficient to detect all loci involved  [25–28]. 
To attain sufficient power to detect these effects, 
consortia currently focus on increasing sample sizes. 
However, an alternative approach to increasing power 
involves improving the way that the phenotypes are 
operationalized and analyzed. When a researcher has 
multiple variables that measure a trait of interest, 
the multivariate approach can be used to test their 
joint association with individual genetic variants. 
The results presented here suggest that this approach 
could lead to increased power relative to analyzing 

each variable on its own, and this approach can also 
yield higher power than analyzing an aggregate-
score computed from all of the variables measuring 
the trait  [29]. MDMR facilitates the inclusion of an 
arbitrary number of outcome variables. It can even 
be used when there are more outcomes than observa-
tions, so these benefits can still be capitalized upon 
when the outcome is extremely high-dimensional.

In addition to the statistical strengths of our study 
discussed in the precedent paragraphs, some limita-
tions of the current design should be mentioned. Our 
results indicated that age is an important modera-
tor of the effects of sex, BMI and smoking behavior 
on differences in hematological profiles and, given 
the apparent impact of age on these other predic-
tors, this cross-sectional study should be followed-up 
using a longitudinal design. Furthermore, our study 
was based on a large population-based sample, which 
was not selected on the basis of disease or other char-
acteristics related to health. This design facilitates 
learning about the population at large and represents 
a proof of principle supporting the use of a multi-
variate approach for modeling biological profiles, but 
this approach needs to be utilized on samples includ-
ing clinical groups to determine its usefulness in a 
clinical setting. Further research focusing on clini-
cal populations is necessary to quantify the extent to 
which the multivariate approach can facilitate more 
clinically actionable insights than more traditional 
analysis techniques.

Table 4. p-values from the MDMR models fit to all hematological indices jointly

Effect  Euclidean  Manhattan 

Full model <1e-16 <1e-16

Main effects

Age <1e-16 <1e-16

Sex <1e-16 <1e-16

BMI <1e-16 <1e-16

Smoker <1e-16 <1e-16

Interaction effects

Age:sex 4.3e-10 4.4e-09

Age:BMI 0.00034 0.0044

Age:smoker 0.0022 0.00034

Sex:BMI 0.0099 0.0094

Sex:smoker 0.0075 0.33

BMI:smoker 0.33 0.062

Rows correspond to predictors, columns correspond to metrics used to define the dissimilarity between pairs of hematological profiles. 
Values smaller than the Bonferroni-adjusted significance criterion to ensure that each predictor has a Type-I error rate of 0.05 (i.e., αf

m
 = 0.05) 

are emphasized with italic font. Values smaller than the Bonferroni-adjusted significance criterion to ensure that the probability of any Type-I 
error is 0.05 (i.e., αpc

m
 = 0.05/10) are emphasized with bold font. The p-value corresponding to the joint effect of all predictors is found in the 

first row, the main effects of each predictor in the next four rows, and all two-way interaction effects in the final six rows.
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Figure 3. Median standardized scores (vertical axes) on each hematological outcome variable (horizontal axes) for five sets 
of subgroups (each plot) to illustrate the effects of the five interactions identified as significantly associated with subjects’ 
hematological profiles. Each interaction is illustrated by plotting the ‘average hematological profile’ of four subgroups that 
characterize the two-way interaction.
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Figure 3. Median standardized scores (vertical axes) on each hematological outcome variable (horizontal axes) for five sets 
of subgroups (each plot) to illustrate the effects of the five interactions identified as significantly associated with subjects’ 
hematological profiles (cont. from facing page). These groups are defined by (A) a median-split on age and by sex, (B) a median 
split on age and on BMI, (C) a median-split on age and by smoking, (D) sex and a median split on BMI and (E) sex and smoking. The 
average profiles of each subgroup within each plot are differentiated by color, point type and line type, as indicated in each figure 
legend. Connecting lines were added to allow for an easier visual comparison of the groups’ profiles. These visualizations illustrate 
the differential covariate effects on the hematological profiles as a whole. For example, the subplot concerning the effects of age 
and sex illustrates the comparatively small effects of both predictors on mean platelet volume (all four groups tend to score similarly), 
the main effect of age on mean corpuscular hemoglobin concentration (young tending to score higher regardless of sex), the main 
effect of sex on on hemoglobin level (males tend to score higher regardless of age), and the effect of the interaction between these 
two predictors on eosinophil count (younger females tend to score lower than the other three groups).
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In the analyses presented here, both Euclidean and 
Manhattan MDMR marked the interactions of age 
with sex, BMI and smoking, as well as the interaction 
of sex and BMI, as significantly related to the hemato-
logical profiles. The use of Euclidean and Manhattan 
distances, however, yielded inconsistent results with 
respect to the interaction of sex and smoking. The 
use of Euclidean distances to define the dissimilarity 
between pairs of response profiles resulted in a signifi-
cant sex by smoking interaction, but the use of Man-
hattan distances did not. Manhattan distances are less 
sensitive to outlying observations and are, therefore, 
preferable if analyses are conducted in small samples in 
order to avoid potentially spurious results. This robust-
ness, however, comes at the expense of potentially 
suboptimal power to detect genuine effects in larger 
samples. In future studies, researchers should therefore 
consider their sample size in addition to the relative 
cost of false positives and false negatives when choos-
ing between Euclidean and Manhattan distances.

In conclusion, a multivariate approach to hemato-
logical analysis increases the power to detect important 
interactions within predictors relative to standard uni-
variate analyses. In the future, multivariate methods, 
including MDMR, have the potential to help iden-
tify subgroups of patients who benefit from different 
treatment or prevention measures.
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Summary points

•	 Multivariate distance matrix regression resulted in higher power to detect effects on the hematological 
profiles than did the use of separate linear regression models.

•	 This increased power can be partially attributed to: the ability to leverage the shared information among the 
multiple hematological indices in a single test, and a less stringent correction for multiple testing.

•	 When studying the indices in isolation, neutrophil count and hemoglobin level were the only two indices 
found to be affected by interactions among the predictors, but the multivariate approach provided stronger 
evidence for interaction effects on the hematological profiles as a whole.

•	 The additional information provided by jointly modeling interrelated biomarkers with a multivariate model 
can provide more fine-grained results for clinicians due to increases in power.

•	 The multivariate approach may also prove clinically useful by virtue of its ability to provide more detailed and 
personalized predictions for biomarkers of different subpopulations.
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