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The present study examined the genetic and environmental contributions to the temporal stability of verbal,
non-verbal and general intelligence across a developmental period spanning childhood and adolescence
(5–18 years). Longitudinal twin data collected in four different studies on a total of 1,748 twins, comprising
4,641 measurement points in total, were analyzed using genetic adaptations of the simplex model. The
heterogeneity in the type of instrument used to assess psychometric intelligence across the different
subsamples and ages allowed us to address the auxiliary question of how to optimally utilize the existing
longitudinal data in the context of gene-finding studies. The results were consistent across domains (verbal,
non-verbal and general intelligence), and indicated that phenotypic stability was driven primarily by the
high stability of additive genetic factors, that the stability of common environment was moderate, and
that the unique environment contributed primarily to change. The cross-subscale stability was consistently
low, indicating a small overlap between different domains of intelligence over time. The high stability of
additive genetic factors justifies the use of a linear combination of scores across the different ages in the
context of gene-finding studies.

� Keywords: intelligence, longitudinal measures, genetic stability, environmental stability, simplex model,
heritability, structural equation modeling

Intelligence is one of the most frequently studied hu-
man behavioral traits. Over the past century it has moti-
vated research across a diverse range of fields, including
not only the behavioral sciences, but also genetics, neuro-
science, molecular biology, and economics. It is one of the
strongest known determinants of major life outcomes, such
as educational attainment, occupational success, health and
longevity (Deary et al., 2004; Gottfredson, 1997; Gottfred-
son & Deary, 2004; Neisser et al., 1996; Schmidt & Hunter,
2004). Over the past several decades, developments in mul-
tivariate statistical modeling coupled with the availability of
large data sets collected in twins and relatives have allowed
for the examination of the genetic and environmental etiol-
ogy of individual differences in intelligence, and the more
recent advances in genotyping and DNA sequencing have
enabled the search the for specific genetic variants under-
lying the observed variation (e.g., Benyamin et al., 2014;
Davies et al., 2011; Franić et al., 2013; Najmabadi et al.,
2011).

The findings emerging from twin and family studies have
univocally indicated: (1) a role of genetic factors in the eti-
ology of intelligence (e.g., Bouchard & McGue, 1981; Deary

et al., 2006; Plomin & Spinath, 2004; Plomin et al., 2008),
and (2) an age-dependent pattern of heritability, with indi-
vidual differences in late adolescence and adulthood being
more strongly influenced by genetic factors than those in
childhood (the heritability estimates typically ranging from
�20% in infancy to �40–50% in middle childhood and
�60–80% in adulthood; e.g., Bartels et al., 2002; Bishop
et al., 2003; Boomsma & van Baal, 1998; Deary et al., 2006;
Haworth et al., 2009; Hoekstra et al., 2007; McGue et al.,
1993; Petrill et al., 2004; Plomin, 1986; Polderman et al.,
2006). Environmental factors that contribute to similarity
between family members (e.g., shared family environment)
typically decline in etiological relevance throughout child-
hood and adolescence, while environmental factors that
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facilitate differentiation between family members appear to
play a persistently modest to moderate role (e.g., Bartels
et al., 2002; Boomsma & van Baal, 1998; Haworth et al.,
2009). The temporal stability of intelligence (i.e., the con-
servation of the rank order of individuals over time) is esti-
mated to be fairly high, with around 45–60% of the variance
in childhood being preserved over any given �2-year inter-
val (e.g., Bartels et al., 2002). This continuity in the observed
individual differences is attributable predominantly to ge-
netic factors, that is, to the expression of a single set of genes
throughout development (e.g., Bartels et al., 2002; Bishop
et al., 2003; Eaves et al., 1986; Hoekstra et al., 2007; Petrill
et al., 2004; Rietveld et al., 2003). In addition to contributing
to stability, genetic factors also generate change: age-specific
genetic factors emerge at different ages, partly accounting
for the lack of complete temporal stability. Environmental
influences shared among family members, insofar as they
are relevant, contribute mostly to stability, whereas the un-
shared environment contributes predominantly to change.

The aim of the present study is to contribute to the
existing body of literature by providing one of the most
comprehensive examinations of the genetic and environ-
mental etiology of the observed stability of intelligence to
date. We analyzed longitudinal twin data collected in four
different studies on a total of 1,748 twins, measured across a
developmental period spanning childhood and adolescence
(5–18 years of age). In contrast to many of the previous ex-
aminations of the genetic and environmental stability of
intelligence (but see Hoekstra et al., 2007; Rietveld, et al.,
2003), we examine the stability of verbal and non-verbal
abilities separately. In addition, we examine the stability of
general intelligence (e.g., Jensen, 1998; Spearman, 1904).
Because the choice of the psychometric instrument used to
assess intelligence is inevitably dependent on the age of the
participant, and because we combined data from four dif-
ferent studies (comprising 14 different subprojects), there
is considerable heterogeneity in the measurement instru-
ment used to assess intelligence across the different samples
and ages. This is not dissimilar to the situation in many
other data registries, where longitudinal measures are often
collected using different instruments across the life span.
In twin registries in particular, this issue becomes especially
prominent in the context of gene-finding studies (e.g., Flint,
2013; Goldstein et al., 2013; Visscher et al., 2012), where
specific genetic variants contributing to the variation in the
observed trait (i.e., the phenotype) are sought. Here, the
definition of the ‘observed trait’, or phenotype, is of con-
siderable relevance (e.g., van der Sluis et al. 2010): How
does one define a single ‘observed trait’ to be used in the
analyses, given multiple measures over time? The presence
of longitudinal data collected using different psychometric
instruments allows us to address the auxiliary question of
how to optimally utilize the existing twin registry data on
intelligence in the context of gene finding studies (i.e., to
examine whether data summarization is likely to diminish

the power to detect genetic effects; see e.g. van der Sluis, Ver-
hage, Posthuma, & Dolan, 2010; Minică, Dolan, Kampert,
Boomsma, & Vink, 2014; Medland & Neale, 2010).

In summary, the present study aims to: (1) assess the ob-
served stability of verbal abilities, non-verbal abilities, and
general intelligence, and (2) study the observed stability as a
function of the underlying genetic and environmental fac-
tors. The structure of the dataset allows for an evaluation
of how the results replicate and integrate across the differ-
ent samples, and the presence of measures collected using
multiple psychometric instruments allows us to address the
practical question of how to optimally utilize the existing
data in the context of gene-finding studies. Although the
terms ‘intelligence’ and ‘cognitive ability’ have each been
given a multitude of definitions (e.g., Jensen, 1998; Spear-
man, 1904), in the present article we use the two terms
interchangeably.

Materials and Methods
Sample

The data were obtained from the Young Netherlands Twin
Register (YNTR; van Beijsterveldt et al., 2013). The YNTR is
a population-based register of Dutch twins born after 1986,
recruited at birth and measured longitudinally at ages 1
through 18. The sample consisted of 1748 twins (including
872 complete twin pairs; 399 monozygotic (MZ) and 473
dizygotic (DZ)), and comprised four longitudinally mea-
sured subsamples (sample sizes: 544, 226, 552, and 426
individuals). A detailed structure of the data is given in
Figure S1 (see Supplementary Material). The twins were
measured longitudinally at ages 5–18. This generated 4,641
data points in total: 1,946, 808, 1,076, and 811 data points
were available for the four subsamples, respectively. 47.5%
of the participants were male.

Measures

Cognitive abilities were assessed longitudinally, using the
Revised Amsterdam Children Intelligence Test (RAKIT; Ble-
ichrodt et al., 1984), Wechsler Intelligence Scale for Chil-
dren (WISC-R and WISC-III; Sattler, 1992; Van Haasen
et al., 1986; Wechsler et al., 2002), Raven’s Standard and
Advanced Progressive Matrices (SPM, APM; Raven, 1960;
Raven et al., 1998), and the Wechsler Adult Intelligence Scale
(WAIS; Stinissen et al., 1970; Wechsler, 1997), the choice of
test being largely dependent on the age of the participants.
Subscale scores were derived following the guidelines in the
tests’ manuals (Bleichrodt et al., 1984; Sattler, 1992; Stinis-
sen et al., 1970; Van Haasen et al., 1986; Wechsler 1997;
Wechsler et al., 2002): for RAKIT, a verbal (V) and a non-
verbal (NV) score were defined; for the WISC and the WAIS,
the Verbal Comprehension Index (VCI), Perceptual Organi-
zation Index (POI), and Freedom from Distractibility Index
(FDI) were defined. For Raven’s SPM and APM, the total
score (defined as the total number of items answered cor-
rectly) was used in the analyses. Because the variances of
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the subscale scores across the different tests were quite het-
erogeneous in magnitude, to ease subsequent computation
we standardized by dividing each variable by the product of
its standard deviation and �5. This resulted in variances of
an equal order of magnitude across the different tests.

Analyses
Genetic covariance structure modeling (Martin & Eaves,
1977) is the application of structural equation modeling
(Bollen, 1989; Kline, 2005) to data collected in genetically
informative samples, such as samples of twins (Franić et al.,
2012; Neale & Cardon, 1992). In the classical twin design,
the sample consists of MZ and DZ twin pairs. DZ twins
share 50% of their segregating genes on average, while MZ
twins share nearly their entire genome (Falconer & Mackay,
1996; van Dongen et al., 2012). The covariance structure of
the phenotypes (i.e., observed traits) is typically modeled
as a function of latent factors representing several sources
of individual differences: additive genetic (A), shared envi-
ronmental (C), and individual-specific environmental (E)
sources.1 Additive genetic influences are modeled by one
or more A factors, which represent the total additive ef-
fects of genes relevant to the phenotype. Based on quan-
titative genetic theory (Falconer & Mackay, 1996; Mather
& Jinks, 1971), the A factors are expected to correlate 1
across MZ twins and 0.5 across DZ twins. Environmental
influences affecting the phenotype of both twins in an iden-
tical way, thereby increasing their similarity beyond what
is expected based on genetic resemblance alone, are repre-
sented by one or more C factors. Therefore, by definition,
the C factors correlate unity across twins (regardless of zy-
gosity). All environmental influences causing phenotypic
differences among family members are represented by one
or more E factors. Thus, by definition, the E factors are
uncorrelated across twins. Assuming an ACE model, the
expected covariance structure in a multivariate twin model
is thus:(∑

11

∑
12∑

21

∑
22

)
=

(∑
A + ∑

C + ∑
E rA

∑
A + ∑

C
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A + ∑
C + ∑

E

)

where, given p phenotypes, �11 (�22) is the p × p covariance
matrix of twin 1 (twin 2), �12 (�21) is the twin 1 – twin 2 p
× p covariance matrix, and �A, �C and �E are the additive
genetic, shared environmental, and unique environmental
p × p covariance matrices, respectively. The coefficient rA is
the correlation between the additive genetic factors in twin
1 and twin 2 (1 in MZ and 0.5 in DZ twins).

In the present study, the temporal stability of intelligence
(i.e., the stability of individual differences in performance
on intelligence tests over time) and the temporal stability of
genetic and environmental influences on intelligence (i.e.,
the degree to which the observed stability is attributable to

1 In addition, the trait may be influenced by non-additive genetic factors (D),
which include genetic interactions within the same locus (genetic dominance) or
across different genetic loci (epistasis). In the present article, non-additive genetic
effects were not modeled because the classical twin design does not allow for the
simultaneous estimation of A, C, and D effects, and both the existing literature and
our preliminary analyses favored an ACE over an ADE model.

the continuity of the genetic/environmental factors that af-
fect intelligence over time) were modeled using the simplex
model (Guttman, 1954; Jöreskog, 1970). An example of a
simplex model is depicted in Figure 1. In this model, the
data at occasion t (t = 1 . . . T) are regressed on data at the
preceding measurement occasion (t-1), and the regression
coefficient �t,t-1 obtained in this regression is used as an
indicator of temporal stability. For instance, a high � in
the regression of verbal abilities at age 7 on verbal abilities
at age 5 would indicate that the individual differences in
verbal abilities are highly stable across this age span, that is,
that the rank order of individuals is largely preserved. Thus,
the variance of a measure at a given time point is modeled
as a function of factors that are stable over time (e.g., the
variance at time point t is a function of the variance at time
point t-1 and of the regression coefficient �t,t-1: �2

t-1∗�t,t-1
2)

and newly emerging factors that affect the phenotype at the
given time point but were absent at the preceding time
point. The variance of a measure at time point t can thus
be expressed as: �2

t = �t,t-1
2∗�2

t-1 + �t, where �t denotes
the variance due to innovation. A high �t,t-1 in combination
with low �t indicates high temporal stability; conversely, a
low �t,t-1 and a high �t indicate low stability, implying that
the factors relevant to the phenotype at time t-1 decrease
in relevance by time t, and newly emerging factors gain in
relevance.

In a simplex model with p observed variables, the ex-
pected p × p covariance matrix � equals (I – B)−1 � (I –
B)−1t, where I is a p × p identity matrix, B is a p × p matrix
containing the autoregressive coefficients (�s) in the model,
and � is a p × p matrix containing the variances and covari-
ances (for the first measurement occasion) and the residual
variances and covariances (for all the subsequent measure-
ment occasions) of the observed variables. Thus, for the
first three measurement occasions in Figure 1:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

�2
V5 c5 0 0 0 0

c5 �2
NV5 0 0 0 0

0 0 �V7 c7 0 0
0 0 c7 �NV7 0 0
0 0 0 0 �V10 c10

0 0 0 0 c10 �NV10

⎞
⎟⎟⎟⎟⎟⎟⎠

where �2 denotes variance, � denotes residual variance,
and c denotes (residual) covariance. Further,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

�V7V5 �V7NV5 0 0 0 0
�NV7V5 �NV7NV5 0 0 0 0

0 0 �V10V7 �V10NV7 0 0
0 0 �NV10V7 �NV10NV7 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where �t,t-1 is the regression coefficient in the linear regres-
sion of a variable at time t on a variable at time t-1 (e.g.,
�V7V5 denotes the regression of variable V7 on variable V5).
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FIGURE 1

Phenotypic simplex model fitted to the data in Sample 1. Note: Subscale scores on the RAKIT, WISC, and WAIS at five measurement
occasions are modeled. For simplicity, parameter notation is only given for the first three measurement occasions. �2 = variance,
� = residual variance, c = (residual) covariance, � = regression coefficient. ‘c’ denotes covariance (between V5 and NV5) at the
first measurement occasion, and residual covariance (i.e., covariance between the innovation factors) at subsequent measurement
occasions.

To assess the contributions of genes and the environ-
ment to the observed stability and change in intelligence
scores, a genetic adaptation of the simplex model was used
(Boomsma & Molenaar, 1987; Boomsma et al., 1989; Franić
et al., 2012; Neale & Cardon, 1992). In genetic adaptations
of the simplex model, in contrast to modeling a single time
series, the phenotype is modeled as a function of several (ge-
netic and environmental) latent time series. For instance,
in a model containing only additive genetic and unique en-
vironmental latent factors (AE model; Figure 22), the phe-
notypic variable V measured at age t, Vt, is related to the
additive genetic and unshared environmental factors At and
Et (t = 1, . . . ,T), and simplex models, or first order
autoregressions, are specified to account for the stabil-
ity and change at the level of A and E (e.g., �2

Et =
�Et,t-1

2∗�2
Et-1+�Et).3 The expected covariance structure of

2 The figure assumes that the variances of the latent innovation factors (�A and �E)
are scaled to 1.
3 Here, �2

Et and �2
Et-1 are the variances of the unique environmental factors at

times t and t-1, �Et,t-1 is the regression of the E factor at time t on the E factor at
t-1, and �Et is the variance of the unique-environmental residual (i.e., innovation)
at time t.

the phenotype(s) is thus:
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where (assuming the latent factors are expressed on the
same scale as the phenotype) the covariance matrices �A

and �E are modeled as follows:

∑
A= (I − BA)−1�A(I − BA)−1t,

∑
E= (I − BE)−1�E(I − BE)−1t,

This means that one can assess the contributions of ge-
netic and environmental factors to the observed stability
and the change in stability. The phenotypic covariance be-
tween consecutive time points may be due to genetic in-
fluences (�At,t-1 � 0), environmental influences (�Et,t-1 �
0), or both (�At,t-1 � 0 and �Et,t-1 � 0). Likewise, any lack
of stability may be due to either or both sources of indi-
vidual differences. For instance, intermediate phenotypic
stability (e.g., a correlation of 0.5) may be due to perfect
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FIGURE 2

An example of an AE simplex model. Note: Data observed at three measurement occasions are modeled as a function of additive genetic
and unique environmental factors (A and E, respectively), and simplex models are specified to account for the stability and change at
the level of A and E.

genetic stability (�At = 0), in combination with complete
environmental instability (�Et,t-1 = 0).

The present analyses were designed to examine the de-
gree of phenotypic stability of intelligence, and assess the
contributions of genes and the environment to the observed
stability and change. This was achieved by fitting simplex
models (described in the Supplementary Material) to in-
telligence tests subscale scores: RAKIT V and NV, WISC
and WAIS VCI, POI, and FDI, and Raven sum scores. In
addition to modeling the subscale scores, the stability of
general cognitive ability (i.e., g; Jensen, 1998; Spearman,
1904) was assessed. The g factor was defined as a first-
order factor underlying performance on the different sub-
scales at a given age, and the temporal stability of g was
examined on both the phenotypic, and the genetic and
environmental level. Thus, overall, four different types of
models were fitted: (a) phenotypic simplex models, (b)
phenotypic simplex models with a g factor, (c) ACE sim-
plex models, and (d) ACE simplex models with a g factor.
These models were fitted to each of the four samples sep-
arately, resulting in 16 distinct sets of results. To accom-
modate for any possible mean differences across the sexes,

means were modeled separately for males and females in all
analyses.

Results
For concision, the results pertaining to Sample 1 are pre-
sented in detail, while the results pertaining to the other
three samples are summarized and discussed in view of their
compatibility with the results in Sample 1. The full list of re-
sults (i.e., the parameter estimates obtained for all the four
samples) is given in the Supplementary Material. Figure 3
displays the results obtained for Sample 1. For ease of in-
terpretation, the results we present are fully standardized;
that is, the variance of each (observed and latent) variable
is 1. Stability is expressed as the proportion of variance of a
variable at age t explained by the variables at t-1; this pro-
portion is easily obtainable by subtracting the magnitude of
innovation variance from the total variance, that is, as 1-�t.
A different standardization (allowing for a comparison of
the relative magnitude of the A, C, and E variance compo-
nents) is presented at the end of the Results section. The
stability of the different subscales at a given age was largely
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FIGURE 3

Parameter estimates obtained for Sample 1. Note: Top left: phenotypic simplex model; top right: phenotypic simplex model with a g
factor; bottom left: ACE simplex model; bottom right: ACE simplex model with a g factor. The results are completely standardized, that
is, the total variance of each (latent and observed) variable in the model is 1. In the right panels, the numbers in the bottom of the figures
denote residual innovation variance (� ), rather than residual regression coefficients (�s). The residual �s are not depicted, but may be
inferred from the residual variances (i.e., �s). To minimize clutter in the figure, residual covariances are depicted as double-headed
arrows connecting the observed variables (or the genetic/environmental components thereof), rather than the residuals.

comparable; thus, whenever possible, we describe general
trends. When this is not warranted, we address the stability
of the subscales separately.

Phenotypic Simplex Model

The temporal stability of intelligence subscales, as as-
sessed using a phenotypic simplex model (upper left panel,
Figure 3), is in the intermediate range, varying from 34%
to 66% in Sample 1. Averaging over the subscale stabilities
at each given age gives the mean stabilities of 38%, 43%,
43%, and 54% at the age intervals 5–7, 7–10, 10–12, and

12–18, respectively, indicating that the phenotypic stability
of intelligence increases with age. This is especially evident
if one considers that the time interval between the last two
measurement points (ages 12 to 18) is more than twice
the average time interval between the remaining consecu-
tive measurement points, and that the correlation between
measurement points is expected to decrease as an exponen-
tial function of their temporal distance, given equal stability
over time. Thus, with stability being constant over age, one
would expect a drop in the stability estimate from the ob-
served 43% in the 10–12 interval to around 3.5% in the
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12–18 interval; however, the actual stability estimate in the
12–18 interval is a high 54%, indicating a sharp increase
in stability over this period. The cross-lag regression coef-
ficients (e.g., RAKIT V to RAKIT NV) were generally small
in magnitude compared to the main regression coefficients
(e.g., RAKIT V to RAKIT V); estimates of variance explained
by any single cross-lagged relationship ranged from 0.2%
to 5.8% (see Figure 3 for estimates). Notably, the stability
remained moderate to high despite the use of different tests
(RAKIT, WISC, and WAIS).

In Sample 2, the average subscale stability at age 12 was
40%; an estimate comparable to the 43% stability at the
same age interval in Sample 1. In Sample 3, the average sub-
scale stabilities between the ages of 5–12 and 12–17 were
18% and 44%, respectively. An estimate of 18% in the 7-
year interval prior to age 12 implies that, were the time
intervals equal to those in Sample 1 (an average of 2.3 years
prior to age 12), the stability would be estimated at 42%;
highly consistent with the estimate obtained in Sample 1.
The estimate of 44% in the 5-year interval between the ages
of 12 and 17 implies that the stability would equal 58%,
given a test-retest interval comparable to that of Sample 1
(i.e., 2.5 years). Thus, the temporal stability of intelligence
as estimated in Sample 3 increases with age, and is consis-
tent in both its magnitude and its observed increase with
that estimated in Samples 1 and 2. In Sample 4, the mean
subscale stability between the ages 15 and 18 is estimated at
30%. This is lower than the estimates obtained for the other
samples; however, in Sample 4 the Raven sum score alone
is used as a predictor of the three WAIS subscales (Figure
S3 in Supplementary Material). Thus, while the 30% esti-
mate may reflect a lower temporal stability, it may also be
attributable to the relatively low correlation between the
WISC subscales and the Raven.

Overall, the phenotypic subscale analyses indicate mod-
erate to high stability of individual differences in intel-
ligence across childhood and adolescence. The stability
increases with age; i.e., the individual differences in intelli-
gence become increasingly stable as individuals transition
from childhood to adolescence. Notably, the stability re-
mains in the intermediate to high range despite the vari-
ation in the instruments used to assess intelligence, and
the results replicate well despite the differences in tests and
measurement intervals across the four different samples.

Phenotypic Simplex Model With a g Factor

The upper right panel of Figure 3 shows the phenotypic
simplex model with a g factor fitted to Sample 1. On aver-
age, the g factor explained around 37%, 31%, 38%, 47%,
and 55% of subscale variance at ages 5, 7, 10, 12, and 18,
respectively (possibly indicating an increasing role of g in
intelligence over time, but also possibly reflecting the dif-
ferences in the tests used). The temporal stability of the g
factor is remarkably high: nearly the entire inter-individual
variation at a given age can be predicted by the variation at

the preceding age. The residual, subscale-specific variation
displays a modest degree of stability over time: 20% on aver-
age. It should, however, be noted that this is a lower estimate
of residual stability, as the estimates of the subscale-specific
variation also include measurement error.

In Sample 2, the g factor explained an average of 47%
and 37% of subscale variance at ages 9 and 12, respectively.
The stability of g from age 9 to age 12 was around 80%,
and the stability of the residual scores was modest (�15%),
as in Sample 1. In Sample 3, the stability estimates were
somewhat lower (42% and 65% at intervals 5–12 and 12–
17, respectively). Note, however, that stability estimates of
42% and 65% over 7 and 5 years, respectively, imply that
the stability would have been estimated at around 75% and
80%, respectively, had the time intervals been comparable
to those of Samples 1 and 2 (2–2.5 years). In Sample 4, the
stability was estimated at 60%. Again, it should be borne in
mind that in Sample 4, Raven alone was used as a predictor
of all three WAIS subscales; therefore, the lower stability
estimate may reflect a lower temporal stability in Sample 4,
but may also be due to the relatively low correlation between
the Raven sum score and the WAIS subscale scores.

In summary, the phenotypic stability of g over child-
hood and adolescence is high, and exceeds the stability of
individual subscales. The g factor explains around 30–55%
of subscale variance, regardless of the test used. Across all
four samples, the stability of the subscale-specific scores is
modest (around 15–20%).

ACE Simplex Model

The lower left panel of Figure 3 shows the parameter esti-
mates obtained for the ACE simplex model fitted to Sample
1. As evident from the figure, the additive genetic influ-
ences on intelligence are highly stable; the stability estimates
range from approximately 90% to 100%, and display an
increase with age. Therefore, the genes that influence in-
telligence in early childhood overlap largely, if not entirely,
with those that affect it throughout childhood and ado-
lescence. Cross-lag regressions across measurement points
and residual correlations within measurement points are
fairly low, indicating that the genetic factors affecting ver-
bal abilities are largely distinct from those affecting non-
verbal abilities, both within and across measurement points.
The stability of common environmental influences is in
the intermediate range, and differs per subscale: the com-
mon environmental stability of verbal abilities before age
10 is considerably higher than the common environmen-
tal stability of non-verbal abilities in this period; at later
ages, however, the difference in stability between the sub-
scales appears to disappear. However, as the magnitude
of C component is small and decreases over time (see
end of the Results section), the apparent differences in
subscale stabilities are likely attributable to the unreliabil-
ity of the relevant parameters. The unique environmental

TWIN RESEARCH AND HUMAN GENETICS 157
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influences display virtually no stability over time; the sta-
bility estimates are close to zero at all time points.

In Sample 2, the additive genetic influences are highly
stable (over 90% on average), the common environmental
stability is high (�85% on average), and unique environ-
mental stability is low (12% on average). Similarly, in Sam-
ple 3, the additive genetic stability is high (close to 100%
except for the FOI subscale at age 12, the stability of which is
estimated at 38%), the common environmental stability is
estimated at 47% in the 5–12 interval and 100% in the 12–
17 interval, and the E stability is virtually zero. In Sample
4, the A influences are estimated to be around 80% stable,
the C influences around 60% stable, while the E influences
display virtually zero stability.

Overall, the results indicate a high additive genetic sta-
bility (largely 90–100%), a moderate to high common en-
vironmental stability, and a complete absence of unique
environmental stability for both verbal and non-verbal abil-
ities. The cross-subscale (e.g., verbal-nonverbal) stability is
consistently low.

ACE Simplex Model With a g Factor

The ACE simplex model with a g factor fitted to Sample 1 is
shown in the lower right panel of Figure 3. In this sample,
the additive genetic g factor explains around 60% of the ad-
ditive genetic subscale variance and displays nearly perfect
stability; 100% at most time points. Similarly, the additive
genetic subscale residuals generally display a high tempo-
ral stability. The common environmental g factor explains
around 40% of the common environmental subscale vari-
ance. The stability of common environmental influences
appears to increase after age 10: the stability estimates are
5%, 24%, 100%, and 100% at ages 7, 10, 12, and 18, respec-
tively. However, the magnitude of the C (and E) variance
is relatively small, and thus the reliability of the C (and the
E) stability parameters is likely low. Overall, the residual C
stability is estimated to be high. The unique environmental
component displays an opposite pattern to the common
environmental component: the stability of g before the age
10 is high, and declines substantially thereafter. However,
the unique environmental g factor explains only 16% of the
unique environmental subscale variance on average; the rest
is explained by the subscale-specific E factors, which display
virtually no stability.

In Sample 2, the additive genetic g factor explains 52%
of the additive genetic subscale variance, and is 70% stable
on average. Similarly, the residuals are highly stable (85%).
The Cg factor displays complete stability, and explains 90%
of the C subscale variance. The Eg factor explains only 24%
of the unique environmental subscale variance, and is 30%
stable on average, with highly unstable residuals. In Sample
3, the additive genetic g factor explains 70% of the sub-
scale variance and is 93–100% stable. The Cg factor explains
around 60% of the C subscale variance, and declines in sta-
bility from 100% at ages 5–12 to 34% at ages 12–17. Again,

however, the variance in the C stability estimates is likely
due to the small magnitude of C. The E subscale variance
was only modestly explained by Eg (�25%), and displayed
stability neither at the g level, nor at the residual level. In
Sample 4, the Ag, Cg, and Eg factors explained around 76%,
52%, and 11% of their respective variance, and were 100%,
100%, and 16% stable, respectively.

In summary, the Ag, Cg, and Eg factors explained an
average of �65%, �60%, and �20% of the A, C, and E
variance, respectively. The Ag factor was highly stable over
time (mostly close to 100%), with highly stable residuals.
The Cg factor was generally highly stable (close to 100%),
with some exceptions (ages 5–10 in Sample 1 and ages 12–
17 in Sample 3; however, considering the small magnitude
of the C variance component, these exceptions likely reflect
the unreliability of the estimates. The Eg factor displayed
modest stability (around 35% on average), but explained
only around 30% of the E variance, the remainder of the
variance being entirely unstable (close to 0%) across all
samples.

Magnitude of Variance Components

The relative magnitude of the A, C, and E variance compo-
nents, as estimated in the ACE simplex models and averaged
over subscales at each age, is depicted in Figure S2 (Supple-
mentary Material). An age-related increase in heritability
accompanied by a relative decline in common environmen-
tal variance, expected based on the literature (e.g., Bartels
et al., 2002; Bishop et al., 2003; Boomsma & van Baal, 1998;
Deary et al., 2006; Haworth et al., 2009; Hoekstra et al.,
2007; McGue et al., 1993; Petrill et al., 2004; Plomin, 1986;
Polderman et al., 2006), is evident in Samples 1, 3, and
4. In Sample 2, where only two measurement points were
available (ages 9 and 12), this trend was not apparent. This
lack of trend can presumably be attributed to the brevity of
test-retest time interval.

Integrated Results

Figures 4 and 5 depict estimates of standardized variance
components and A, C, and E stabilities, respectively, ob-
tained across all four samples and shown for verbal and
non-verbal abilities separately. Unlike data in Figure 5, the
data in Figure 4 did not appear to show considerable devia-
tions from linearity; therefore the general trends are repre-
sented by linear regression lines weighted by sample size in
Figure 4 and by a smoothing function (lowess function as
implemented in R; R Core Team, 2013) in Figure 5. Consis-
tently with Figure S2, an increase in the relative magnitude
of additive genetic variance accompanied by a decrease in
common (and, to some extent, unique) environmental vari-
ance is evident from Figure 4. Figure 5 indicates an increase
in stability of all three components over time, and suggests
that the observed phenotypic stability is driven primarily
by additive genetic factors, with unique environment con-
tributing primarily to change. Note that, for comparability,
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FIGURE 4

The relative magnitude of the A, C, and E variance components (y-axis) as a function of age, for verbal (left) and non-verbal (right)
abilities. Note: All available estimates from the four samples are included. Regression lines (weighted by sample size) represent the
general trends.
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FIGURE 5

The ACE stability of verbal (left) and non-verbal (right) abilities. Note: All available estimates from the four samples are included, and re-
expressed on a scale on which all measurement points are equidistant (6 years). Lines (locally weighted scatterplot smoothing functions)
represent general trends.

Figure 5 re-expresses the stability estimates on a scale on
which all measurement points are equidistant (6 years). As
explained earlier (see Supplementary Material), stability es-
timates are dependent on the time interval one uses for esti-
mation and therefore the absolute magnitude of the stability

estimates is not interpretable in itself. The choice of time in-
terval used to re-express the estimates is therefore arbitrary;
the reason a 6-year period was chosen in this case is the fact
that, with smaller (e.g., 1-year) time intervals, the stability
estimates reach an upper bound, making it impossible to
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TABLE 1

The Phenotypic, Genetic and Environmental Correlations Obtained in the Four Samples Under an ACE Simplex Model

�A 5 7 9 10 12 15 17 18 �C 5 7 9 10 12 15 17 18

5 0.96 0.95 0.79 0.82 5 0.28 0.04 0 0
7 0.89 1 0.84 0.81 7 0.63 0.18 -0.01 0
9 0.94 9 0.59

10 0.90 1 0.83 0.84 10 -0.07 -0.29 -0.40 0.36
12 0.91 0.97 0.75 0.97 0.95 12 -0.29 0.02 .95 0.06 0.20
15 15
17 17
18 0.83 0.94 0.93 0.96 18 00 0.04 -0.03 0.70

�E 5 7 9 10 12 15 17 18 � 5 7 9 10 12 15 17 18
5 0.08 0.01 0.04 0 5 0.58 0.42 0.33 0.20
7 0.15 0.18 0.04 0.01 7 0.64 0.70 0.43 0.33
9 0.09 9 0.58

10 0 0 0.17 0.05 10 0.38 0.59 0.58 0.44
12 0.04 0 0.14 -0.03 0.21 12 0.34 0.42 .69 0.69 0.68
15 15
17 17
18 0 0 0 0.21 18 0.23 0.36 0.57 0.79

Note: Note: The correlations are given for verbal (below diagonal) and non-verbal (above diagonal) abilities separately.

distinguish between the stability of the different variance
components (i.e., the C and E stability estimates increase,
whereas the A stability estimates readily hit the upper bound
of 1). Finally, Table 1 gives all available estimates of the phe-
notypic, genetic and environmental correlations obtained
under an ACE simplex model, for verbal and non-verbal
abilities separately. Again, it is evident that the observed
stability of intelligence is driven primarily by additive ge-
netic factors, with common environment contributing both
to stability and change, and the unique environment pre-
dominantly generating change.

Discussion
The present study examined the stability of verbal abil-
ities, non-verbal abilities, and general intelligence across
childhood and adolescence, and assessed the genetic and
environmental etiology of this stability. Other questions in-
cluded the feasibility of combining results on multiple types
of intelligence tests administered in a longitudinal design
with the aim of utilizing the combined score in the con-
text of gene-finding studies, and the relationship between
different types of intellectual abilities over time (and the
genetic/environmental etiology thereof).

The results indicate an intermediate to high phenotypic
stability of individual differences in intelligence across the
developmental period under study, with an increase in sta-
bility as individuals transition from childhood to adoles-
cence. General intelligence, defined as a first first-order la-
tent factor underlying subscale performance at a given age,
explained around 30–55% of variance in subscale perfor-
mance and displayed high temporal stability, exceeding that
of individual subscales. The phenotypic stability appears to
be driven primarily by genetic factors: the additive genetic
influences were highly to entirely stable. The environment
shared by family members appeared to contribute to sta-

bility to a moderate degree, while environmental factors
unique to family members contributed mainly to innova-
tion (i.e., to temporal instability). Similarly, the observed
stability in the g factor was driven primarily by genetic fac-
tors: the additive genetic g factor displayed near complete
stability, the common environmental g factor was gener-
ally stable but explained less of the phenotypic variance
than the Ag factor, while the unique environmental g factor
was modestly stable but explained only a minor fraction
of the phenotypic variance in g. An age-related increase in
heritability accompanied by a relative decline in common
environmental variance, expected based on the literature
(e.g., Bartels et al., 2002; Bishop et al., 2003; Boomsma &
van Baal, 1998; Deary et al., 2006; Haworth et al., 2009;
Hoekstra et al., 2007; McGue et al., 1993; Petrill et al., 2004;
Plomin, 1986; Polderman et al., 2006), was observed. In
addition, the cross-subscale stability was consistently low,
indicating a small to non-existent contribution of one do-
main of intelligence to another over time.

The stability of intelligence remained in the intermediate
to high range despite the variation in the instruments used
to assess it, and the results replicated well across the four
samples despite the variation in tests and the time intervals
used for estimation. The former relates to a common situ-
ation in data registries (e.g., twin registries), where data are
often collected using a number of different psychometric
instruments, the choice of test often being dependent on
participants’ age. Given the increased accessibility of geno-
typing and sequencing technologies and the consequent
increase in the use of twin registry data in gene-finding
studies, the question of how to optimally combine the ex-
isting longitudinal data in defining the phenotype for such
studies is gaining in relevance. In this context, there are two
prominent issues: (1) the actual modeling of a measured
genetic variant in multivariate data; and (2) the accommo-
dation of family members in the analysis. The latter does
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not pose a problem as the methods and software for family-
based gene finding studies are well developed (e.g., Chen
& Abecasis, 2007; Lippert et al., 2011; Minică et al., 2013,
2014; Purcell et al., 2007). The former is potentially more
problematic as full multivariate phenotypic modeling of
family data is not computationally feasible, or perhaps even
desirable. There are many possible loci of a genetic variant
effect in a multivariate model, and therefore many possible
models to consider. The present results, as pertaining to
the longitudinal genetic covariance structure, suggest that
a simple phenotypic sum score based on the repeated mea-
sures within a cognitive domain (e.g., verbal) should not
result in any appreciable loss of information in a genetic
association study (see Minică et al., 2010). Whether one
should sum over cognitive domains is a different question.
The genetic g factor accounted for about 60% of the ge-
netic variance of the subtest scores. Summing over domains
will only improve the power to detect a genetic variant if it
contributes to this common genetic variance. Rather than
running the risk of missing genetic variants, it is advisable to
carry out gene-finding studies for each domain separately.
One can still arrive at an omnibus test of the genetic variant
(i.e., address the question of whether the genetic effect gen-
eralizes over domains) by combining the statistical results
(van der Sluis et al., 2013).

While we believe that the high genetic stability provides
a reasonable justification for summing over repeated mea-
sures within an individual, we note that this recommenda-
tion is limited in two ways. First, it applies to the present
longitudinal results as obtained in the repeated measures
design. From the point of view of power, a cross-sectional
design may be preferable (and is certainly more efficient
and cheaper to implement). However, the exact relation-
ship between power and design is beyond the present scope
(Minică et al., 2010, do consider different multivariate de-
signs). Second, the recommendation is based strictly on the
present choice to model the covariance structure by means
of autoregressive and cross-lagged modeling. This approach
is informative with respect to stability, but does not con-
sider developmental change from the point of view of in-
dividual growth curves (Ramsden et al., 2011). We did not
consider growth curve modeling as our IQ test scores were
age-corrected, meaning that the present data were not in-
formative with respect to individual developmental growth
curves. Finally, the results present here were based on the
standard genetic simplex model, in which A, C and E are as-
sumed to be uncorrelated sources of individual differences.
Whether this assumption (e.g., the absence of genotype-
environment covariance) is valid to a reasonable approx-
imation is an open question. Any genotype-environment
covariance is unlikely to undermine our recommendations
concerning data summarization in gene-finding studies.
However, a representation involving phenotype to environ-
ment transmission, typically envisaged as smart children
contributing to their own ‘smart’ environment (a.k.a. niche

picking; Eaves et al., 1977) is possible (Dolan et al., 2014a,
2014b).

Supplementary Material
To view supplementary material for this article, please visit
http://dx.doi.org/10.1017/thg.2014.26.
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