
This article discusses new latent variable tech-
niques developed by the authors. As an

illustration, a new factor mixture model is applied to
the monozygotic–dizygotic twin analysis of binary
items measuring alcohol-use disorder. In this model,
heritability is simultaneously studied with respect to
latent class membership and within-class severity
dimensions. Different latent classes of individuals
are allowed to have different heritability for the
severity dimensions. The factor mixture approach
appears to have great potential for the genetic analy-
ses of heterogeneous populations. Generalizations
for longitudinal data are also outlined.

Analysis with latent variables has historically been a
key part of behavior genetics modeling with its focus
on genetic and environmental factors, liabilities, and
phenotypes measured with error. This article gives an
overview of some new latent variable modeling facili-
ties that have recently been made available and which
have great potential for extracting more information
from behavioral genetics data. The new techniques
are implemented in the Mplus program (Asparouhov
& Muthén, 2004; Muthén & Muthén, 2006; see also
the Mplus web site www.statmodel.com). The article
focuses on the phenotype viewed as a latent variable
that is arrived at in novel ways. The article uses the
example of twin analysis with an ACE model (Neale
& Cardon, 1992) where the use of traditional latent
class and factor analysis (FA) measurement models is
contrasted against a new factor mixture model.

The Mplus Modeling Framework

As described in the overview article by Muthén (2002),
latent variable modeling has in recent years developed
into a very general modeling framework that draws its
flexibility from using a combination of continuous and
categorical latent variables. The first implementation of
such general latent variable modeling was made avail-
able when the Mplus program was introduced in 1998.
The aim of Mplus is twofold: to offer analyses with an
easy-to-use interface that does not require knowledge of

matrix algebra or statistical formulas, and to offer a
very powerful modeling framework. The Mplus frame-
work encompasses several traditionally different types
of analyses, including structural equation modeling,
latent class (finite mixture) modeling, multilevel model-
ing, and survival analysis. In March 2004 a significant
further step in latent variable modeling generality was
made by the introduction of Version 3 of the Mplus
program (Muthén & Muthén, 2006), expanding the
framework further to include a flexible combination of
random intercepts and random slopes modeling inte-
grated with psychometric modeling with constructs
having multiple indicators, as well as freely combining
this with modeling of multilevel sources of variation.
These new analysis options draw on maximum-likeli-
hood estimation using complex algorithms described in
Asparouhov and Muthén (2004) and allow observed
variables that are continuous-normal, censored-normal,
binary, ordered and unordered polytomous, as well as
counts, and also combinations of such variables. Of
further interest to behavior geneticists are standard error
and chi-square tests of model fit computations that are
robust to violations of normality and independence of
observations. Explicit modeling of outcomes showing
strong floor and ceiling effects (‘preponderance of
zeros’) is possible using two-part (semicontinuous)
growth modeling1 (Olsen & Schafer, 2001) and zero-
inflated modeling such as zero-inflated Poisson
modeling of counts2 (Roeder et al., 1999). Version 4 of
Mplus, released in February 2006, offers many further
options of interest for genetic analysis. These include
more flexible nonlinear parameter constraints, inequal-
ity constraints on parameters, and constraints that are
functions of observed variables such as with pi-hat
values in quantitative trait loci (QTL) analysis with
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identical-by-descent (IBD) information and individu-
ally-varying covariance matrices.

Types of Models With a Latent Phenotype

The focus of this article is modeling with a phenotype
that is a latent variable, either categorical (latent class
variable) or continuous (factor). The aim is to capture
not only measurement error but also heterogeneity in
terms of different measurement models for different
groups of individuals. This leads to models that use
either continuous or categorical latent variables, or a
combination of both. Latent variables enter into both
cross-sectional and longitudinal modeling. This article
focuses on cross-sectional models but longitudinal coun-
terparts will be mentioned in the Discussion section.
Cross-sectional data analysis of phenotypes has tradi-
tionally benefited from using latent variables in the form
of latent class and FA. This article adds a third type,
factor mixture analysis models (FMA). This article
shows how these three cross-sectional models can be
applied to capture a latent variable phenotype for genetic
analysis. To simplify the discussion, twin ACE modeling
is used to illustrate the genetic analysis, but other forms
of genetic analysis such as linkage and association QTL
analysis could also be used. Furthermore, the analyses
could also be extended to longitudinal settings.

Materials and Methods
The subjects to be studied are young adult Australian
male monozygotic (MZ) and dizygotic (DZ) twins,
ages 24 to 36 years (Heath et al., 2001). The number
of twin pairs is 842 of which 376 are DZ twin pairs
and 466 are MZ twin pairs. Included in the twin mea-
surements were Diagnostic and Statistical Manual of
Mental Disorders (4th ed.; DSM-IV; American

Psychiatric Association, 1994) criteria for alcohol
dependence and abuse. The seven alcohol dependence
criteria and the four alcohol abuse criteria are listed in
Table 1. The items are dichotomously scored. Latent
class analysis (LCA), FA, and factor mixture models
will be used to analyze the 11 items. As a first step,
the best-fitting model for the total sample is deter-
mined and, given this model, a two-group analysis of
MZ and DZ twins is carried out, decomposing the
variance according to the ACE model.

Latent Class Analysis

For background literature on conventional LCA, the
reader is referred to Hagenaars and McCutcheon
(2002) and Muthén (2001), while LCA applications in
behavioral genetics include Eaves et al. (1993) and
Rasmussen et al. (2002). LCA is used to uncover het-
erogeneous groups of individuals, thereby having the
same goal as cluster analysis. Panels 1a and 1b of
Figure 1 describe a LCA model. Figure 1a considers
item profiles for the four items listed along the x-axis.
The picture shows two latent classes (unobserved
groups) of individuals who are homogeneous within
classes and different across classes. Class 2 has low
endorsement probabilities for all four items and the
classes are further differentiated by Class 1 having con-
siderably higher endorsement probabilities for Items 1
and 2. It is this type of class differentiation that lends
an interpretation to the behavior that characterizes
individuals in the two classes. In addition to the item
endorsement probability parameters in each class (also
referred to as conditional item probability parameters),
the LCA model uses parameters to describe the preva-
lence of the latent classes. In a study of alcohol
disorders in a general population sample, the preva-
lence would be the largest for the low Class 2. Figure
1b shows the model diagram for LCA where boxes rep-
resent the observed items and the circle represents the
latent class variable. The latent class variable explains
the dependence among the items so that the items are
conditionally independent within class.

Figure 2a shows a model diagram for LCA of twins.
The 11 observed alcohol criteria are labeled ua1-ua11
for Twin a and ub1-ub11 for Twin b. The latent class
variables are labeled ca and cb for Twin a and Twin b,
respectively. As indicated by the diagram, each pair of
twins is analyzed together so that the data matrix con-
sists of 842 rows (twin pairs) and 22 variables (2 × 11
items). The LCA modeling involves two latent class
variables and is confirmatory in nature. The latent class
variable ca does not influence the probabilities of
endorsing the Twin b items and vice versa for cb and
Twin a items. Also, all parameters for Twin a are held
equal to all parameters for Twin b, both with regard to
the measurement parameters (the conditional item
probabilities) and the structural parameters (the latent
class probabilities; the latter are restricted so that the
table of joint latent class probabilities for the two twins
is symmetric and have the same marginal probabilities).
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Table 1

Alcohol Dependence and Abuse Criteria

Twin Data, n = 5020 twins: Endorsement Probabilities (%)
Endorsement probabilities for
DSM-IV alcohol dependence
and abuse criteria, for regular drinkers Women Men

Tolerance 38 55
Withdrawal 5 9
Use in larger amounts/over longer
period than intended 23 29
Persistent desire/unsuccessful efforts
to cut down or quit 16 27
Great deal of time using/recovering 8 17
Important activities given up 4 8
Continued use despite emotional/physical
problems 14 26
Interference with major role obligations 6 14
Hazardous use 13 27
Recurrent alcohol-related arrests 1 9
Recurrent social/interpersonal problems 6 18



In multilevel terms, the analysis implied by Figure
2a is sometimes referred to as using a multivariate
approach with the hierarchical data arranged in a wide
data format. LCA of twin data is often carried out in
the alternative long data format where for each twin
pair, a record of item responses for Twin a is followed
by a record of item responses for Twin b, resulting in a
data matrix with 2 × 842 rows and 11 columns. In
many cases, the lack of independence is ignored, but
may be accounted for by robust standard error and chi-
square techniques or by two-level LCA modeling
(Asparouhov & Muthén, 2004; Muthén & Muthén,

2006). In our experience, unless a two-level approach is
used, the long format approach can give quite differ-
ent results in terms of deciding on the number of
latent classes in the LCA. The multivariate, wide
approach used here is preferable to the two-level
approach because it allows for a more flexible model
specification. For example, full measurement or struc-
tural invariance across twins is not required and items
may correlate directly and not only through the latent
class variables.

It may be noted that an ad hoc three-step proce-
dure is sometimes used when drawing on LCA for
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Latent class analysis and factor analysis.
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heritability estimation in twin samples. The first step
is the LCA parameter estimation, the second step is
the classification of the individuals into the most
likely class based on the posterior probabilities of
class membership, and the third step is to use this
categorical observed variable (say using classes of
‘affected’ and ‘nonafffected’) for each twin in a liabil-
ity (‘threshold’) model version of ACE analysis. The
one-step approach of this article is recommended
over this three-step approach. The weakness of the
three-step approach is that the classification into the
most likely class ignores the fractional class member-
ship assigned by the posterior probabilities to all
classes and also treats the classification as not having
any sampling error. This results in biased parameter

estimates and biased, typically underestimated, stan-
dard errors.

Factor Analysis

There is a rich literature on FA of binary items, includ-
ing contributions in the field of item response theory
(IRT; see, for example, du Toit, 2003; Embretson &
Reise, 2000) as well as in behavior genetics (Prescott,
2004). The FA model diagram in panel 1d of Figure 1
is analogous to the LCA diagram in Figure 1b, replac-
ing the latent class variable with a continuous factor
variable. With categorical items, the analysis is often
referred to as latent trait analysis, or IRT (item
response theory) modeling, particularly when a single
factor is used. For this situation, Figure 1c shows how
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the probability of endorsing an item increases as a
function of the factor f. Different items have different
functions, typically represented by logistic regressions
with different intercepts and slopes. Below the f-axis is
shown the distribution of the factor.

The twin factor (IRT) analysis is shown in Figure
2b. It is carried out using a confirmatory approach
analogous to that of the above LCA using measure-
ment and structural invariance restrictions across the
two twins in a pair. The model applied here is referred
to as the two-parameter logistic in IRT language. As is
typically done, the factors will be assumed normally
distributed.3

Factor Mixture Analysis

Figure 2c shows a twin model diagram that represents
a hybrid between LCA and FA modeling called FMA.
In line with LCA, the latent class variables ca and cb
influence the item probabilities of the two twins. In
line with FA, a continuous factor also influences the
items. The factor represents within-class variation
among individuals that in an alcohol use disorder
context might be thought of as within-class variation
in alcohol problem severity. Because of the factor
influence on the items, the items are correlated within
class. In contrast, LCA allows for no such within-class
variation and forms clusters of individuals defined as
having independence among the items (the conditional
independence assumption). Using the example of
severity variation within class, LCA assumes the same
level of severity for all individuals within class.
Substantively more meaningful clusters might be
found when allowing within-class correlations among
items as in FMA and this will lead to a different latent
class formation. Figure 2c indicates that the item
probabilities in FMA vary as a function of class mem-
bership as in LCA. In addition, as indicated by broken
arrows, the item loadings of the factor are allowed to
vary across classes. In this way, different items may be
more representative of the severity dimension in the
different classes. Furthermore, the factor variances are
allowed to vary across classes indicating class differ-
ences in heterogeneity with respect to the severity.
Finally, and of great interest to modeling heritability
of severity, the factor covariance is allowed to vary
across the classes.

FMA for continuous variables has been described
in McLachlan and Peel (2001). McLachlan et al.
(2004) applied FMA to cluster analysis of microarray
gene expression data, arguing that FMA allows for
biologically more meaningful clusters than LCA or k-
means clustering. FMA for categorical variables has
been studied in Asparouhov and Muthén (2004) and
Muthén and Asparouhov (2005a, 2005b, in press). To
our knowledge, the current analysis is the first use of
FMA for twin data modeling and the estimation of
heritabilities. FMA offers a more flexible modeling
alternative to LCA and FA that is potentially very
useful in genetic studies.

Factor Mixture Heritability Analysis

The FMA model can be applied to the simultaneous
analysis of MZ and DZ twins using a two-group FMA
of the two twins. The model diagram is given in
Figure 2d. The FMA model presents interesting possi-
bilities for studying genetically related similarity
across twins with respect to the latent phenotypes, in
this case both the latent class variables and the factors.

First, twin concordance may be studied with
respect to latent class membership. This can be done
in two major ways. One approach is to estimate the
joint distribution of the latent class variables. In the
current application, this distribution is a 2 × 2 table
and using the estimated probabilities the concordance
can be summarized by a standard odds ratio (OR;
cross-product ratio). Excess twin concordance due to
stronger genetic relationship can be represented by the
OR for MZ twins compared to the OR for DZ twins.
A second approach is to apply a liability threshold
model with the latent class variables as (latent)
dichotomous dependent variables. The ACE factors
influencing class membership may be specified as the
same as or different from the ACE factors influencing
the severity dimensions. Although the second
approach is possible in the Mplus framework, it will
not be applied here for simplicity.

Second, for twins in the same class, the ACE model
may be applied with the factors as dependent vari-
ables. Because the classes represent qualitatively
different types of substance use disorder, it is impor-
tant to allow for different ACE variance–covariance
decomposition for the two classes, allowing for differ-
ent heritability in the two classes.

As indicated in the model diagram of Figure 2d,
the MZ-DZ ACE version of the twin FMA adds
restrictions on the covariance matrix for the two
factors in Figure 2c in the classic way. As usual in the
ACE model, the diagonal variance elements of this
matrix are a2 + c2 + e2 for both factors and twin types,
whereas the off-diagonal covariance element is either
a2 + c2 or .5*a2 + c2 for MZ and DZ twins, respec-
tively. The variance component values in this
covariance matrix structure are allowed to be different
across the latent classes.

The modeling of the factor covariance matrix for
twins that disagree in terms of class membership can
be approached in different ways. An unrestricted
approach lets these factor variances and covariances
be freely estimated, although imposing symmetry
restrictions. A restricted approach specifies that the
within-class variances for a discordant twin are the
same as for a concordant twin. In a further restriction,
the factor covariance for a discordant twin pair can be
expressed as (using the example of an AE model) y*x*
a11*a22, where y = 1 or .5 for MZ and DZ twins,
respectively, 0 < x < 1 as explicated below, and ajj

stands for the square root of the additive variance
effect a2 in class j. The factor x allows the same (x = 1)
or different additive genetic effects to play a role for

317Twin Research and Human Genetics June 2006

Mixture Modeling in Behavior Genetics



both concordant and discordant twins in line with
sex-limitation modeling (Neale & Cardon, 1992).

Joint modeling of male and female twins as well as
opposite-sex twins is also possible, either as a multiple
group analysis or using gender as a covariate for both
class membership and severity factors. For simplicity,
such modeling will not be explored here.

Results

This section presents the results of analyzing the 22
alcohol items for the sample of 842 male twin pairs.
LCA, FA, and FMA are presented without making a
distinction between MZ and DZ twins. This is fol-
lowed by a factor mixture heritability analysis of the
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Item profiles from latent class and factor mixture analysis.



22 items where MZ and DZ twins are allowed differ-
ent model structure according to the ACE model.

Latent Class Analysis

A three-class LCA was chosen based on log likelihood,
number of parameters, and Bayesian Information
Criterion (BIC) for two- to five-class solutions.4 The
item profiles (estimated item probabilities conditional
on class) are shown in Figure 3a. The item profiles
indicate a severity ordering of the latent classes rather
than profiles with distinctly different shapes. This
result suggests instead using a dimensional model in
the form of FA.

Factor Analysis

Preliminary exploratory FA suggested that a single
factor was sufficient for each twin and that two mean-
ingful factors could not be defined. Table 2 gives the
log likelihood, number of parameters, BIC and
sample-size adjusted BIC (ABIC) values for both the
three-class LCA and the one-factor FA.5 It is seen that
the LCA has a better log likelihood than the FA but at
the expense of using more parameters. The BIC value
is better for FA reflecting the parsimony of this model.

Factor Mixture Analysis

Applying FMA to the twin data in line with Figure 2c,
parameter restrictions are imposed to represent across-
twin measurement invariance analogous to those of
FA and latent class symmetry analogous to those of
LCA. For the Australian twin data, it was found that
two classes and one factor per twin were sufficient to
fit the data. Table 2 shows the resulting log likelihood
results for FMA.6 It is seen that this FMA model
clearly outperforms the LCA and FA models. The log
likelihood is considerably better than for both LCA
and FA while adding relatively few parameters.
Although the BIC is better for FA than for FMA, the
sample-size adjusted BIC (ABIC) is better for FMA
and the FMA likelihood advantage outweighs the FA
BIC advantage.

Figure 3b shows the resulting FMA item profiles
for the two classes. It should be noted that these prob-
abilities are marginal probabilities computed by
integrating over the factor. Conditioning on different
factor values, the probabilities will vary within class.

FMA reduces the three classes of the LCA solution in
Figure 3a to two major types with different profiles,
allowing for within-class variations on these two
major themes. Figure 3b shows that the two classes do
not have profiles corresponding to the DSM-IV crite-
ria for alcohol dependence and abuse and this is
further confirmed by investigating the response pat-
terns corresponding to a classification into the two
classes.7 Instead, the two classes show variations in
probabilities for both types of criteria. A particularly
marked difference in item endorsement probability
across the classes is seen for the two dependence crite-
ria ‘Use in larger amounts/over longer periods than
intended’ and ‘Persistent desire/unsuccessful effort to
cut down or quit’ (items 3 and 4). In the following,
the high class (24%) will be alternatively referred to as
Class 1 and the low class (76%) as Class 2.

Factor Mixture AE Heritability Analysis

The analyses of these Australian twin data showed
that there was no significant difference for MZ and
DZ twin pairs in the relationships between the two
latent class variables, suggesting no effect of heritabil-
ity with respect to membership in the high versus low
class. When freely estimated, however, the point esti-
mates for these ORs indicate a large degree of
heritability, OR = 3.3 and 8.7 for DZ and MZ twin
pairs, respectively. The insignificant difference is due
to a large standard error and future analyses also
involving females and opposite-sex twin pairs might
provide more power and reduce this standard error.
The final model holds the relationship equal across
MZ and DZ twin pairs and the common OR estimate
is 5.6, indicating a large degree of twin concordance.
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Table 2

Model Fit for Twin Data: 2 × 11 Alcohol Items

Log-likelihood # parameters BIC ABIC

Approach 1: Best latent class model (3 classes)
–7362 38 14,980 14,859

Approach 2: Best factor (IRT) model (1 factor)
–7368 23 14,890 14,817

Approach 3: Best factor mixture model (2 classes, 1 factor)
–7318 49 14,967 14,811

Table 3

Factor Covariance Matrix Structure for Factor Mixture Heritability
Analysis

Concordant twins:
Class 1 Class 2

a 2
11 + e 2

11 symm. a 2
22 + e 2

22 symm.�x × a 2
11  a 2

11 + e 2
11� �x × a 2

22 a 2
22 + e 2

22�
Discordant twins:

Class 1 Class 2 Class 2 Class 1
a 2

11 + e 2
11 symm. a 2

22 + e 2
22 symm.�x × a11a22 a 2

22 + e 2
22� �x × a11a22 a 2

11 + e 2
11�

Estimates (SE):
Class 1 (high class)  Class 2 (low class)
a11 = 0.367 (0.175) a 2

11 = 0.135 (0.128) a22 = 1.151 (0.130) a 2
22 = 1.325 (0.300)

e11 = 0.699 (0.196) e 2
11 = 0.489 (0.275) e22 = 0.471 (0.101) e 2

22 = 0.222(0.095)
h1 = 0.216 (0.140) h2 = 0.858 (0.054)

Note: x = .5 for dizygotic twins

= 1.0 for monozygotic twins
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The within-class factor covariance matrices showed
no evidence of the need for the C component. Because
of this, the results for an AE model are reported for the
factor mixture heritability analysis. The factor covari-
ance matrix restrictions for discordant twins fitted well
as measured by the log likelihood difference test against
the unrestricted matrix for discordant twins. Also, the
‘y’ factor in the discordant twin covariances described
above was estimated as 1, suggesting that the same
additive factor is operating for both the high and the

low class. Table 3 shows the factor covariance matrix
structure imposed in the modeling as well as the esti-
mates of the A and E components of these matrices.
Figure 4a shows the item probability profiles as esti-
mated by the factor mixture heritability analysis. Figure
4b summarizes the results of the heritability analysis by
comparing MZ and DZ twins both with respect to
latent class agreement and with respect to within-class
factor covariance.
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Although there does not seem to be significant genetic
influence on the probability of membership in the
high class versus the low class, the within-class corre-
lations for MZ and DZ twins at the bottom of Figure
4b show a different picture. The heritabilities are esti-
mated as .86 and .22 for the low and high classes,
respectively. The reason why twins in the latent class
with a less severe alcohol use disorder profile exhibit
a higher heritability is an interesting topic for further
research. It may be noted that an AE analysis using a
regular (one-class) factor model resulted in a heri-
tability of .65.

Discussion
This article used three latent variable modeling tech-
niques to model phenotypic information, LCA, FA,
and FMA. FMA was found to be the best for these
data and also allowed a more flexible representation
of underlying heterogeneity in the population. The
factor mixture model was applied to an MZ-DZ twin
analysis in order to study heritability, where heritabil-
ity was simultaneously studied with respect to latent
class membership and within-class severity dimen-
sions. The factor mixture approach appears to have
great potential for genetic analyses of heterogeneous
populations. The factor mixture analyses illustrate
some of the new techniques made available by the
March 2004 release of Mplus Version 3 (Asparouhov
& Muthén, 2004; Muthén & Muthén, 2006). Input
for all analyses shown is available at the Mplus web
site (www.statmodel.com).

Although the analyses in the current article were all
based on cross-sectional data, interesting extensions of
the models discussed are also available for longitudinal
data analysis. Two examples are briefly mentioned
here. As an example of categorical latent variable mod-
eling, latent transition modeling is used when the
substantive interest is in transitions between latent
states (Chung et al., 2005; Collins et al., 1997, Collins
& Wugalter, 1992; Dolan et al., 2005; Reboussin et al.,
1998). With a mental health measurement instrument,
the latent classes of categorical latent variables repre-
sent individual latent states such as affected and
nonaffected. A particularly interesting form of latent
transition modeling uses a second-order categorical
latent variable to represent population heterogeneity in
the form of ‘movers’ versus ‘stayers’. This model is
shown in Figure 5a. To avoid inclusion of individuals
who fluctuate greatly in their true states, it may be of
interest for genetic analysis to focus attention on
stayers, that is, the subgroup of individuals that is more
likely to exhibit stability in their affected and nonaf-
fected states. In this case the phenotype is a latent class
variable of affected versus nonaffected within the stayer
subgroup.8 Random effects heterogeneity in line with
growth mixture modeling discussed below can also be
added to latent transition modeling.

When development across time is instead conceptu-
alized as continuous changes, growth modeling using

random effects to capture heterogeneity of development
is commonly used (see, for example, Hedeker, 2004). In
such modeling, latent continuous growth factors (inter-
cept and slopes) would form the phenotype for genetic
analysis (Neale & McArdle, 2000). As a generalization
of such analysis, Muthén and Shedden (1999) and
Muthén et al. (2002) introduced growth mixture mod-
eling with a combination of latent class and random
effects modeling of heterogeneity, using the latent
classes to represent qualitatively different developmen-
tal trajectory types. Growth mixture modeling has been
applied to achievement development and high school
dropout (Muthén, 2004), alcohol misuse development
(Muthén & Muthén, 2000; Muthén & Shedden, 1999),
conduct disorder in classrooms and school removal
(Muthén et al., 2002), as well as prostate-specific
antigen development and prostate cancer (Lin et al.,
2002). An example of a growth mixture model is
shown in Figure 5b. Here, the graph on the right shows
a quadratic growth model for an outcome (y) measured
at four time points using three growth factors (i, s, and
q) with one latent class variable (c) influencing the
growth factors as well as a distal outcome (u).
Corresponding to the three classes, the graph on the left
shows three qualitatively different trajectory types indi-
cated by three solid curves for the mean development
often seen for conduct disorder data, juvenile delin-
quency, and heavy alcohol involvement: normative,
escalating, and early onset development. Reflecting the
influence of the growth factors, each class shows
thinner individual curves indicating within-class varia-
tions on the major curve shape theme.9 In this way, the
growth mixture model has features similar to FMA.
The Mplus modeling framework makes it possible to
expand twin heritability analysis of the factor mixture
type to growth mixture modeling with longitudinal
data. The phenotype may correspond to latent class as
well as growth factor scores within class. The graph on
the left in Figure 5b illustrates the value of using longi-
tudinal information in genetic analysis. At about age 20
the trajectories show that it is difficult to classify an
individual into the three classes while longitudinal
information makes this classification feasible. Given
these new latent variable techniques for genetic analy-
sis, the rewards for collecting longitudinal data should
be even greater.

Endnotes

1 Example 6.16 of the Mplus Version 4 User’s Guide
(Muthén & Muthén, 2006) shows how to set up a
two-part growth analysis.

2 Example 8.5 of the Mplus Version 4 User’s Guide
(Muthén & Muthén, 2006) shows how to set up a
zero-inflated Poisson growth mixture analysis.

3 A nonparametric representation of the factor dis-
tribution is also possible (see, for example, Muthén
& Muthén, 2006, example 7.26). 
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4 The Mplus input for this analysis will be available
on the Mplus web site www.statmodel.com

5 The Mplus input for this analysis will be available
on the Mplus web site www.statmodel.com

6 The Mplus input for this analysis will be available
on the Mplus web site www.statmodel.com

7 Muthén and Asparouhov (in press) investigates
relationships between DSM-IV classification and
latent variable classification of diagnostic criteria
for alcohol dependence and abuse.

8 Example 8.14 of the Mplus Version 4 User’s Guide
(Muthén & Muthén, 2006) shows how to set up a
mover-stayer latent transition analysis.

9 Example 8.6 of the Mplus Version 4 User’s Guide
(Muthén & Muthén, 2006) shows how to set up a
growth mixture analysis with a distal outcome.
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