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An abundance of research shows significant resemblance in standardized IQ scores in children and their biolog-
ical parents. Twin and family studies based on such standardized scores suggest that a large proportion of the re-
semblance is due to genetic transmission, rather than cultural transmission. However, most studies used
standardized intelligence scores that were based on different tests for different age groups, which makes it
hard to say if the exact same construct is measured. Here we re-analyze intelligence data on two different ver-
sions of the Raven Progressive Matrices test, collected in Dutch twin children (Standard test version) and their

Iézlvggzd;ld cultural transmission biological parents (Advanced test version). First, the data from parents and their offspring were harmonized
Intelligence using test linking through an item response theory measurement model. This required collecting data from
Parent-offspring extra participants who were assessed with items from both test versions. Next, the raw item data were analyzed
Bayesian to study transmission of intelligence, correcting for the differences in difficulty of the items in the parental and
Item Response Theory child test versions and differences in measurement reliability. Results showed a significant difference in the phe-
Item fiat? notypic variance in intelligence in the two generations. Model fitting showed that the surplus variance in the pa-
lT-lZSrtmhg;(ilznagtion rental generation is likely due to surplus environmental variance that is not transmitted to the offspring. This

could reflect that there was extra measurement error under the parental testing conditions. Genetic modelling
showed that intelligence covariance in parents and their children is most likely based on genetic transmission
without cultural transmission.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Individual variation in intelligence tends to cluster within fami-
lies (Bartels, Rietveld, Van Baal, & Boomsma, 2002; Posthuma, De
Geus, Bleichrodt, & Boomsma, 2000). The similarity between parents
and their children can be the product of either genetic or cultural
(non-genetic) transmission from parent to child, or perhaps both.
Twin and adoption studies investigate how much of the variation
in intelligence is explained by genetic and non-genetic sources.
With cultural transmission we mean the similarity in phenotype
across generations that is not due to the transmission of genetic ma-
terial; it is the residual predictive power of the parents' phenotypes
for the child's phenotype over and above the resemblance in geno-
type. Using adoption designs, cultural transmission can be distin-
guished from genetic transmission by the fact that there is no
genetic transmission from the adoption parents. Previous adoption
studies suggest that there is no significant cultural transmission for
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specific cognitive abilities (Fulker & DeFries, 1983; Plomin, Fulker,
Corley, & DeFries, 1997). However, other adoption studies conclude
that there is cultural transmission of intelligence. Scarr and
Weinberg (1978, 1983) found that the intelligence of adopted chil-
dren correlates highly with the intelligence of their adoption parents
during their childhood, but becomes more correlated with the intel-
ligence of their biological parents as they grow older. Previous twin
research showed that 20-50% of the variability of intelligence can
be ascribed to genetic effects and the remaining variance to environ-
mental effects (Fulker & DeFries, 1983; Tucker-Drob & Briley, 2014).
These studies used designs including twins and their parents, twins
and their children and/or twins and their spouses (Eaves et al.,
1999; Giubilei et al., 2008; Reynolds, Baker, & Pedersen, 2000;
Rijsdijk, Vernon, & Boomsma, 1998). Such designs including family
members of twins are vital to check certain important assumptions
regarding for instance assortative mating, gene-environmental cor-
relations, and dominance genetic effects.

Most adoption and twin studies are based on standardized test
scores: raw test scores are standardized, for instance to have a
mean of 100 and standard deviation 15 within a particular age
group (i.e. IQ scores). By analyzing correlations of such IQ scores in
families, the implicit assumption is that the same phenotype is


http://crossmark.crossref.org/dialog/?doi=10.1016/j.intell.2016.06.006&domain=pdf
http://dx.doi.org/10.1016/j.intell.2016.06.006
mailto:benteotermann@gmail.com
Journal logo
http://dx.doi.org/10.1016/j.intell.2016.06.006
http://www.sciencedirect.com/science/journal/01602896

B. Otermann, S.M. van den Berg / Intelligence 58 (2016) 42-53 43

measured across age. But since there are such huge age effects on test
scores, there are different tests or test versions for particular age
groups, such as the the standard and advanced versions of the
Raven Progressive Matrices test (Raven, 2000). Apart from the as-
sumption that the same phenotype is assessed in children and adults,
the standardization leads to the same variance in scores across age.
This standardization only allows to model correlations between fam-
ily members, and information about any differences in variance is
lost. This is important since certain phenomena (e.g., spouse similar-
ity, cultural transmission) can lead to differences in variance across
generations that have genetic implications and can therefore lead
to biased or wrong conclusions. Studying covariation of intelligence
in families therefore requires the use of phenotypes that are harmo-
nized (Van den Berg et al., 2014), that is, phenotypes of different
family members should be on the same scale. The study of
Wicherts and Johnson (2009) states similar critiques of the use of
raw scores of the Raven's in behaviour genetic studies.

Here we propose the use of item-response theory (IRT) based test
linking in order to map the observed item data from children and
parents to a common latent scale. This allows assessing not only
mean and variance differences, but the whole covariance structure
within twin families. Moreover, we propose to model the covariance
structure not of equated test scores, but rather to model the structure
at the latent level, using an IRT-based measurement model. This
measurement model links the latent model for the covariance struc-
ture to the observed raw item data. In that way, we not only correct
for the different sets of test items across test version, but also for the
different reliabilities of test scores across test versions and individ-
uals (Van den Berg, Glas, & Boomsma, 2007). Van den Berg et al.
(2014) published a similar study with the harmonization of pheno-
types using IRT with personality data.

Van Leeuwen, Van Den Berg, and Boomsma (2008) published a
study on the genetics of intelligence using data on twins and their
parents. Parents were assessed using the 36-item Advanced Raven
test, while the 9-year-old twins were tested using the 60-item Stan-
dard Raven test. The authors dealt with the different test version
problem by analyzing raw item scores through an IRT measurement
model, an approach that dealt with differences in measurement reli-
ability within and across scales. However, they assumed that pheno-
typic variance was constant across generations. Another, more
implicit, assumption was that the Advanced and the Standard ver-
sions of the Raven measured the exact same phenotype. Here we re-
port the results of a test linking study that assessed the possibility of
harmonizing the parental Advanced data and the child Standard data
to one common scale. This required the collection of Raven data in a
new group of individuals that were assessed with both Advanced and
Standard test items and IRT-based model fitting. Next, these results
were used to re-analyze the Van Leeuwen et al. (2008) data in
order to study the covariance structure at the latent common scale
and to answer the question how intelligence in the parents is con-
ferred to the children.

2. Materials and methods
2.1. Materials

In this study the Raven Progressive Matrices test (RPM) is used to
measure intelligence. The RPM is a widely used nonverbal test of eductive
ability and consists of visual problems (Raven, 2000). The items in this test
are multiple choice and ranked with regard to difficulty. Here we used
two versions of the RPM: the Standard Progressive Matrices (SPM) and
the Advanced Progressive Matrices (APM). The SPM consists of five sets
(A-E) of 12 items each, resulting in 60 items (Raven, Raven, & Court,
1998a), and the APM consists of 36 other items (Raven et al., 1998a).
The test-retest reliability of the SPM is 0.88 in children (Raven et al.,
1998a) and for the APM is 0.91 in adults (Raven, Raven, & Court, 1998b).

2.2. Participants

The Van Leeuwen et al. (2008) data consist of item data from 9-year-
old twins sampled from the Dutch population of twins registered at the
Netherlands Twin Register (NTR) who completed the SPM, and item
data from the twins' parents who completed the APM (paper-and-pen-
cil versions). This total data set consists of 112 families (224 children
and 189 parents). Mean age of the twins at time of assessment was
9.1 years, ranging from 8.9 to 9.5 years (N = 327), of the fathers
43.7 years (N = 94, SD = 3.7 years) and of the mothers 41.9 years
(N = 95, SD = 3.4 years). Zygosity status of the twin pairs (identical
or fraternal) was determined by questionnaire items and DNA polymor-
phisms. The sample is representative of the Dutch population, albeit
that the average IQ in this particular sample was slightly above 100.
For more details, see Van Leeuwen (2008).

Additional data of additional participants was collected in 49
Dutch adults at the University of Utrecht in the autumn of 2013,
using a snowballing sampling technique. These were given paper-
and-pencil tests consisting of a number of SPM items and a number
of APM items. In order to optimize the information gained from the
above-average intelligent adult participants (working or studying
at a university), 16 APM items were selected on the basis of the pro-
portion of correct answers (p-values) in the parental Van Leeuwen et
al. (2008) data: between 0.40 and 0.70. A subset of rather difficult
SPM test items was selected: the 10 most difficult items from the B,
C, D and E sets. Half of the participants (randomly selected) got the
APM items first and then the SPM items, while the other half started
with the SPM items. For the complete set of items, see Table 1, where
the items selected for the test linking data collection are printed in
bold. All started with four very easy items for practice (the first
two items of the SPM followed by the first two items of the APM).
These items were not used in the data-analysis. Data were collected
in 18 males and 30 females (plus one participant that did not disclose
information on sex), aged between 19 and 63 years. Thirty-three
participants were students (at higher professional, academic bache-
lor or master level), 15 had a job (medium professional level and up-
wards), and one participant was unemployed. The sample size was
determined on the basis of a power study using data simulation; de-
tails can be obtained from the first author.

2.3. Test linking

The advantage of using IRT models is the possibility to separate the
influences of item difficulty and ability level on responses (Baker &
Kim, 2004). Differences between persons can be assessed independent
of what specific items are in the test, so response data from individuals
that were tested with different test versions can be analyzed in one
analysis (Van den Berg et al., 2014). In order to do that, one needs to
first estimate the differences in difficulty for all items in the test ver-
sions. This is called test linking.

There have been previous attempts to link the Advanced and
Standard forms using raw score test equating methods (Jensen,
Saccuzzo, & Larson, 1988; Styles & Andrich, 1993), but there the fit
of one Rasch model to all items was not explicitly tested. In this
paper we use the Rasch model, which is a well-known IRT model
for dichotomous data (Rasch, 1960). The Rasch model assumes
local independence, which implies unidimensionality of ability.
Local independence means that correlations among items are absent,
once controlled for the latent variable. Previous studies show mixed
results concerning the dimensionality of the Raven Progressive Ma-
trices. Whereas studies have shown that the RPM is largely unidi-
mensional (Rost & Gebert, 1980), other studies indicates that the
RPM might be multidimensional (Lynn, Allik, & Irwing, 2004; Van
der Ven & Ellis, 2000; Vigneau & Bors, 2005). However, multidimen-
sionality of intelligence tests has to be assessed with some care, since
when items vary widely in difficulty, linear factor models will
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Table 1
Item fit measures and parameter values. Items that were used in the extra data collection
for test linking are printed in bold.

Item Outfit MSQ Infit MSQ 3 parameter
A5 452 0.95 —6.54
A6 0.49 0.94 —6.54
A7 0.70 0.90 —3.16
A8 1.44 1.19 —2.14
A9 2.23 1.00 —4.51
A10 1.16 1.06 —3.27
A1l 1.12 1.08 —0.84
A12 1.22 1.10 0.11
B1 4.52 0.95 —6.54
B2 0.71 0.98 —4.11
B3 4.60 0.86 —5.41
B4 1.01 0.94 —3.91
B5 1.66 1.04 —3.13
B6 1.10 1.07 —1.89
B7 1.17 1.11 —1.35
B8 1.10 0.96 —1.05
B9 1.14 0.84 —1.56
B10 0.59 0.82 —1.87
B11 0.84 0.84 —1.31
B12 1.38 0.98 0.52
C1 2.12 0.95 —6.54
2 1.80 1.15 —3.00
3 1.01 1.06 —-1.97
C4 1.24 1.14 —1.47
C5 137 0.97 —2.14
c6 2.52 1.13 —0.93
c7 0.69 0.79 —1.11
Cc8 0.99 1.00 —0.29
c9 1.15 1.03 —0.97
C10 1.05 0.95 0.91
C11 1.09 1.04 1.45
C12 2.36 0.81 2.58
D1 1.07 1.01 —5.11
D2 0.72 0.77 —1.97
D3 0.65 0.79 —1.79
D4 0.79 0.89 —141
D5 0.41 0.74 —2.59
D6 1.04 0.90 —1.53
D7 0.96 1.01 —0.62
D8 0.98 0.93 —0.84
D9 0.85 091 —0.37
D10 0.82 0.86 —0.31
D11 1.24 1.12 1.68
D12 0.95 0.87 3.06
E1 0.97 1.00 —0.02
E2 0.88 0.93 —0.12
E3 0.93 0.97 0.11
E4 0.86 0.84 0.68
E5 0.75 0.80 0.78
E6 1.07 091 1.09
E7 1.10 0.97 1.35
E8 1.00 0.89 1.66
E9 1.49 0.88 2.72
E10 2.11 0.91 291
E11 2.97 1.10 3.21
E12 2.30 1.06 3.20

1 0.17 0.67 —0.90
2 1.79 1.12 —0.69
3 0.96 0.88 0.03

4 0.81 0.93 0.66

5 0.65 0.85 0.59

6 2.79 0.90 —0.51
7 0.72 1.00 0.24

8 1.98 0.89 0.14

9 0.59 0.96 0.42
10 0.49 0.87 0.51
11 0.60 0.88 —0.21
12 0.63 0.93 0.73
13 1.67 1.00 1.93
14 0.77 0.88 0.66
15 0.73 0.97 0.59
16 0.79 0.94 1.65
17 1.08 1.04 1.77
18 1.10 1.04 2.60

Table 1 (continued)

Item Outfit MSQ Infit MSQ [3 parameter
19 1.29 1.08 1.81
20 1.13 1.08 1.93
21 0.76 0.90 2.32
22 0.94 0.99 3.10
23 0.77 0.89 2.77
24 0.90 0.94 2.82
25 1.28 1.16 337
26 1.05 1.07 2.65
27 0.97 1.04 3.03
28 1.08 1.06 3.19
29 0.93 0.97 3.85
30 1.26 1.05 2.53
31 0.80 0.91 2.48
32 1.27 1.08 4.05
33 1.16 1.06 343
34 0.75 0.85 341
35 0.97 091 3.96
36 1.18 0.81 5.27

generally show several factors, one for each difficulty level (Gibson,
1959). A study that reported multidimensionality also reported
that the dimensions in the RPM are highly correlated, around 0.90
(Lynn et al., 2004), which supports unidimensionality. Therefore in
this study the Rasch model will be assumed as an appropriate
model for this data. For further investigation about multidimension-
ality in the data see section 3.1 Test linking.

2.3.1. Linking design

The above data sets, adult data on the APM, children data on the SPM
and adult data on a subset of items from the APM and SPM allows for
test linking. Using an Item Response Theory model, the differences in
difficulty among the 36 items from the APM can be estimated on the
basis of the adult data from Van Leeuwen et al. (2008), the differences
in difficulty among all 60 SPM items can be estimated based on the
twin data, and the data from the 49 extra participants can be used as
extra information on differences in difficulty among SPM items and
among APM items, but also to estimate difficulty differences between
items that come from different test versions. The IRT model used was
the one-parameter logistic model, also known as the Rasch model.
This model was fitted to the full data set containing 60 (SPM) plus 36
(APM) equals 96 items. APM item data were treated as missing at ran-
dom for the twins, SPM items were treated missing at random for the
parents, and the items not included in the extra data collection were as-
sumed missing at random for the relevant participants. In the Rasch
model the probability of answering an item correct (coded as a 1, rather
than a 0) is a function of the difficulty parameter (3) for that particular
item and the ability level of the participant that is tested (6) (Holland &
Wainer, 2012):

efi—Px

P<yjk = 1§6j75k) e

where yj. is the response of participant j on item k (1 = correct, 0 = in-
correct), 6; is the ability level of participant j, and 3 is the difficulty of
item k. This model allows not only for estimating differences in ability
level among participants, but also estimating differences in difficulty
level among items, without a need for assumptions about the popula-
tion of participants (that is why a snowballing sampling technique
does not cause problems here). The model is identified by fixing the
mean ability level to an arbitrary value, say 0, or by fixing the mean dif-
ficulty level. Estimating this Rasch model on the data sets described
above results in a set of item parameters in such a way that they quan-
tify differences in item difficulty. Conditioning on these estimated diffi-
culty levels, the ability levels of twins and parents can be modelled in
the next phase.
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2.3.2. Assessing quality of test linking

The question then is to assess to what extent the data linking was
successful: does a Rasch model indeed fit both the SPM and APM data
and can the equated item parameters be used to quantify differences
in ability across subgroups (i.e., twins, their parents, and the extra par-
ticipants)? To answer this question, Andersen's likelihood ratio (LR)
test was carried out to test whether the estimates of the difficulty pa-
rameters would be different between groups. First, it was tested wheth-
er the differences in item difficulty among the 10 SPM items were
different in the twin data than among the respective items in the linking
data set. Second, it was tested whether the differences in difficulty
among the 16 APM items were the same in the twins' parents as in
the extra participants.

Next, overall fit of the Rasch model to all three data sets at once
was assessed using outfit and infit MSQ measures (Christensen &
Kreiner, 2013). MSQ stands for the mean of the standardized squared
residuals. Infit refers to inlier-sensitive fit. Infit is sensitive to the pat-
tern of responses to items targeted on the person, that is, items with
a 3 value close to the 6 value of the test-taker. Outfit refers to outlier-
sensitive fit. Outfit is sensitive to responses to items with difficulty
levels far removed from the ability level of a person. For example,
outfit reports overfit when responses are imputed, and underfit for
lucky guesses and careless mistakes such as generally observed
when very intelligent people have to answer very simple questions.
Mean-square fit statistics reflect the relative amount of randomness
that is either too high or too low for a given item. Statistically, mean-
squares are chi square statistics divided by their degrees of freedom
and are therefore always positive. Their expected value is 1. Values
less than 1 indicate that item responses are too predictable; values
greater than 1 indicate too much unpredictability. MSQs larger
than 2 are generally regarded as problematic (www.rasch.org).
Test linking analyses were carried out using the eRm package
(Mair, Hatzinger, & Maier, 2015).

2.4. Modelling transmission of intelligence

The complete model in this study for the familial transmission of in-
telligence consists of two parts: the measurement model and the bio-
metric model. The link between the two models is formed by
parameter 6 that represents an intelligence score that explains the var-
iation in performance on the observed item data. The covariance struc-
ture of this parameter 6 within families is then modelled by the
biometric model. Thus, as in structural equation modelling (SEM), a dis-
tinction is made between the structural model and the measurement
model. In the sections below the measurement model, the biometric
(i.e. structural) model and the framework of Bayesian estimation are de-
scribed successively.

2.4.1. Measurement model

For each kth item (k = 1,...,K) there is one difficulty parameter 3
influencing the response of the jth individual from the ith twin family
with a latent score 0 (j = 1.2; i = 1,...,N). The probability of a correct
response, pji , is modelled as

e0i—Bx

Pk = e

Response yj is then Bernoulli distributed, y; Bern(pir).

Since in this study test linking is used to harmonize difficulty param-
eters across test versions, we will impute the linked values for the diffi-
culty parameter values (see Table 1) into the measurement model (i.e.,
assuming they are known), so that the scale for 6 is identified. The co-
variance structure of this 6 will then be modelled through the structural
model, that is, the biometric model.

2.4.2. Biometric model

In quantitative genetic studies where the variance of an observed
phenotype is studied, a distinction is made between variation caused
by additive genetic effects (A) and variation caused by environmental
effects (E). See Falconer (1960), for an introduction to quantitative ge-
netics. Note that in contrast to standard analyses, here we have a latent
phenotype, 0, that is identified through the measurement model de-
scribed above. If one assumes additive genetic effects and environmen-
tal effects to be standard normally distributed, we can write as our basic
model for family member j of family i:

Oij:thij+e><Eij,

where h and e are the factor loadings for the A and E random effects.

In quantitative genetics, the expected genotypic value in offspring is
the average of the parental genotypes, E(A) = 1 (Amother + Afather)» tO
which a random term is added, known as the Mendelian sampling
term. If mating is random, that is, if phenotypes are uncorrelated in par-
ents, the variance of this Mendelian sampling term equals half the ge-
netic variance. However, intelligence scores of the parents are known
to be correlated. Assuming that this correlation is the result of spouse
selection that is at least partly based on similarity in intelligence level
(phenotypic assortment), this resulting similarity in phenotypic values
in parents is accompanied with similarity in genotypic value. This
leads to an increase of the genetic variance in the next generation,
since the genetic variance is the sum of the variance by direct transmis-
sion of genetic material plus twice the covariance in genetic effects in
the parents, Var(Aoffspring)% = (Var(Agather) + Var (Amother)) + 2CoV(Aather:
Amother)'

The size of this genetic covariance in the parents depends on how
much phenotypic variance is explained by genetic variance, indicated
by parameter h, and on the size of the spouse correlation, p. Under phe-
notypic assortment, the genetic correlation in parents, vy, equals y =
p(h + se)?, where s is the correlation between genetic effects and envi-
ronmental effects. Such a correlation s can be induced in situations
where parent-child correlations are not only due to genetic transmis-
sion, but where there is a residual correlation between parents and
their children that cannot be explained by genetic effects, a residual cor-
relation that is usually termed cultural transmission, and is usually
modelled as a direct regression of the child's environmental effect
onto the parental phenotypes:

Eotfspring'“N (Z(P ‘mother + P father)v O—%res)

where z is the parameter for the cultural transmission and 0%, is the
residual variance of the environmental random effect E after the re-
gression on the parental phenotypes. Since parents not only transmit
their genes, but can also affect the child's environment, based on
their phenotypic value, the genetic effect and the environmental ef-
fects become correlated in the child, Cov(Aoftspring, Eoffspring) = S#0.
Thus, the total phenotypic variance is larger in the offspring than in
the parents due to correlated parental phenotypes and cultural
transmission.

However, it seems unlikely that phenotypic assortment and cultural
transmission only play a role in data from parents and their children in
this generation. The individuals who are parents now are the children of
yesterday's parents. Therefore, we expect that in these prior generations
similar processes played a role as in the latest generation. Wright
(1968) showed that after a limited number of generations, variance be-
comes stable. If we assume that cultural transmission and phenotypic
assortment have been going on for a number of generations, one can
therefore assume that all parameters have reached their equilibrium
values (Wright, 1968).

Such a model for equilibrium parameter values has been described
by Fulker and DeFries (1983) and has often been applied to twin-parent
data and more complex family designs. Here we have an added level to
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the modelling: this model for both cultural and genetic transmission
needs to be combined with an IRT measurement model. Van den Berg
et al. (2007) showed how genetic models are best combined with mea-
surement models using Markov-chain Monte Carlo (MCMC) tech-
niques. These are most pragmatically applied through off-the-shelf
software packages such as JAGS (Plummer, 2003). Van den Berg
(2009) showed how the biometric model described by Fulker and
DeFries (1983) can be estimated in such packages. Therefore, we follow
the approach described in Van den Berg (2009), except that the ob-
served phenotypic value is replaced by a latent phenotype 6 that is
equal to hA; + eE; and that is identified by the addition of an IRT mea-
surement model.

2.4.3. Bayesian framework

To estimate the parent-offspring model and the IRT measurement
model simultaneously, Bayesian statistical modelling is used, as in Van
den Berg et al. (2007) and Van den Berg (2009). In the Bayesian frame-
work, inference is based on the posterior probability distribution of the

model parameters (e.g., h and e) or functions thereof (e.g., %). The

posterior probability distribution is the probability distribution of a pa-
rameter or a set of parameters given the data. Such a probability distri-
bution is defined, using Bayes' theorem, as a function of the likelihood
function (the distribution of the data given the model parameters)
and prior distributions.

The posterior probability distributions can be easily inspected by
drawing randomly from these through the use of Markov-chain
Monte Carlo (MCMC) methods (Van den Berg, Beem, & Boomsma,
2006). To use off-the-shelf packages like JAGS one only needs to specify
the biometric model and specify prior distributions for those parame-
ters that are not a function of other parameters (i.e. h, e, p, z and the
means). For the structural parameters h, e, p, and z we used uniform
prior distributions, that is, non-informative priors. Furthermore, for
the means in the model, normal prior distributions are used with expec-
tation 0 and variance 10. The software used in this study is JAGS version
3.4.0 (Plummer, 2003) and R version 3.1.0 (R Core Team, 2014). In R the
package rjags is used to run JAGS scripts from R (Plummer, 2014). The
JAGS script of one of the models (the first one described below) can
be found in the Appendix A.

2.4.4. Model comparison

In this paper, various models are compared. The first model includes
phenotypic assortment and genetic transmission, but no cultural trans-
mission (Model 1). This was the model that came out as the preferred
model in Van Leeuwen et al. (2008). In this model, cultural transmis-
sion parameter z is fixed to zero, which leads to s (genotype-environ-
ment correlation) also becoming zero. The fit of this model was
assessed by posterior predictive checks, where the posterior density
of model characteristics is compared to the expected density of those
characteristics under the model. The idea is that a posterior predic-
tive distribution is sampled, which is the distribution of future obser-
vations that could arise from the fitted model (Lynch, 2007). If a
model fits the current data well, future data simulated from the
model should show similar features as the current data (Lynch,
2007). Data is simulated from the posterior predictive distribution
of 6 and compared to the posterior distribution of 6. Different poste-
rior predictive checks were performed, focusing on the sufficient sta-
tistics for biometric models: variances and covariances of 6. First, for
each iteration the correlation between posterior samples of 6 in
monozygotic twin pairs, dizygotic twin pairs, mother-father pairings
and parent-child pairings were computed. These posterior distribu-
tions of correlations were plotted, and compared with the respective
correlations based on newly simulated 6 values (i.e., the posterior
predictive distributions of these correlations). Similarly, the posteri-
or variance of 6 in twins and parents were computed and compared
with the respective posterior predictive distributions. If the modes

of posterior predictive distributions are very close to their respective
modes of the posterior distributions, one can infer that the fitted
model makes predictions that are actually observed in the data.

Based on these posterior predictive checks, two alternative model
improvements were made: one improvement that allowed for differ-
ent values of h in parents and children (allowing for more genetic
variance in one of the generations, Model 2), and one improvement
that allowed for different values for e) in parents and children
(allowing for more environmental variance in one of the genera-
tions, Model 3). In the Results section these improvements are
discussed in more detail.

3. Results
3.1. Test linking

The Likelihood Ratio test results are displayed in Figs. 1 and 2. Fig.
1 shows that the 10 SPM items that were assessed both in twins and
in the extra participants had similar values for item difficulty (the
line represents equality, the red ellipses represent Bonferroni-
corrected confidence intervals, i.e. 1-5%/10). All of the confidence el-
lipses overlapped with the equality line, meaning that none of the
differences in item difficulty was different across the two groups.
The same was observed for the 16 APM items that were assessed
both in the parents and in the extra participants (ellipses represent
Bonferroni-corrected confidence intervals, i.e. 1-5%/16). In sum,
the Likelihood Ratio test results showed that item parameters were
not different across groups: the differences in difficulty level
among 10 SPM items were the same in the children as in the adults
from the extra data collection, and the differences in difficulty level
among the 16 APM items were the same in the parents as in the
extra adults. In other words, there was no differential item function-
ing, at least not for the items that were in the overlapping data set.
We therefore believe it is reasonable to assume that the SPM is mea-
surement invariant across age groups, and that the APM and SPM as-
sess the same intelligence dimension. A side-note of the results is the

LR ratio test SPM
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Fig. 1. Confidence intervals for difficulty levels of the SPM 10 items that were administered
both to the twin children and the extra 49 participants. The line represents equality, the
red ellipses represent Bonferroni-corrected confidence intervals, i.e. 1-5%/10. The
different beta values represent the difficulty levels of the corresponding items. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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LR ratio test APM

Overlap

T Z

Parents

Fig. 2. Confidence intervals for difficulty levels of the 16 APM items that were
administered both to the twins' parents and the extra 49 participants. The line
represents equality, the red ellipses represent Bonferroni-corrected confidence intervals,
i.e. 1-5%/10. The different beta values represent the difficulty levels of the
corresponding items. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

possibility that the likelihood ratio tests could be underpowered be-
cause of the limited sample size.

Next, the Rasch model was applied to the full data set (three groups
combined) for all 96 SPM and APM items. Table 1 shows the estimated
item parameters and the infit and outfit MSQ measures. Note that items
A1 through A4 are missing, as there were no incorrect responses to
these items. Among the STM items, there were 10 with an outfit MSQ larg-
er than 2. This means that answers to these items showed twice as much
randomness than expected under the Rasch model. All of these items were
either very easy items or very difficult items (see the (3 values in the third
column), and are therefore sensitive to outfit problems that can arise
when very intelligent people have to answer very easy questions, and

------- Posterior parents

----- Posterior offspring
ho e Posterior predictive parents
—— Posterior predictive offspring

Density

Variance

Fig. 3. Posterior and posterior predictive distributions of the variance of intelligence 6 of
parents and their offspring, based on Model 1.

less intelligent people have to answer very hard questions. Among the
APM, only item 6 had an outfit MSQ larger than 2, a relatively easy APM
item: most persons give the correct answer anyway so it will not lead to
substantial bias. Moreover, outfit problems are less of a threat to measure-
ment than Infit ones (www.rasch.org). There were no items with infit
MSQ measures larger than 1.19.

3.2. Transmission of intelligence

Fig. 3 shows the posterior and posterior predictive distributions of
the variance of 0 of parents and their offspring, based on Model 1.

The posterior predictive distribution of the variance of 6 overlap for
parents and their offspring, that is, the model predicts similar variances
for 0 in children and parents. However, the posterior distributions of
these variances are not equal, their modes are clearly different. The pos-
terior variance of 6 is much larger in parents than in the offspring, and
both variances are not predicted well by the model.

Fig. 4a and b show the posterior and posterior predictive distribu-
tions of the correlation between 6 of monozygotic and dizygotic
twins, based on Model 1. In both the posterior distribution and the
posterior predictive distribution the correlation between 6 in mono-
zygotic twins is higher than the correlation between 6 in dizygotic
twins (looking at the modes). For monozygotic twins the model pre-
dicts a correlation that is a bit lower than the posterior correlation.
For dizygotic twins the model predicts a correlation between 6 of
the offspring similar to its posterior distribution. Fig. 4c shows the
posterior and posterior predictive densities of the correlation be-
tween 6 of father and mother revealing that the model predicts a cor-
relation between 6 of the parents and offspring that is a bit lower
than the correlation found in the posterior distribution. Finally, Fig.
4d shows that Model 1 predicts a correlation between 6 of the par-
ents and 6 of the offspring that is a bit higher than the correlation
found in the posterior distribution.

In sum, the results of the posterior predictive checks show that
Model 1 predicts the four types of familial correlations reasonably
well. There is no indication that dominance would lead to better fit
(genetic dominance would increase the MZ twin correlation relative
to both the DZ twin correlation and the parent-child correlation), nor
would cultural transmission (cultural transmission would lead to
more similar correlations in MZ and DZ twin pairs and parent-child
pairings). However, for the variances of 0 there clearly is model
misfit.

There are two possible explanations for the difference in variance
of 6 between parents and offspring. The first one is that the genetic
influences of intelligence are different for parents and offspring (dif-
ferent h). Several studies show that the genetic variance component
of intelligence is relatively higher for adults than for children
(Bouchard & McGue, 2003; Briley & Tucker-Drob, 2013; Patrick,
2000; Plomin & Spinath, 2004; Reynolds, Finkel, & Zavala, 2014). It
might be the case that the genetic variance component increases
with age also in an absolute sense, thereby increasing total pheno-
typic variance. The alternative explanation is that the absolute size
of the environmental variance component increases with age, so
that the value of e is larger in parents than in their children. Two
new models were fitted, each including a different improvement of
Model 1 based on these two explanations. Model 2 includes different
h for parents and offspring and Model 3 includes different e for par-
ents and offspring. These two models were compared to see which
model showed best model fit. DIC values were computed for the dif-
ferent models. Model 1 had a DIC of 15,240, Model 2 had a DIC of
15,161 and Model 3 had a DIC of 15,155, so Model 3, with different
e for parents and children, showed the lowest DIC value. Posterior
predictive checks were next performed to compare model fit more
closely.

Figs. 5 and 6 show the posterior and posterior predictive distribu-
tions of the variance of 6 of parents and their offspring for different h
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Fig. 4. Posterior and posterior predictive distributions of the correlation between intelligence 6 of monozygotic and dizygotic twins, parents and between parents and offspring, based on
Model 1.
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Fig. 7. Posterior and posterior predictive distributions of the correlation between intelligence 6 of monozygotic and dizygotic twins, parents and between parents and offspring, based on

Model 2.

and e. Fig. 5 shows that for Model 2, the modes of the posterior pre-
dictive distributions of the variance of 6 are not equal for parents and
their offspring. The same pattern is shown in Fig. 6 for Model 3. As
these posterior predictive modes almost coincide with the respective
posterior modes, both these two models fit the data much better
than Model 1.

Fig. 7a, b, c and d show that a model with different parameter h for
parents and children (Model 2) makes good predictions for the correla-
tion in parents and in dizygotic twins, but less so for the correlation in
monozygotic twins and parent-offspring pairings.

Fig. 8a, b, c and d show that Model 3, with different parameter e for
parents and children makes much better predictions regarding all famil-
ial correlations.

In sum, both Models 2 and 3 fit much better than Model 1 with re-
gard to the phenotypic variances of parents and twins. Both Models 2
and 3 predict the correlations in parents and dizygotic twins well, but
the model with different e for parents and offspring (Model 3) fits the
data better compared to the model with different h (Model 2), in
terms of reproducing the parent-offspring correlation and monozygotic
twin correlations.

For Model 3, the posterior mean of ef,ffsp,mg (i.e., the environmental
variance) is 0.31 (SD = 0.056) with 95% credibility interval [0.305,

0.307], the posterior mean of ef,arems is 1.21 (SD = 0.158) with 95%
credibility interval [1.203, 1.209] and the posterior mean of h? (i.e., ge-
netic variance) is 0.74 (SD = 0.094) with 95% credibility interval

[0.734, 0.738].

4. Discussion

Previous studies show mixed results concerning the transmission
of intelligence from parents to children: some showed that resem-
blance is mainly due to the transmission of genes, some showed it
is mainly through cultural transmission, and many studies showed
that there is a mix of these two processes. However, earlier research
is hard to interpret, since in most studies, children and their biolog-
ical or adoptive parents were tested with different tests. Thus, all re-
sults relied on the important assumption that the same phenotype
was assessed in both generations. In order to draw definitive conclu-
sions, one prerequisite is that either parents and children are
assessed with the same measurement instrument (obviously with
comparable reliabilities for both groups), or that one can show evi-
dence that indeed the same phenotype is assessed with the two
tests (and control for any differences in test reliability).
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Fig. 8. Posterior and posterior predictive distributions of the correlation between intelligence 6 of monozygotic and dizygotic twins, parents and between parents and offspring, based on

Here, we re-analyzed data from a study by Van Leeuwen et al.
(2008) on Dutch twins and their biological parents, where children
plying a test linking analysis, that indeed these two test versions
measure the same phenotype. Secondly, by incorporating an IRT-
based measurement model, we were able to correct for differences
in test reliabilities and we were able to study the covariance struc-
ture in twin families. Using this approach we observed a difference
in phenotypic variance across the two generations. Note that such
variance differences go unnoticed when working with standardized
1Q scores. Studying variance differences is important since phenom-
ena such as assortative mating and cultural transmission generally
predict an increase in variance from one generation to the next. Inter-
estingly, here we found a decrease in phenotypic variance. Further
model fitting and model checking showed that this larger phenotyp-
ic variance in the parents was most likely due to a larger environ-
mental variance component: environmental factors explain more

variance in parental intelligence than in children. Such a very simple
model of only additive genetic effects, without dominance genetic

effects and without cultural transmission, fitted the data nicely, as
indicated by predictive posterior checks for the sufficient statistics.
Thus, under this model, all similarity in intelligence among family
members can be explained by additive genetic effects, whereas envi-
ronmental effects only contribute to differences among family
members.

We found that the model with differently sized environmental
variance components for parents and children fitted the data better
than the model with different sized genetic variance components
for parents and children. There are two possible interpretations of
this finding: either this means that in general, intelligence in the
adults is more influenced by environmental effects than in children,
or that in this particular data set, the environmental component was
larger due to the data collection set-up. Regarding the first explana-
tion, previous research shows that the relative size of the genetic var-
iance component in intelligence increases with age (Bouchard &
McGue, 2003; Plomin & Spinath, 2004) and thus that the relative en-
vironmental variance component decreases with age. Even though
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these studies cannot say anything about the absolute sizes of genetic
and environmental variance components, it nevertheless seems un-
likely that we found a general increase of environmental variance
in parents and not of genetic variance. We feel a more likely option
is that the way intelligence was measured in the parents and the
children in the Van Leeuwen et al. (2008) study contributed to the
increased environmental variance in the parents. In the Van
Leeuwen et al. (2008) study, the Raven was assessed in the children
under supervision of a research assistant, whereas the Raven was
assessed unsupervised in the parents. In the data collection, children
were tested during a couple of hours, continuously coached and mo-
tivated to perform to the best of their ability, while parents were
simply asked to do the Raven test while they were waiting for their
children to finish, it being clear that they were not the primary target
for data collection. We therefore believe, without any further evi-
dence, that the best explanation of the difference in phenotypic var-
iance in intelligence that we found here is that there was more
measurement noise in the parents’ data than in the children's data.
Therefore, for future research on covariance among family members,
it is vital to make sure that not only the same phenotype is studied in
all generations (exactly the same, or at least phenotypes that can be
linked), but also that test circumstances are exactly the same for all
participating family members.

The current analysis was possible because we were able to link
two Raven test versions to one common scale. There have been pre-
vious attempts to link the Advanced and Standard forms using raw
score test equating methods (Jensen et al., 1988; Styles & Andrich,
1993), but there the fit of one Rasch model to all items and was not ex-
plicitly tested. The current IRT-based test linking was possible after the
collecting of data on a subset of SPM items and a subset of APM items in
an extra group of adults. Statistical tests showed there was no signifi-
cant differential item functioning of these items across groups. Most im-
portantly, the differences in difficulty level of the SPM item in this
subset was the same in the children as in the adults. This was a prereq-
uisite to link the APM and the SPM items to one and the same common
scale. Further model fitting on the full set of 96 items showed that there
were quite a few SPM items that showed large outfit measures. Howev-
er this is generally to be expected with intelligence tests, that aim to
measure differences across a large range. For such tests where intelli-
gent people have to answer easy questions and dull people have to an-
swer hard questions it is to be expected that intelligent people make
casual mistakes and that dull people accidentally give the correct an-
swer. Outfit problems are less important than infit problems (www.
rasch.org). Fortunately there were no items with problematic infit mea-
sures. Thus, apart from problems that are inevitable with a wide range
in difficulty level (and ability level), these result support the idea that
SPM and APM items measure the same underlying construct. However
it should be pointed out that this conclusion is based on an overlapping
data set of 49 adults and only 26 items of the 96 items. Future research
could look at whether the same conclusions hold when a more varied
set of individuals is given a subset of APM and SPM items (i.e., children,
adolescents, and adults).

Concluding, there is simple transmission of intelligence from parent
to child, consisting of only additive genetic transmission and no cultural
transmission. Furthermore, the variance of intelligence of parents and
children is not the same. This result is explained by different test cir-
cumstances for parents and children.
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Appendix A. JAGS script for model 1

# Model for monozygotic and dizygotic twins and their parents.
Data columns are father items, mother items, twinl items, twin2
items. Model includes phenotypic assortment, no dominance, and no
cultural transmission.

model {

#MZ

for (i in 1:Nmz)
{ MZ.covp:

[i] ~ dnorm(;

tau.cov)

theta.mz[i,1] ~ dnorm(MZ.covparents[i], tau.parentsres)
theta.mz[i,2] ~ dnorm(MZ.covparents[i], tau.parentsres)

A MZ father[i] ~ dnorm(h_inv * theta.mz[i, 1], tau. Aparentsres)
A.MZ.mother[i] ~ dnorm(h_inv * theta.mz[i,2], tau. Aparentsres)

A.MZ.offspring[i] ~ dnorm(0.5*(A.MZ.mother[i] + A.MZ.father[i])+ mu.indv, tau.Ares)

E.MZ.offspring1[i] ~ dnorm(0,1)
E.MZ.offspring2[i] ~ dnorm(0,1)
# E.MZ.offspring1[i] ~ dnorm(0,tau.Etwin) #Use only for different e
# E.MZ.offspring2[i] ~ dnorm(0,tau.Etwin) #Use only for diffcrent ¢

theta.mz[i,3] <- e¥*E.MZ.offspring1[i] + h*A.MZ.offspring[i]
theta.mz[i,4] <- ¢*E.MZ.offspring2[i] + h*A.MZ.offspring[i]
# theta.mz[i,3] <- e*E.MZ.offspring1[i] + h_twin*A.MZ.offspring[i] #Use only for different h
# theta.mz[i,4] <- e*E.MZ.offspring2[i] + h_twin*A MZ.offspring[i] #Use only for different h

for (item in 1:NItemsadv) #father items
{ logit(pmz[i,item]) <- theta.mz[i,1]-beta[item]
MZ[i,item] ~ dbern(pmz[i,item])}

for (item in (NItemsadv+1):(2*NItemsadv)) #mother items
{ logit(pmz[i,item]) <- theta.mz[1,2]-beta[item-NItemsadv]

MZ][i,item] ~ dbern(pmz[i,item])}

for (item in (2*NItemsadv+1):(2*NItemsadv+NItemsstan)) #twin1 items
{ logit(pmz[i,item]) <- theta.mz[i,3]-beta[item-NItemsadv]
MZ[i,item] ~ dbern(pmz[i,item])}

for (item in (2*NI dv+NI +1):(2*NIi dv+2*NI ) #twin2 items
{ logit(pmz[i,item]) <- theta.mz[i,4]-beta[item-NItemsadv-NItemsstan]

MZ[i,item] ~ dbern(pmz[i,item])} }
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#DZ
for (i in 1:Ndz)

{ DZ.covparents[i] ~ dnorm(meanparents, tau.cov)

theta.dz[i,1] ~ dnorm(DZ.covparents[i], tau.parentsres)
theta.dz[i,2] ~ dnorm(DZ.covparents[i], tau.parentsres)

A.DZ father[i] ~ dnorm(h_inv * theta.dz[i,1], tau. Aparentsres)
A.DZ.mother([i] ~ dnorm(h_inv * theta.dz[i,2], tau. Aparentsres)

A.DZ.offspringl[i] ~ dnorm(0.5*(A.DZ.mother[i] + A.DZ. father[i])+mu.indv, tau.Ares)
A.DZ.offspring2[i] ~ dnorm(0.5*(A.DZ.mother[i] + A.DZ.father[i])+mu.indv, tau.Ares)

E.DZ.offspring1[i] ~ dnorm(0,1)
E.DZ.offspring2[i] ~ dnorm(0,1)
# E.DZ.offspring1[i] ~ dnorm(0,tau.Etwin) #Use only for different ¢
# E.DZ.offspring2[i] ~ dnorm(0,tau.Etwin) #Use only for different e

theta.dz[i,3] <- e¥*E.DZ.offspring1[i] + h*A.DZ.offspring1[i]
theta.dz[i,4] <- e¥*E.DZ.offspring2[i] + h*A.DZ.offspring1[i]
# theta.dz[i,3] <- e*E.DZ.offspring1[i] + h_twin*A.DZ.offspring[i] #Use only for different h
# theta.dz[i,4] <- e*E.DZ.offspring2[i] + h_twin*A.DZ.offspring[i] #Use only for different h

for (item in 1:NItemsadv) #father items

{  logit(pdz[iitem]) <- theta.dz[i,1]-beta[item]
DZ[litem] ~ dbern(pdz[i,item])}

for (item in (NItemsadv+1):(2*¥NItemsadv)) #mother items
{ logit(pdz[i,item]) <- theta.dz[i,2]-beta[item-NItemsadv]
DZ[i,item] ~ dbern(pdz[i,item])}

for (item in (2*NItemsadv+1):(2*NItemsadv+NItemsstan)) #twin1 items
{ logit(pdz[i,item]) <- theta.dz[i,3]-beta[item-NItemsadv]
DZ[i,item] ~ dbern(pdz[i,item])}

for (item in (2*NItemsadv+NItemsstan+1):(2*NItemsadv+2*NItemsstan)) #twin2 items
{ logit(pdz[i,item]) <- theta.dz[i,4]-beta[item-NItemsadv-NItemsstan]
DZ[i,item] ~ dbern(pdz[i,item])} }

#Priors

meanparents ~ dnorm(0,.1)
mu.indv ~ dnorm(0,.1)

e ~ dunif(0,4)

e2 <-e*e

h ~ dunif(0,4)

h2 <-h*h

# tau.Etwin ~ dgamma(1,.1) #Use only for different e
totvar <- h2+¢2

h_inv <- h/totvar

#h_twin ~ dunif(0,4) #Use only for different h

mu ~ dunif(0,1)

gamma <- mu*h_inv*h_inv

tau.cov <- 1/(mu * totvar)

tau.parentsres <- 1/((1-mu)*totvar)

tau.Aparentsres <- 1/(1-(h2/totvar))

tau.Ares <- 1/(0.5-0.5*gamma)}

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.intell.2016.06.006.
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