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IMPORTANCE Recurrent microdeletions and duplications in the genomic region 15q11.2
between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders.
These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2
BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is
unknown to what extent this CNV influences brain structure and affects cognitive abilities.

OBJECTIVE To determine the association of the 15q11.2 BP1-BP2 deletion and duplication
CNVs with cortical and subcortical brain morphology and cognitive task performance.

DESIGN, SETTING, AND PARTICIPANTS In this genetic association study, T1-weighted brain
magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV
consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203
deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were
collected from August 2015 to April 2019, and data were analyzed from September 2018
to September 2019.

MAIN OUTCOMES AND MEASURES The associations of the CNV with global and regional
measures of surface area and cortical thickness as well as subcortical volumes were
investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally,
measures of cognitive ability were analyzed in the full UK Biobank cohort.

RESULTS Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754
(51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area
(Cohen d = −0.41; SE, 0.08; P = 4.9 × 10−8), thicker cortex (Cohen d = 0.36; SE, 0.07;
P = 1.3 × 10−7), and a smaller nucleus accumbens (Cohen d = −0.27; SE, 0.07; P = 7.3 × 10−5).
There was also a significant negative dose response on cortical thickness (β = −0.24; SE,
0.05; P = 6.8 × 10−7). Regional cortical analyses showed a localization of the effects to the
frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers
compared with noncarriers on 5 of 7 tasks.

CONCLUSIONS AND RELEVANCE These findings, from the largest CNV neuroimaging study to
date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain
morphology and cognition, with deletion carriers being particularly affected. The pattern of
results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and
suggests involvement of these genes in neuronal plasticity. These neurobiological effects
likely contribute to the association of this CNV with neurodevelopmental disorders.
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C opy number variations (CNVs), deletions or duplica-
tions of stretches of DNA of more than a kilobase
(kb) in size, are an important yet understudied source

of genetic variation,1 covering approximately 12% of the
human genome.2 There is growing evidence that the com-
plex genetic architecture of brain disorders consists of a
combination of both common and rare genetic variation,3

yet the role of CNVs in the etiology of these disorders is
quite unclear. There is an increased burden of CNVs in brain
disorders, in particular those with a neurodevelopmental
component,4,5 and several dozen CNVs have been linked to
neurodevelopmental processes and pathological behavior in
the past decade.5-7 Copy number variations may explain a
sizeable portion of the heritability of brain disorders that is
missed by genome-wide studies of single-nucleotide poly-
morphisms and may also potentially provide valuable
insights into the underlying neurobiology.

The 15q11.2 genomic region between breakpoint 1 (BP1)
and 2 (BP2), which spans from 20.3 Mb to 20.8 Mb (hg18),
contains a recurrent CNV approximately 500 kb in size that is
present in 0.5% to 1.0% of the population.8,9 Four evolution-
arily highly conserved genes are located here: NIPA1, NIPA2,
CYFIP1, and TUBGCP5.10 The first 3 of these genes have known
roles in neurodevelopment and contain polymorphisms asso-
ciated with several brain disorders.11-14 Furthermore, their gene
expression levels are predictive of behavioral and academic
outcomes in individuals with Prader-Willi syndrome,15 a se-
vere neurodevelopmental disorder caused by deletion of the
15q11.2 to 15q13.1 region.

Symptoms of 15q11.2 BP1-BP2 CNV status vary, and many
carriers are not clinically affected.16,17 However, the deletion has
been unequivocally associated with schizophrenia,16,18,19 and in
a meta-study of clinical samples,16 more than half of individu-
als with a 15q11.2 BP1-BP2 deletion presented with neurobehav-
ioral disturbances. Data from population studies further indicate
that deletion carriers unaffected by severe psychiatric and neu-
rodevelopmental disorders have an increased prevalence of
dyslexia and dyscalculia.8,20 However, the reciprocal duplica-
tionhasnotbeenconvincinglyassociatedwithpsychiatricorneu-
rodevelopmental disorders, and duplication carriers perform on
par with controls on cognitive tests.8,20

Neuroimaging provides a unique opportunity to reveal the
neural substrates of CNVs, which can inform our understanding
of the functional relevance of the genes involved and identify
neurobiological mechanisms underlying abnormal human be-
havior and cognition. Studies of the neural correlates of 15q11.2
BP1-BP2 variations have reported copy number dose-response
effectsonbrainregionsassociatedwithpsychosisanddyslexia8,21

aswellasgloballyalteredwhitematterdiffusioncharacteristics.22

However, besides using relatively small sample sizes, these prior
studies focused only on a subset of brain regions and did not in-
vestigate cortical surface area and thickness. These are more spe-
cific measures of cortical morphology possibly more sensitive
to pathological alterations and differentially associated with cog-
nitive abilities and psychiatric disorders.23

Here, we present results from, to our knowledge, the larg-
est CNV neuroimaging study to date, investigating the neural
correlates of the 15q11.2 BP1-BP2 CNVs in 45 756 individuals gath-

ered through the Enhancing Imaging Genetics through Meta-
Analysis (ENIGMA) consortium24 and UK Biobank,25 with a
replication sample from Iceland.8,21 Our primary aim was to
identify whether this CNV is associated with global measures of
brain morphology (ie, intracranial volume [ICV], mean cortical
thickness, and total surface area) and subcortical volumes. We
supplemented our primary analyses with investigations of the
association of 15q11.2 copy number status with so-far unexplored
regional cortical measures and with measures of cognitive per-
formance. Given reported effects on gene expression14,15 and the
literature on 15q11.2 BP1-BP2,8,21 we expected to find 15q11.2 copy
number dose effects on the brain measures and poorer cognitive
performance for deletion carriers.

Methods
Participants
In total, we included data from 45 756 individuals with neuro-
imaging data available. For our main sample, we collected data
from the ENIGMA-CNV working group and the UK Biobank. We
further obtained data from deCODE Genetics21 for use as a rep-
lication sample. Total sample sizes for the main neuroimaging
analyses, split by carrier status, and information on age and sex
are given in Table 1. Most cohorts were population-based stud-
ies, with a mean of 5.6% of individuals diagnosed as having a
brain disorder. eFigure 1 in Supplement 1 and the eTable in
Supplement 2 contain information on study design, sample
demographic characteristics, and references to articles describ-
ing all 37 ENIGMA-CNV working group cohorts, collected up un-
til April 1, 2019. All participants gave written informed consent,
and sites involved obtained ethical approvals.

CNV Calls and Validation
Nearly all cohorts had CNVs called in a unified manner using
PennCNV,26 as described previously.27 Copy number variants
from the Dublin sample were called using Birdseye version
1.5.5 (Birdsuite).28 Samples were filtered based on standard-
ized quality-control metrics,27 and CNVs with at least 40%
overlap with the 15p11.2 BP1-BP2 region were identified and

Key Points
Question How does the 15q11.2 BP1-BP2 copy number variation
affect cortical and subcortical brain morphology and cognitive
performance?

Findings In this genetic association study, using a
discovery/replication design with more than 45 000 individuals,
a dose response of 15q11.2 BP1-BP2 copy number variations on
cortical thickness as well as smaller accumbens and cortical
surface area was found for deletion carriers, particularly in frontal
brain regions. Further, compared with noncarriers, deletion
carriers had poorer cognitive performance.

Meaning These findings point toward altered brain structure for
deletion carriers, implicating aberrant cortical morphology,
thereby providing an improved understanding of the association
of this copy number variation with neurodevelopmental disorders.
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visualized with the iPsychCNV package in R (eFigure 2 in
Supplement 1). All 15q11.2 CNVs identified in individuals with
neuroimaging data were visually inspected, and no false posi-
tives were identified. See eMethods 1 in Supplement 1 for more
details on CNV calling and quality control.

Image Acquisition and Processing
The eTable in Supplement 3 lists technical details concerning
scanners and acquisition parameters. The brain measures were
estimated from T1-weighted magnetic resonance imaging
scans, collected and processed at participating sites in accor-
dance with the ENIGMA protocol. This protocol is based on
standardized image analysis using FreeSurfer Software
Suite version 5.1 to 5.3 (FreeSurfer) and includes harmonized
approaches to quality checks (http://enigma.ini.usc.edu/
protocols/imaging-protocols).

Cognitive Task Performance
The full UK Biobank study consists of approximately 500 000
participants. The 31 247 UK Biobank participants used for the
neuroimaging analyses in the current study are a subset of
these. Many UK Biobank participants have also been tested
with a neuropsychological test battery.20 Here, we studied per-
formance measures on 7 cognitive tasks, performed by at least

10% of the 500 000 participants, following the approach of
Kendall et al.20 This included the pairs matching, reaction time,
fluid intelligence, digit span, symbol digit substitution, and trail
making A and B tasks. Table 2 lists the sample sizes we used
for each task. All measures were recoded so that lower values
indicate poorer performance. More details of our approach can
be found in eMethods 2 in Supplement 1.

Exclusion and Sensitivity Analyses
Analysis of the imaging data, locally preprocessed at each
site, was performed centrally in a mega-analysis with dei-
dentified data. We excluded individuals with a minimum
overlap of 40% with genomic regions containing other
known pathogenic CNVs (eTable 1 in Supplement 1) and first-
degree and second-degree relatives. Only scanner sites with
15q11.2 BP1-BP2 CNV carriers were included. Because of
this and varying numbers of missingness, final discovery
sample size per primary outcome measure varies, as shown
in eTable 2 in Supplement 1. eTables 3-8 and eFigures 3-6
in Supplement 1 list the results of robustness and sensitivity
analyses on the primary outcome measures in the discovery
sample, including tests that (1) exclude individuals with a
known brain disorder diagnosis (2674 [5.4%]), (2) exclude
children (3806 [7.8%]), (3) match each carrier with 4 noncar-

Table 1. Demographic Characteristics of Individuals With Neuroimaging Data Available
Used for the Main Analyses

Characteristic

15q11.2 BP1-BP2 CNV Status

Test Statistica P ValueDeletion Carriers Noncarriers Duplication Carriers
ENIGMA-CNV and UK
Biobank

Total, No. 146 44 266 192 NA NA

Female, No. (%) 75 (51.4) 22 912 (51.8) 101 (52.6) χ2 = 0.06 .97

Age, mean (SD), y 55.4 (19.3) 56.1 (18.4) 55.6 (18.3) F = 0.14 .87

deCODE Genetics

Total, No. 57 981 114 NA NA

Female, No. (%) 31 (54.4) 565 (57.6) 70 (61.4) χ2 = 0.90 .64

Age, mean (SD), y 45.2 (13.9) 46.9 (12.0) 46.3 (12.1) F = 0.58 .56

Total

Total, No. 203 45 247 306 NA NA

Female, No. (%) 106 (52.2) 23 477 (51.9) 171 (55.9) χ2 = 1.95 .38

Age, mean (SD), y 52.6 (17.9) 55.9 (18.3) 52.2 (16.3) F = 9.57 6.9 × 10−5

Abbreviations: CNV, copy number
variation; NA, not applicable.
a Inference carried out using χ2 test

for the sex distribution and analysis
of variance for the age distribution.

Table 2. Results From the Cognitive Task Performance Analysesa

Task

15q11.2 BP1-BP2 CNV Status
Deletion Carriers
vs Noncarriers

Duplication Carriers
vs Noncarriers Dosage

Deletion
Carriers, No.

Noncarriers,
No.

Duplication
Carriers, No. Cohen d (SE) P Valueb Cohen d (SE) P Valueb β (SE) P Valuec

Pairs matching 1790 468 709 2117 −0.05 (0.02) .02 −0.06 (0.02) .003 −0.01 (0.02) .51

Reaction time 1767 464 648 2094 −0.17 (0.02) 2.5 × 10−13 −0.02 (0.01) .47 0.07 (0.02) 9.6 × 10−6

Fluid intelligence 551 154 490 687 −0.28 (0.04) 5.3 × 10−11 0 .96 0.13 (0.03) 9.6 × 10−6

Digit span 180 47 569 192 −0.26 (0.07) .001 0.02 (0.01) .78 0.14 (0.05) .009

Symbol substitution 387 111 900 402 −0.17 (0.05) .001 0 >.99 0.09 (0.04) .02

Trail making A 342 98 495 352 −0.08 (0.04) .13 −0.04 (0.02) .50 0.02 (0.04) .55

Trail making B 342 98 494 352 −0.24 (0.05) 7.1 × 10−6 0 >.99 0.12 (0.04) .002

Abbreviation: CNV, copy number variation.
a Multiple comparison–corrected significance set at P < .003.

b Inference carried out using t tests.
c Inference carried out using linear regression.
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riers, (4) control for population structure by including 4
genetic principal components as covariates, (5) investigate
the role of age in our significant findings by including
an interaction term between copy number and age,
(6) investigate the role of sex in our significant findings
by including an interaction term between copy number and
sex, and (7) run the analyses separately for the UK Biobank
and ENIGMA-CNV cohorts. Please see eMethods 3 in
Supplement 1 for methodological details. Briefly, all results
were highly similar to those obtained in the full sample.

Statistical Analyses
All analyses were carried out in R version 3.5.1 (The R Foun-
dation). Prior to the analyses, we regressed out the effects of
age, age2, and sex from all outcome measures using linear re-
gression. For all brain measures, we included scanner site and
ICV in the set of regressed-out variables. We also reran the
analyses for our primary brain outcome measures without re-
gressing out ICV (eTable 9 in Supplement 1). Subsequently, for
all outcome measures, we applied an inverse normal transfor-
mation to the residuals,27 leading to a mean of 0 and SD of 1.

We ran 2 sets of analyses. First, we carried out two 2-sample
2-sided t tests, comparing deletion or duplication carriers with
noncarriers. Second, we performed dose-response analyses by
regressing the outcome measures on 15q11.2 BP1-BP2 copy
number, coding deletion carriers as 1, noncarriers as 2, and du-
plication carriers as 3.

We took into account multiple comparison corrections by
calculating the number of independent outcome measures
through spectral decomposition of a correlation matrix of
the 3 global, 7 subcortical, and 68 regional cortical measures.
The estimated equivalent number of independent measures
was 35. Given 2 t tests and the dosage analyses, we set
the significance threshold at a P value less than 4.7 × 10−4

(α = .05/[3 × 35]). For the 7 cognitive measures, the number of
independent traits was found to be 6, leading to significance
at a P value less than .003 (α = .05/[3 × 6]).

We further carried out exploratory mediation analyses to
couple the imaging findings with the behavioral findings using

the mediation package version 4.4.7 in R. We report the pro-
portion of the total effect of the CNV on cognitive task perfor-
mance mediated by the brain measures with P values calcu-
lated through quasi-Bayesian approximation using 5000
simulations.

We list the uncorrected P values throughout the article. The
effect sizes reported are Cohen d values with Hedges correc-
tion for t tests and βs from the linear regression for the dose
response analyses.

For replication of the primary results, the Icelandic data
were processed and analyzed as described above. We meta-
analyzed the results from the discovery and replication co-
horts through the metaphor package version 2.0.0 in R, as de-
scribed previously.27

Results
Global Morphology and Subcortical Volumes
Deletion carriers had significantly lower total surface area,
thicker cortices, and lower nucleus accumbens volume than
noncarriers in the discovery sample. The group difference
between deletion carriers and noncarriers in surface area
was also significant in the replication sample, while the
association with mean cortical thickness did not surpass the
multiple comparisons–corrected threshold (eTable 10 in
Supplement 1). Meta-analysis of the 2 samples showed the
same pattern, with significant differences between deletion
carriers and noncarriers on surface area, cortical thickness,
and the nucleus accumbens (Figure 1) (Table 3). The pattern
of results remained very similar when not correcting for ICV
(eTable 9 in Supplement 1).

As can be seen in Figure 1, compared with noncarriers, de-
letion carriers showed higher cortical thickness while dupli-
cation carriers showed lower cortical thickness. This is re-
flected in a significant copy number dose response (Table 3).
eTable 10 in Supplement 1 lists the full results from the linear
regression analyses separately for the discovery and replica-
tion sample.

Figure 1. Association of the 15q11.2 BP1-BP2 Copy Number Variation
With Global and Subcortical Brain Morphology
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Bar plot visualizing Cohen d values
for the difference in brain
morphology measures between
carriers and noncarriers of the
15q11.2 BP1-BP2 copy number
variation, from the meta-analysis
t tests. Error bars indicate standard
errors.
a P < 4.7 × 10−4.
b P < 4.7 × 10−6.
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Regional Cortical Morphology
Following up on the significant association of the 15q11.2
BP1-BP2 CNVs with total surface area and mean cortical thick-
ness, we investigated regional measures. Here, we found a clear
pattern of consistently smaller surface area and thicker corti-
ces for deletion carriers compared with noncarriers, particu-
larly across the frontal lobe, the anterior cingulate, and pre-
central and postcentral gyri (Figure 2). There were also dose
responses in these same regions; duplication carriers showed

an opposite pattern, with larger surface area and thinner cor-
tices than noncarriers, albeit with absolute Cohen d values of
about half of those observed for the pairwise comparisons be-
tween deletion carriers and noncarriers. For the full results per
brain region, see eTable 11 in Supplement 1.

Cognitive Function
The deletion carriers differed from the 2 other groups on the
measures of cognition, with lower performance on all tasks,

Figure 2. Association of the 15q11.2 BP1-BP2 Copy Number Variation With Regional Cortical Brain Morphology

Surface areaA

Cortical thicknessB

Deletion carriers vs noncarriers Duplication carriers vs noncarriers Dosage

Deletion carriers vs noncarriers Duplication carriers vs noncarriers Dosage
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Results from t tests and linear regression of 15q11.2 BP1-BP2 copy number
variation on regional surface area (A) and cortical thickness (B). The effect sizes
in the deletion carriers vs noncarriers and duplication carriers vs noncarriers
columns are Cohen d values, and the effect sizes in the dosage columns are

β coefficients. Black demarcations around a brain region indicates it passes the
multiple comparisons–corrected significance threshold of P < 4.7 × 10−4, with
thicker lines indicating more significant findings.

Table 3. Meta-analysis Results on Each of the Primary Brain Morphology Measuresa

Brain Morphology Measure

Deletion Carriers vs Noncarriers Duplication Carriers vs Noncarriers Dosage

Cohen d (SE) P Valueb Cohen d (SE) P Valueb β (SE) P Valuec

Accumbens −0.27 (0.07) 7.3 × 10−5 0 (0.06) .99 0.12 (0.05) .02

Caudate −0.10 (0.08) .18 −0.02 (0.06) .70 0.03 (0.05) .59

Pallidum −0.14 (0.07) .04 0 (0.05) .96 0.06 (0.05) .19

Putamen −0.08 (0.07) .28 −0.14 (0.06) .01 −0.04 (0.05) .42

Thalamus −0.07 (0.07) .32 −0.10 (0.06) .09 −0.02 (0.05) .61

Amygdala −0.07 (0.07) .38 0.05 (0.06) .35 0.07 (0.05) .17

Hippocampus −0.15 (0.08) .05 0.07 (0.06) .23 0.10 (0.05) .03

Surface area −0.41 (0.08) 4.9 × 10−8 −0.05 (0.06) .39 0.14 (0.05) .005

Thickness 0.36 (0.07) 1.3 × 10−7 −0.18 (0.06) .002 −0.24 (0.05) 6.8 × 10−7

Intracranial volume 0.04 (0.07) .57 −0.06 (0.06) .30 −0.04 (0.05) .46
a Multiple comparison–corrected significance set at P < 4.7 × 10−4.
b Inference carried out using t tests.
c Inference carried out using linear regression.
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reaching multiple comparison-corrected significance for 5 of
7 tasks. In contrast, duplication carriers performed similarly
to noncarriers on all tasks.

Larger ICV and total surface area were associated with
higher performance on nearly all tasks (eAppendix 1 in Supple-
ment 1). Generally, frontal cortical surface regions were asso-
ciated with task performance, particularly for the fluid intel-
ligence and trail making B tasks. Further, in the exploratory
mediation analyses, there was significant mediation only on
2 tasks; total surface area accounted for 4% of the lower fluid
intelligence task results of deletion carriers, while mean
cortical thickness accounted for −2% of this (eAppendix 1 in
Supplement 1). For the trail making B task, total surface area
and the nucleus accumbens accounted for 10% and 4%, re-
spectively, of the lower performance of deletion carriers. The
regional cortical measures indicated localization of the me-
diation to frontal and cingulate regions. For the full results,
please see the eAppendix 1 in Supplement 1.

Discussion
Here, we report results from, to our knowledge, the largest
study to date assessing associations of the 15q11.2 BP1-BP2 CNV
with brain structure and cognitive function. We found that de-
letion carriers have widespread aberrant brain morphology and
poorer cognitive performance.

Most notably, we found smaller surface area and thicker
cortices for deletion carriers compared with duplication car-
riers and noncarriers, as well as a clear copy number dose ef-
fect on thickness. Surface area and cortical thickness are 2
complementary morphometric features of the cortex, thought
to capture mostly distinct neurodevelopmental and aging
processes29 and to be genetically independent of each
other.30,31 Increasing surface area combined with apparent cor-
tical thinning, often termed cortical stretching, is a phenom-
enon primarily observed during neurodevelopment.32-34 It may
reflect an important optimization process, as areal expansion
appears a more efficient way to improve brain connectivity than
increasing cortical thickness.35 This is thought to result from
a combination of mechanisms, including synaptic pruning and
dendritic arborization leading to flattening of the cortex34,36

as well as increases in myelination and axon caliber causing it
to stretch tangentially to the surface.37 Additionally, differ-
ences in myelination may influence magnetic resonance
imaging contrast and thereby cortical thickness estimates, with
greater myelination leading to apparent cortical thinning by
shifting the gray/white matter boundary deeper into the
cortex.38 In line with this, rats with CYFIP1 haploinsuffi-
ciency, one of the genes within the 15q11.2 region, have low-
ered myelination.39 On the other hand, a 2019 study22 re-
ported a negative dose response of this CNV on white matter
diffusion measures in humans, with deletion carriers having
higher fractional anisotropy. Therefore, future neuroimaging
studies of this CNV may particularly focus on white matter mi-
crostructure and the gray/white matter boundary.

Our follow-up analyses mapping the association of the
15q11.2 BP1-BP2 CNV with regional measures of cortical sur-

face area and thickness indicated localization to the frontal and
cingulate cortices as well as the precentral and postcentral gyri.
The frontal and cingulate regions are key regions for cogni-
tive control, as also suggested by our brain to cognition analy-
ses, and linked to brain disorders. The involvement of the pre-
central and postcentral gyri is in line with a 2019 diffusion
tensor imaging study of 15q11.2 BP1-BP2 CNV carriers,22 find-
ing the strongest effects in the posterior limb of the internal
capsule, a key sensorimotor relay area implicated in schizo-
phrenia and autism spectrum disorder, which may explain
some of the motor delays associated with this CNV. As such,
our findings add to reports of a 15q11.2 BP1-BP2 copy number
dose response on the structure of brain regions associated with
cognition and brain disorders.8 It should be noted that our find-
ings of thicker cortices in deletion carriers is contrary to the
cortical thinning generally observed in individuals with some
brain disorders, such as schizophrenia,40 suggesting at least
partly differing neural mechanisms. This may contribute to the
incomplete penetrance of this CNV and the variation in clini-
cal profile of deletion carriers.

Altered gene expression due to 15q11.2 structural varia-
tion may affect the mechanisms underlying cortical morphol-
ogy and myelination in a dose-dependent manner. Carriers of
15q11.2 BP1-BP2 duplication have 70% higher mRNA levels
of all 4 genes in this region compared with noncarriers, and
of these 4, CYFIP1 and NIPA1 are highly expressed in the de-
veloping brain.14 These 2 genes are also key players in a num-
ber of processes contributing to brain plasticity, including axon
outgrowth and dendritic spine formation.41-43 Experimen-
tally induced low expression of CYFIP1, a known actin regu-
lator, leads to a reduction in the number of mature oligoden-
drocytes and lower myelination,39 while overexpression leads
to an increase in dendritic complexity and an increased im-
mature spine number.44 Furthermore, common CYFIP1 poly-
morphisms that influence its expression levels have been linked
to variation in cortical surface area.45 Of note, rodents with
lower or higher expression of CYFIP1 show behavioral inflex-
ibility and poor social interaction, which may correspond partly
to the observed social difficulties of some 15q11.2 BP1-BP2 CNV
carriers.39,46

For subcortical regions, we found that deletion carriers had
significantly smaller relative volume of the nucleus accum-
bens compared with noncarriers. This replicates the findings
on 15q11.2 BP1-BP2 of a 2019 UK Biobank magnetic resonance
imaging study of CNVs associated with schizophrenia47 using
a sample that is 5-fold larger. This structure is central in be-
havioral adaptation on the basis of experience-dependent syn-
aptic plasticity.48,49 CYFIP1-haploinsufficient mice show re-
duced gene expression specifically in the nucleus accumbens,
together with compulsive-like behavior.50 Furthermore, al-
tered dendritic morphology of both the nucleus accumbens and
frontal brain regions results in behavioral and cognitive ab-
normalities analogous to those seen in schizophrenia.51 Low-
ered gene expression leading to reduced axon outgrowth and
dendritic spine formation, influencing cortical morphology,
may therefore also contribute to smaller volume of the accum-
bens for 15q11.2 BP1-BP2 CNV deletion carriers and lead to psy-
chopathology.
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In line with the results from the brain morphology analy-
ses, we found deletion carriers to perform worse on the tasks
measuring cognitive ability. This is the same pattern as re-
ported previously for the 15q11.2 BP1-BP2 CNV, with only de-
letion carriers having reduced performance and duplication
carriers not performing differently from noncarriers.8 We find
that cognitive ability is broadly affected, with the largest ef-
fect size found for the fluid intelligence task. The digit span
task, reliant on working memory, and the trail making B task,
testing visual attention, were further among the most strongly
affected. The broader effect compared with previous studies
may be due to our larger sample size, enabling differences ob-
served in this study to reach significance; indeed, the effect
sizes here are in the same range as previously reported.8 Our
findings of widespread differences in brain morphology, par-
ticularly across the frontal cortex, attest to broadly affected cog-
nitive ability, as also supported by our follow-up analyses of
the association of the brain measures with cognition. This is
consistent with the behavioral profile of associated neurode-
velopmental disorders and previous findings of links be-
tween CNVs and levels of intelligence.52

Despite significant dose responses on cortical measures, du-
plication carriers performed similarly to noncarriers on the cog-
nitive tasks. The 15q11.2 BP1-BP2 duplication has been linked to
neurodevelopmental disturbances in clinical populations,14,19

yet not in population samples,8 while the UK Biobank sample
consists of older individuals (older than 45 years) with a signifi-
cant healthy volunteer bias53 and a strong underrepresentation
of neurodevelopmental disorders. Further, the interactome of
CYFIP1 is highly enriched for genes implicated in neurological
disorders,41 and there are strong indications that the effects of
CNVs involve complex genetic interactions.54 Therefore, the ef-
fect on pathological brain development and brain disorders may
be dependent on other risk factors, contributing to the lack of sig-
nificant results for cognition in duplication carriers as well as the
clinical variability of this CNV.

Limitations
This study has limitations. Several interesting findings did not
pass the multiple comparisons–corrected significance thresh-
old in the replication sample, which may have been because

of its relatively small size. In addition, in this exploratory study,
we made use of cross-sectional samples containing few young
children, preventing any claims about whether the observed
effects are neurodevelopmental in nature. Therefore, more fo-
cused studies are needed to confirm and follow up on our find-
ings, ideally with longitudinal data, to investigate when this
CNV exerts the identified effects. Confirmation of the CNV calls
was based on visual inspection, not at the DNA level, which
allows for the possibility of false negatives. However, it should
be noted that the observed frequency of carriers is in line with
previous studies and that the results are consistent across dif-
ferent single-nucleotide polymorphism arrays. Future stud-
ies should aim to include other imaging measures, such as
white matter microstructure and cerebrospinal fluid, and strive
to identify resilience mechanisms involved in protecting a sub-
set of CNV carriers.

Conclusions
To conclude, we found a significant association of the 15q11.2
BP1-BP2 CNV with brain structure and cognitive performance
of its carriers, improving our understanding of the nature of
its association with brain disorders. To our knowledge, we re-
port for the first time how the 15q11.2 BP1-BP2 deletion affects
cortical structures in humans in a large sample. The observed
effects are consistent across cohorts. Our well-powered sample
enabled the discovery of a distinct pattern of lower surface area
and thicker cortices of brain regions underlying high-level cog-
nitive functions in deletion carriers. This suggests plausible bio-
logical mechanisms that might contribute to disorders asso-
ciated with this CNV, not influenced by reverse causation and
treatment effects. We further provided evidence that 15q11.2
BP1-BP2 deletion broadly affects cognition in a population
sample, stressing the importance of incorporating CNV re-
search in our understanding of public health.55 Our findings
fit with the known molecular functions of the genes covered
by this CNV and are consistent with reports of their behav-
ioral correlates. This work has potential clinical utility insofar
as it contributes to evaluation and stratification that in time
may allow for more optimal intervention.
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