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Human Twinning Is Not Linked to the Region of
Chromosome 4 Syntenic With the Sheep Twinning
Gene FecB
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The tendency to dizygotic (DZ) twinning is
inherited in both humans and sheep, and a
fecundity gene in sheep (FecB) maps to
sheep chromosome 6, syntenic with human
4q21-25. Our aim was to see whether a gene
predisposing to human DZ twinning map-
ped to this region. DNA was collected from
169 pairs and 17 sets of 3 sisters (trios) from
Australia and New Zealand who had each
had spontaneous DZ twins, mostly before
the age of 35, and from a replication sample
of 111 families (92 affected sister pairs) from
The Netherlands. Exclusion mapping was
carried out after typing 26 markers on
chromosome 4, of which 8 spanned the
region likely to contain the human homo-
logue of the sheep FecB gene. We used
nonparametric affected sib pair methods
for linkage analysis [ASPEX 2.2, Hinds and
Risch, 1999]. Complete exclusion of linkage
(lod<ÿ2) of a gene conferring a relative risk
for sibs as low as 1.5 (ls > 1.5) was obtained
for all but the p terminus region on chromo-
some 4. Exclusion in the syntenic region was
stronger, down to ls�1.3. We concluded that
if there is a gene in¯uencing DZ twinning on
chromosome 4, its effect must be minor.
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INTRODUCTION

Natural pregnancy in women leading to dizygotic
(DZ) twins clusters within individuals and in families
and is under genetic control. Bulmer [1970] estimated
that the probability of a subsequent twin pregnancy
was increased fourfold in mothers of twins. Mothers
and daughters of women who have had DZ twins are 1.8
times more likely than average to have DZ twins
themselves, and sisters of women who have had DZ
twins are 2.6 times more likely to have DZ twins
[Bulmer, 1970]. An analysis of data on twin relatives of
6,596 proband twin pairs in the Australian Twin
Registry found similar relative risks [Lewis et al.,
1996]. From either set of ®gures, the combined risk to
®rst degree female relatives is in excess of 2 [compar-
able with breast cancer; Claus et al., 1991]. Using the
relative risks quoted above, Bulmer [1970] postulated a
recessive mode of inheritance with a gene frequency of
0.5 and a penetrance (by mother) of approximately 0.05.
However, recent segregation analysis of a Belgian/
Dutch population based study of twinning pedigrees
suggests an alternative model [Meulemans et al., 1996].
The inheritance of DZ twinning was modeled in the
maternal ancestors of 1,422 DZ probands. A dominant
model was favored, with gene frequency 0.03 and
penetrance 10%. Sporadic and polygenic models were
also rejected.

Strong evidence for major genes in¯uencing ovula-
tion rate and multiple birth comes from several animal
models. A locus on the sheep X chromosome (FecXI)
increases the frequency of multiple ovulation in
heterozygous female carriers [MIA number 000386;
Davis et al., 1991]. Homozygous female carriers of the
FecXI locus are infertile, with streak ovaries severely
depleted of follicles with more than a single layer of
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granulosa cells [Davis et al., 1992]. A locus with
codominant inheritance for increased multiple ovula-
tion in Booroola Merino sheep (FecB) maps to sheep
chromosome 6 [MIM number 134720; MIA number
000383; Montgomery et al., 1993, 1994]. Several studies
provide evidence for a gene affecting ovulation rate on
pig chromosome 8 [Rathje et al., 1997; Rohrer, 1999;
Wilkie et al., 1999], a region syntenic with sheep
chromosome 6. The gene responsible may be the porcine
homologue of the FecB locus, but gene order is not
conserved between pig chromosome 8 and sheep
chromosome 6 [Johansson et al., 1992; Ellegren et al.,
1993; Lord et al., 1996]. Further comparative mapping
is required to de®ne the region of synteny.

The FecB locus is an important candidate for a DZT
gene in humans. In sheep, the FecB locus maps to
chromosome 6 between the alcohol dehydrogenase clus-
ter and secreted phosphoprotein 1 [SPP1; Montgomery
et al., 1993; Lord et al., 1996; Lumsden et al., 1999].
Comparative mapping has established that human
chromosome 4 from 4p16 to 4q26 is syntenic with sheep
chromosome 6 [Lord et al., 1996], although gene order is
not conserved. On sheep chromosome 6, the region from
platelet derived growth factor receptor, alpha polypep-
tide (PDGFRA), to bone morphogenetic protein 3
(BMP3) appears to be inverted with respect to SPP1
on human chromosome 4 [Lord et al., 1996]. Dentin-
speci®c acidic phosphoprotein (DMP1) has recently
been mapped in sheep and is located approximately 70
cM distal to SPP1 [Lumsden et al., 1999]. In contrast,
DMP1 maps close to SPP1 in the human, within the
same yeast arti®cial chromosome approximately 470 kb
from SPP1 [Aplin et al., 1995]. The location of DMP1 in
the two species de®nes the inversion breakpoint close to
SPP1 and just outside the critical region for the FecB
locus [Lumsden et al., 1999]. Comparing maps from the
human and the sheep, the region most likely to contain
the human homologue for the FecB locus is a 16 cM
region from D4S231 to D4S411 (Fig. 1).

DZ twinning presents dif®culties for traditional
linkage analysis in extended pedigrees because the
penetrance is low and gene frequencies are unknown.
Males and nulliparous females cannot be scored for the
trait. Multiparous females may fail to express the trait
because multiple ovulation only occurs in some cycles,
or because of partial failure of multiple pregnancy. In
such circumstances, the affected relative pair method is
particularly attractive since it makes no assumptions
about mode of inheritance, merely expecting that
affected relatives will share linked marker loci more
often than Mendelian expectation would allow. The
aims of the present study were to genotype markers
from chromosome 4 and analyze linkage to DZ twinning
in families with affected sister pairs.

MATERIALS AND METHODS

Subjects

Study subjects were pairs of sisters who had each
given birth to spontaneous DZ twins. These were
ascertained through records from our genetic epide-
miological studies using twins and their families in

Australia [Lewis et al., 1996], through organizations for
mothers of twins in Australia and New Zealand (ANZ),
and through appeals in the media in both countries. In
Holland (NL), ascertainment was population based
through community records as part of a systematic
recruitment to the Netherlands Twin Register [Meule-
mans et al., 1996]. Mothers were explicitly asked about
fertility treatments and all cases involving fertility
treatment were excluded. Women were also excluded if
the zygosity of the twins could not be con®rmed based
on difference in sex or clear phenotypic differences in
coloring or appearance. In some equivocal cases,
zygosity was con®rmed by genetic marker analysis of
buccal or lymphocyte DNA.

Individuals were recruited from 165 pairs and 17 sets
of 3 sisters (trios) from ANZ who had each had
spontaneous DZ twins, mostly before the age of 35,
and from a replication sample of 110 families (92
affected sister pairs) from The Netherlands. Blood
samples were obtained from all subjects and from
available parents or unaffected sibs for future associa-
tion analyses.

Genotyping

Genomic DNA was extracted [Miller et al., 1988] from
peripheral venous blood samples obtained from con-
senting family members. DNA samples were genotyped
for 18 highly polymorphic ¯uorescent microsatellite
markers across chromosome 4 (see Fig. 2), as described
by Hall and Nanthakumar [1997]. In brief, individual

Fig. 1. A comparison of the genetic maps for sheep chromosome 6 and
human chromosome 4 in the region of the sheep fecundity gene FecB. The
map for sheep chromosome 6 is redrawn from published data [Lord et al.,
1996; Lumsden et al., 1999] and data from the sheep mapping data-
base (http://www.ri.bbsrc.ac.uk/cgi-bin/arkdb/browsers/browser.sh?species�
sheep). The linkage map for human chromosome 4 is inverted and drawn
from the CHLC chromosome 4 version 3.0 sex averaged recombination
minimization map (http://lpg.nci.nih.gov/CHLC/). Gene locations were taken
from the Genetic Location Database (http://cedar.genetics.soton.ac.uk/
public_html/ldb.html). There is an inversion of gene order between the
species with the breakpoint between SPP1 and DMP1 in sheep just outside
the critical region containing the FecB locus [Lumsden et al., 1999].
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DNA samples were arrayed in 96-well microtiter plates
and samples were ampli®ed by PCR with primers for
individual markers. The ampli®ed products were
pooled, heat denatured, and subjected to electophoresis
on denaturing polyacrylamide gels. Data were collected
using ABI 377 automated DNA sequencers, with data
analysis performed using GENESCAN (version 2.1)
and GENOTYPER (version 1.1.1) software. Allele
analysis and allele calling were performed and geno-
type errors as a result of non-Mendelian segregation in
pedigrees were detected and corrected as described
previously [Hall and Nanthakumar, 1997].

Additional microsatellite markers were identi®ed in
the critical region of chromosome 4 and 8 markers
(D4S2380, D4S2407, D4S1628, D4S2626, D4S2634,
D4S1647, D4S411, and D4S3256) were typed in a
larger set of pedigrees. DNA samples were ampli®ed by
PCR with primers for individual markers. The ampli-
®ed products were pooled, heat denatured, and sub-
jected to electrophoresis on denaturing polyacrylamide
gels. Data was collected using ABI 373 automated DNA
sequencer, with data analysis performed using GEN-
ESCAN (version 2.1) and GENOTYPER (version 1.1.1)
software. Allele analysis and allele calling were

performed and genotype errors as a result of non-
Mendelian segregation in pedigrees were detected and
corrected.

Statistical Methods of Linkage Analysis

The dataset comprised 421 sibships from 292 families
where genotype data were available for at least one
marker. Genotype data for the 18 microsatellite
markers were obtained from 165 sister pairs and 17
sets where three sisters had DZ twins. Both nonpara-
metric and parametric linkage analyses were per-
formed. The nonparametric multipoint affected sib
pair linkage analysis was carried out using the program
SIB_PHASE from the ASPEX 2.2 suite of programs
[Hinds and Risch, 1999]. We present both the max-
imum lod score results, and an exclusion map expressed
as the sibling relative risk (ls) associated with a lod
score of ÿ2 under an additive model for the ibd
probabilities. The multipoint parametric lod scores
were calculated using Genehunter 2.0r2 beta [Kru-
glyak et al., 1996; Kruglyak and Lander, 1998] under
the two segregation models described earlier. As a ®nal
check, a multiallelic transmission-disequilibrium test

Fig. 2. Multipoint exclusion map of sibling risk ratio (ls) of DZ twinning due to loci on chromosome 4.

184 Duffy et al.



using the program Sib-pair [Duffy, 1999] was also
performed for each marker through the critical region.

RESULTS

There was no evidence for linkage to a gene affecting
DZ twinning in the likely region for the human
homologue of the sheep fecundity locus FecB. Multi-
point analysis with 26 microsatellite markers from
chromosome 4 excluded linkage to a locus with a
relative risk of 1.5 (ls > 1.5) across the chromosome
except at the p terminus region (Fig. 2). Eight markers
were typed in the critical region expected to contain the
human homologue of the FecB locus in sheep
(D4S1534±D4S3256). There was complete exclusion of
linkage (lod <ÿ2) of a gene conferring relative risk 1.3
(ls > 1.3) in this region (Fig. 2). The lod scores in the
critical region with the two models never exceededÿ4.0
(data not shown).

DISCUSSION

The human homologue of the FecB locus in sheep is a
strong candidate for a DZ twinning gene in humans. In
sheep, the FecB locus is autosomal with codominant
expression, leading to increased multiple ovulation and
litter size. The phenotype of carriers of the FecB locus
has similarities to physiological changes reported in
mothers of DZ twins.

The number of follicles that ovulate during repro-
ductive cycles is characteristic for each mammalian
species. Selection of the dominant follicle that will
subsequently ovulate occurs at the time of luteal
regression and is related to rising concentrations of
follicle-stimulating hormone (FSH) around this time
[Baird, 1983; Campbell et al., 1995]. Concentrations of
FSH that exceed a threshold concentration for an
extended time during the period of follicle selection can
lead to growth of multiple follicles [Baird, 1983; Camp-
bell et al., 1995]. Ewes carrying the FecB mutation have
striking differences in the size and number of ovulatory
follicles compared with the background breed [McNatty
and Henderson, 1987; Montgomery et al., 1992].
Extensive studies by McNatty and colleagues have
demonstrated small but consistent increases in FSH
concentrations in homozygous carriers of the FecB
mutation compared with non-carriers (��) ewes
[McNatty and Henderson, 1987; Montgomery et al.,
1992]. FSH concentrations in heterozygous carrier (B�)
ewes are intermediate. The increase in FSH concentra-
tions has not been recorded in all studies [Baird and
Campbell, 1998] and variable results in different
studies may be related to study design and the genetic
background of the animals. Alternatively, the FecB
gene product may act directly in the ovary, leading to
secondary changes in gonadotrophin concentrations.

Growth and ovulation of multiple follicles has been
shown to be more frequent in mothers of DZ twins
[Martin et al., 1991b; Gil®llan et al., 1996]. In ovarian
ultrasound scans taken over a number of cycles in 21
mothers of DZ twins and 18 controls, multiple large
follicles were signi®cantly more frequent in mothers of
DZ twins. Multiple large follicles were observed in one

individual in 7 out of 10 cycles in which she was
scanned [Gil®llan et al., 1996]. Increased concentra-
tions of FSH have been reported in mothers of DZ twins
[Nylander, 1973; Martin et al., 1991a; Martin et al.,
1991b]. In the case of hereditary DZ twinning, it
appears that elevated FSH concentrations are asso-
ciated with the number of FSH pulses in the early
follicular phase of the menstrual cycle [Lambalk et al.,
1998]. However, similar to studies in sheep carrying the
FecB mutation, signi®cant increases in FSH concentra-
tions have not been recorded in all studies [Gil®llan
et al., 1996].

The results from the present linkage study on
chromosome 4 exclude the human homologue of the
FecB locus from a major role in the genetic contribution
to DZ twinning in women. The critical region for the
FecB locus covers a 10 cM region from the ADH gene
cluster to SPP1 [Lord et al., 1998]. This region lies
outside an inversion breakpoint between sheep chro-
mosome 6 and human chromosome 4, and the order of
genes within the critical region appears to be conserved
between the human and the sheep [Lumsden et al.,
1999]. Comparative mapping (Fig. 2) demonstrates that
the critical region spans a region on human chromo-
some 4q including 7 markers (D4S2380 to D4S411)
typed in our families. If mutations in the human
homologue of the FecB locus are present in the human
population, the effect of any mutations on DZ twinning
must be small or contribute only to a small number of
families.

Multipoint analysis with 26 markers across chromo-
some 4 excluded linkage to a twinning gene, conferring
a relative risk of 1.5 across the whole chromosome
except for the telomeric regions. One additional can-
didate gene on chromosome 4 that could in¯uence
multiple ovulation and twinning frequency is the re-
ceptor for gonadotrophin releasing hormone receptor
(GnRHR). The ligand for GnRHR (gonadotrophin
releasing hormone) is released from the hypothalamus
in discrete pulses and transported to the pituitary
gland via the hypothalamic-hypophyseal portal system
where it acts through the receptor to stimulate the
synthesis and release of FSH and luteinizing hormone
(LH). Variations in FSH concentration may play a
major role in the mechanism of DZ twinning [Baird and
Campbell, 1998; Lambalk et al., 1998], and genes
controlling FSH synthesis and release are candidates
for a DZ twinning locus. GnRHR is located at 4p21.2
[Kottler et al., 1995] and was not linked to DZ twinning
in the present study. In other work [Montgomery et al.,
2000], we have excluded plausible candidate loci acting
in this pathway found on chromosome 2, notably the
FSH receptor (FSHR), a-inhibin (INHA) and the bB-
inhibit subunit (INHAB).

We conclude that if there is a gene in¯uencing DZ
twinning on chromosome 4, its effect must be minor.
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