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The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increas-
ingly complex cognition. These processesmay, however, also result in the appearance or disappearance of specif-
ic neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed
during adolescence, how genetics shape this change, and how these changeswere related to attention problems,
we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and
18 years of age). Attention problemswere assessedwith the SWAN atwaves 12, 14, and 16. To characterize func-
tional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording
time of 5 min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter pe-
riods. Increased TSmay reflect the brain's tendency to maintain stability, achieve focused attention, and thus re-
duce “mind wandering” and attention problems. The results indicate that brain TS is increased across the scalp
from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations)
was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain
TS at eachwave were positively correlated with attention problems but not significantly. High and low attention
problems subjects showed different developmental trajectories in TS, whichwas significant in a cluster of frontal
leads. These results indicate that trajectories in brain TSdevelopment are a biomarker for the developing brain. TS
in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These
results suggest that high and low attention problems subjects are at different stages of brain development.

© 2016 Published by Elsevier B.V.
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1. Introduction

ADHD is a highly prevalent neurodevelopmental disorder that has
been the target of many (neuro)biological investigations. One impor-
tant feature of ADHD is that during adolescence and into young adult-
hood a decrease in prevalence is observed (Faraone et al., 2006; Hart
et al., 1995). Persistence of ADHD symptoms is generally low (ranging
15–65%, depending on rater type and the threshold in the definition of
persistence) (Faraone et al., 2006). At the same time, the brain shows
evidence for large developmental changes, as revealed in anatomical
(imaging) studies (Casey et al., 2000; Fornari et al., 2007; Giedd and
Rapoport, 2010; Huttenlocher, 1979; Iglesias and Villa, 2006). Cortical
thickness developmental trajectories suggested that ADHD subjects
show a developmental delay compared to controls (Castellanos et al.,
2002; Shaw et al., 2007). This may explain part of the relatively low
t 1, 1081 BT Amsterdam, The
persistence of ADHD symptoms, or the possible reduced experience of
symptom severity (Faraone et al., 2006).

Symptoms of ADHD include cognitive elements, foremost attention
deficits and executive function (Barkley, 1997). What brain processes
underlie the brain tendency to lose focus has become the focus of recent
investigations (e.g., (Christoff, 2012; Mason et al., 2007; Weissman et
al., 2006). One specific line of research investigates spontaneous brain
activity, including resting-state dynamics of brain activity. These inves-
tigations have revealed that an essential property of the human brain is
to continuously fluctuate in activity level. Patterns of temporal covaria-
tion in brain activity have revealed spatially distributed networks (Rest-
ing State Networks (Damoiseaux et al., 2006; Raichle et al., 2001;
Stevens et al., 2009)). These networks are surprisingly fixed and consis-
tent spatially within and between individuals. However, brain activity
shows surprising instability and fluctuation along the temporal dimen-
sion with fast switches in brain states and relatively stable periods in-
between (Ville et al., 2010). It has been suggested that these continuous
fluctuations are the source of mind wandering and inattention (van
Leeuwen and Smit, 2012).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpsycho.2016.07.498&domain=pdf
http://dx.doi.org/10.1016/j.ijpsycho.2016.07.498
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http://dx.doi.org/10.1016/j.ijpsycho.2016.07.498
http://www.sciencedirect.com/science/journal/01678760
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Fluctuations in brain activity do not show a simple Gaussian distri-
bution but show temporal correlations with random walk signature.
Brain activity signals in EEG, MEG and fMRI have been shown to follow
power-law spectra P=1/fαwhereα is the power-law exponent and re-
flects the speed of decay in autocorrelation (He, 2014; He et al., 2010;
Linkenkaer-Hansen et al., 2007; Smit et al., 2011; Ville et al., 2010).
This power-law is consistent with the brain being in a so-called critical
state (Bak and Tang, 1987; Haldeman and Beggs, 2005; Poil et al., 2012).
Other lines of research found evidence for criticality via avalanche dy-
namics with a similar scale-free properties (Haldeman and Beggs,
2005; Palva et al., 2013; Petermann et al., 2009; Shew et al., 2011,
2009). Complex systems like the brain that are at or near a critical
state have been shown to possess favorable computational properties,
including high dynamic range in representational capacity and flexibil-
ity (Kello et al., 2010; Kinouchi and Copelli, 2006; Poil et al., 2012). In-
terestingly, however, the exponent \alpha is not a fixed value, but
shows strong interindividual differences that are heritable and stable
(Linkenkaer-Hansen et al., 2007; Smit et al., 2011). Since \alpha reflects
the speed of decay in autocorrelation—with high values reflecting stron-
ger autocorrelation, longer propagation of brain states and thus stronger
deviation from baseline—variability in \alpha may reflect the temporal
stability (TS) of the brain, where high valuesmay reflect increasedwan-
dering of brain states (Smit et al., 2013). Moreover, previous results
have shown that individual variation in the exponent \alpha is able to
predict temporal dynamics in simple cognitive and motor tasks (Palva
et al., 2013; Smit et al., 2013).

For these reasons, we hypothesize that brain TS might be a valuable
endophenotype for the tendency of the brain towander, and thus atten-
tion problems. Due to the high temporal resolution of EEG,
endophenotypes extracted from brain activity that reflect temporal dy-
namics may be particularly useful. In addition, many EEG based param-
eters are highly heritable (deGeus, 2010), fulfilling the one requirement
to serve as endophenotype for heritable traits like attention problems.
Variation in attention problems measured with self-report and mother
rating questionnaires has been shown to be a highly genetic trait
(Derks et al., 2007; Hudziak et al., 2005; Polderman et al., 2007). Brain
TS has also been shown to be heritable at 16 to 19 years of age. More-
over, TS of oscillations in alpha and beta bands have been shown to
have an inverted-U developmental curve across the lifespan (Smit et
al., 2011). Late adolescence (age 16 to 18) showed a particularly strong
development in TS in the alpha band.

Here, we will expand findings from the extant literature in several
ways. First, we will establish whether the previously observed change
in brain TS also shows heritability and change in earlier puberty by in-
cluding ages 12 and 14). Next, we will establish whether change in TS
is heritable. Next, wewill investigate if brain TS is correlatedwith atten-
tion problems. Finally, we will investigate whether developmental tra-
jectories in TS are related to attention problems, since evidence from
MRI derived anatomy suggests that ADHD sufferers may show lagged
brain development compared to normal controls (Castellanos et al.,
2002). To achieve these aims, we will use a large longitudinal EEG
twin dataset to investigate the genetics of brain TS development, and
whether TS develops differentially in high and low attention problem
subjects (Shaw et al., 2006). Although the present study investigates a
population-based sample rather than an ascertained case-control sam-
ple, the resultsmay indicate how subclinical variation in attention prob-
lem scales find its origin in variation in brain temporal dynamics.

2. Methods

2.1. Participants

Subjects were adolescent twins participating in a longitudinal study
of Genetics, Neurocognition, and Adolescent Substance Abuse (GNASA).
All participants were recruited from the local population using a data-
base of state birth records, therefore, the sample is largely
representative of the general population. Exclusion criteria were mini-
mal and included a history of serious head trauma andhealth conditions
precluding a laboratory visit or the ability to perform the experimental
tasks (e.g. severe visual impairment or mental retardation). The first
(baseline) assessment was conducted at age 12, and follow up assess-
ments were conducted at ages 14 and 16. A substantial reduction of
the sample size at age 16 was caused primarily by funding interruption,
rather than participants' drop-out. SWANquestionnairewas introduced
during thefirst (age 12) assessmentwave and administered to 434, 592,
and 369 subjects at ages 12, 14, and 16, respectively. Zygositywas deter-
mined using a set of N1000 DNA markers. The study was approved by
Washington University Institutional Review Board, and written in-
formed assent and consent were obtained from adolescent participants
and their parents, respectively, after complete description of the study
to the subjects and their parents.

2.2. Attention problems

Dimensional measures of Attention (ATT) and activity (ACT) were
obtained using The Strengths and Weaknesses of ADHD Symptoms
and Normal Behavior Scale (SWAN-AP) (Polderman et al., 2007;
Swanson et al., 2012). The SWAN-AP contains 18 items to assess atten-
tion (9 items) and activity/impulsivity (9 items) and is designed to cap-
ture the full range of variability in these traits, including both normal
and symptomatic. Twins' mothers were asked to indicate on a 7-point
Likert scale how each twin (rated separately) compared to “other chil-
dren the same age” over the preceding month. Item scores were cen-
tered around zero with scores ranging from −3 to 3. The questions
were framed such that it was beneficial to be “far above” average (e.g.,
“organize tasks and activities”, “stay seated (when required by class
rules/social conventions”)). The nine items on each scale were summed
to create a total score (possible range 9–63 for each subscale). To facili-
tate the comparison with clinical studies that used symptomatic mea-
sures, in the present analyses all items were reverse-coded, such that
higher scores correspond to the dysfunctional end of the distribution
(inattention and hyperactivity), while lower scores correspond to the
adaptive end (high attentional skills and well-regulated behavior). The
SWAN-AP has been found to have strong internal consistency (0.80 to
0.95), acceptable test-retest reliability (0.72–0.90), construct validity
and a normal distribution in previous studies (Arnett et al., 2013;
Lakes et al., 2012; Polderman et al., 2007; Reiersen and Todorov, 2013;
Swanson et al., 2012). In a previous analysis of ATT and ACT scales in
the present data, Crobach's alpha ranged from 0.93 to 0.96 for two sub-
scales (Peng et al., 2015). Its two-factor structure was confirmed at all
three age points (CFI ranged from 0.986 to 0.989, TLI ranged from
0.986 to 0.988) by conducting Confirmatory Factor Analysis (Peng et
al., 2015).

ADHD symptoms and diagnoseswere derived fromMissouri Assess-
ment of Genetics Interview - Adolescent Version (MAGIC-A) adminis-
tered to participants in person during each lab visit. MAGIC is a
validated semi-structured, glossary-based diagnostic interview based
on the Diagnostic Interview for Children and Adolescents (DICA)(Todd
et al., 2003). MAGIC allows the assessment of the structure of the diag-
nostic domains as DSM-IV categories, spectra of related diagnoses, or
continuous variables.

2.3. EEG registration and cleaning

The EEG was recorded from 30 scalp locations according to the ex-
tended 10–20 system using an elastic cap with Ag/AgCl electrodes and
a ground electrode on the forehead, with high- and low-pass filters set
at 0.05 and 100 Hz, respectively. The left mastoid served as reference,
and an averaged mastoid reference was digitally computed off-line
using the right mastoid recording as a separate channel. Vertical
electro-oculogram recording was used for eyeblink artifact correction
using a regression-based procedure (Semlitsch et al., 1986).
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2.4. Brain Temporal Stability (TS)

TSwas assessed as the long-range temporal (auto)correlations in the
modulation of oscillation amplitude of alpha (6–13 Hz), beta (15–
25Hz), and theta oscillations (3–5.6 Hz). A lower alpha bound than reg-
ularly was used to capture the slower oscillation frequency seen in
younger subjects (Smit et al., 2012). By filtering brain EEG signals into
the frequency of interest and using the Hilbert transform, the instanta-
neous amplitude of the oscillations (or envelope) can be determined. As
Fig. 1A shows, the amplitude envelope of oscillations show continuous
change, but also periods (bursts) of high amplitudewith irregular inter-
val and duration. These bursts cause the autocorrelations. A constant
(power-law) decay in autocorrelation is present when power spectra
show a linear relation between power and frequency in log-log space:
P(f)∝1⁄(f^β) = f^(−β). Beta is the power-law exponent and repre-
sents the slope of the regression line fitted to the power spectrum
(Smit et al., 2013, 2011). Alternatively, Detrended Fluctuation Analysis
(DFA) (Linkenkaer-Hansen et al., 2001; Peng et al., 1995) may be a
more robust estimation method where the spectral power-law expo-
nent β relates linearly to the DFA exponent α as β = 2α-1. Subjects
with highDFA exponents show longer stable periods of alpha oscillatory
brain activity than subjects with low DFA exponents. An exponent of
\alpha = 0.5 has no autocorrelation as in white noise.

DFA calculates exponent α by first integrating the signal, dividing it
intowindows of a specified size inwhich the integrated signal is linearly
detrended, and computing the root-mean-square (RMS) deviation. The
window is moved along the signal and the RMS of adjacent windows is
averaged. This process is repeated for logarithmically increasing win-
dow sizes. The current analysis of the amplitude modulation of oscilla-
tions used windows from 1 s to 20 s. The results did not critically
depend on choice of the upper or lower limit (viz., windowing 1 s to
60 s correlated r = 0.96 with 1 s to 20 s). The lower edge was chosen
so as to remove the effect of the lower frequency filter edge (at 8 Hz).
Fig. 1B shows how this analysis works for the sample presented in Fig.
1A.
2.5. Genetic twin modeling

To handle the complex covariance structures present in twin-family
datasets with missing data, we used structural equation modeling im-
plemented in R as freely available package OpenMx (Boker et al.,
2011) to estimate MZ and DZ correlations using full information maxi-
mum likelihood (FIML). The likelihood of a model-based expected co-
variances and means are compared with the observed data by applying
Fig. 1. Power-law scaling in brain oscillations. (A) A compressed view of an alpha (6–13 Hz) fil
(black) is determined using the Hilbert transform: A(t)=|s(t)+ iH(s)(t)| where s(t) is the orig
This signal was entered into detrended fluctuation analysis for estimating TS. The amplitude en
integrating the amplitude envelope of the oscillations, chunking into windows of variable sizes,
the resulting averaged RMS against the window size. The slope of the linear fit reflects the level
noise (gray x's).
the FIML function:

−2LL ¼ ∑N
i¼1ki∙ log 2πð Þ þ log det Σð Þð Þ þ xi−μ ið ÞΣ−1 xi−μ ið ÞT

where –2LL is –2 times the log of the likelihood, i is the iterator over in-
dependent observations (families), ki is the number of non-missing ob-
servations in each family, det(Σ) is the determinant andΣ−1 the inverse
of themodel estimated covariancematrixΣ of order (ki × ki), and xi and
μi are the (1 × ki) row vectors with observed data and expected means,
respectively. SEM models are constructed so as to specify expected
means and (co)variances from free parameters, whichmay include cor-
relations, grand-average means, regression betas, or more complex al-
gebraic formulae. Maximally likely parameter estimates are found by
stepwise moving through parameter space and stopping at minimum
−2LL.

Wefitted univariatemodels to both attention problems scales across
threemeasurementwaves forwhich attention problems datawas avail-
able (12, 14, and 16 years), and the same univariatemodel to average TS
across the 30 leads of the brain, for each frequency band (theta, alpha,
beta). These models were so-called saturated models which estimated
a male MZ, female MZ, male DZ, female DZ, and opposite sex correla-
tions, variances for males and females separately, a grand mean, an
age fixed effect, and a sex fixed effect.

By fixing parameters to zero or equating estimated parameters, a
nested simpler model is createdwith an increased−2LL. The difference
in −2LL is asymptotically chi-square distributed with the number of
constrained parameters as the degrees of freedom. When the model
simplification does not yield a significant increase in −2LL, then the
simpler model is retained by the rule of parsimony. Note that SEM
using FIML is asymptotically equivalent to the least-squares model
fitting in specific cases, but in general naturally handles missing data
with uneven sample sizes, correlated observations, and can be used
for confirmatory factor analysis.

To test whether differences existed in the genetic structure between
males and females, we first equated the variances across males and fe-
males, next equated all DZ/sibling correlations (i.e., DZM, DZF, OS) as
well asMZ correlations (MZF, DZF). Themodels were fitted to summary
variables only, to reduce the number of tests (i.e., average TS across all
ages and leads, and average attention problems across all ages).

After saturated model fit, we applied variance decomposition
models to estimate the relative contribution of genetic (heritability)
and environmental effects to the trait variance, retaining only
significant differences between males and females (e.g., if variance
of the trait differed, this was retained in the variance-decomposition
tered EEG signal shows clustered bursts of high amplitude (red). The amplitude envelope
inal (filtered) signal over time t, i is sqrt(−1), and H(s) is the Hilbert transform of signal s.
velope shown here was smoothed for illustration purposes only. (B) DFA is calculated by
calculating RMS deviation to the local regression, averaging across all chunks, and plotting
of autocorrelation (black circles), which is higher than the slope of the fit of filteredwhite
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modeling). Resemblance (covariance) in psychological and psycho-
physiological traits between twins derive either from genetic related-
ness or common (shared) environmental influences (Boomsma et al.,
2002). If the correlation between DZ twins, who share on average 50%
of their segregating genetic make-up, is half the correlation between
MZ twins, who are genetically identical, this is seen as evidence for ad-
ditive genetic influences (A). If the correlation between DZ twins or sib-
lings is less than half the correlation between MZ twins this is seen as
evidence for dominant (non-additive) genetic influences (D). If the cor-
relations betweenMZ andDZ twins/siblings are comparable and nonze-
ro this is evidence for common (shared) environmental influences (C)
such as the shared family rearing environment. If the correlation be-
tween MZ twins is less than unity, this is taken as evidence for
nonshared, unique environmental effects (E).

Broad-sense heritability is defined as the proportional contribution
of genetic effects (A + D) to the total variance (A + C + D + E). In a
twin-sibling design, however, no information is available to estimate
the effects of C and D simultaneously. The relative size of the DZ to the
MZ correlation is then used to guidewhich is selected. If the DZ correla-
tion is less than half the MZ correlation, then the A + D+ E factors are
modeled. If it is more than half the MZ correlation, A + C + E are
modeled. The variance decomposition model is graphically depicted in
Fig. 2. Since there has been evidence for nonadditive genetic effects for
TS, we fitted an ADE model with additive genetic, dominant genetic,
and unique environmental effects for TS. For SWAN-AP, evidence for
common environmental effects has been reported (Peng et al., 2015).
Therefore, these models were ACE models. The models were
tetravariate models across the four measurement waves for TS and
trivariate models across three measurement waves for attention
problems.

We applied Benjamini & Hochberg FDR correction at q=0.05 across
the 90 frequency and/or lead combinationswhen applicable (Benjamini
and Hochberg, 1995).

2.6. Fixed effect modeling

Fixed effects (such as the effect of age) predicting dependent scores
that violate the assumption of independency of residuals can be
modeled efficiently with Generalized Estimating Equations (GEE). In
the current dataset, both longitudinal modeling and repeatedmeasures
(within subject) are sources of violation of the independency assump-
tion. In GEE, regression weights are estimated as in regular (logistic) re-
gression as these are unbiased. The standard errors (SEs) of regression
weights, however, are underestimated. Sandwich-corrected robust
SEs are larger than their non-robust counterparts depending on the
residual correlationwithin predefined clusters where correlation be-
tween observations are to be expected, such as families and repeated
measures. We used GEE with the exchangeable correlation matrix,
which estimates a single correlation across residuals within clusters
(viz., family number). Even though the residual correlation matrix is
in fact more complex than the single estimated working correlation
(for example, within-subject correlations and MZ twin correlations
are expected to be higher than other within-family correlations),
the robust SEs are not affected by this misspecification (Minică et
al., 2014).

2.7. Cluster permutation

A Monte-Carlo cluster permutation (Maris and Oostenveld, 2007)
was performed to examine the relation between attention problems
and developmental trajectories of the DFA exponents across the ages
of 12 to 18. For this, we split the subjects into the top 25% and bottom
25% on attention problems. Standardized residuals were used after
regressing out the effect of measurement wave (ages 12, 14, and 16).
Subjects' average across all available time-points were used. Top (P25)
and bottom (P75) were chosen within sex by ethnicity crosstabs in
order to keep subgroups equally representedwithin high and lowatten-
tion problems. This ensured that low and high SWAN-AP groups were
not dominated by a single group. Note that this step did not remove
the requirement of correcting for sex and ethnicity in the linear
modeling.

Next, we performed GEE to establish whether dichotomized atten-
tion problemsmoderated the linear effect of age on TS at all 30 scalp sig-
nals. Cluster permutationwas performedby calculating the residuals for
the DFA exponent (TS) using sex and ethnicity for each channel for each
subject. At the initial step, a cluster was obtained without permutation.
In the present case, 30 GEE models were fit with age, attention prob-
lems-group and the age-by-attention problems-group interaction. All
effects below p = 0.01 were considered significant, and a cluster de-
fined of all significant nearest neighbors. The GEE robust-z values of
the age-by-attention problems-group interaction were summed within
the largest cluster.

Next, the attention problems group values were permuted 2000
times. The permutations were performed across families rather than
across observations, which keep the complex within-family/within-
subject correlational structure intact (including correlations across
scalp channels). At each permutation, the same steps of calculating
GEE robust-z scores for the age-by-attention problems-group interac-
tion were obtained, summed across the largest cluster of significant ef-
fects (significance held constant at p b 0.01). The 2000 summed-z
values represented the null-distribution for the largest cluster with
the specific within-family/within-subject correlational structure.
The summed-z value obtained in the initial step was tested against
this distribution. Note that the level of significance at p b 0.01 if not
true significance, but rather an arbitrary chosen value that defines
cluster sizes. The empirical p-value of the cluster is obtained by com-
parison of the summed-z to the null-distributions of summed-z
scores.

3. Results

3.1. Swan correlates with ADHD diagnosis

We examined the relation between SWAN-AP with ADHD diagnosis
by running a t-test within age group (with GEE corrected p-values) and
calculating effect size rt. For all waveswe found highly significant effects
(wave 12: t(432) = −8.31, robust-z = −9.9, p = 3.09 10−23, rt =
0.37; wave 14: t(586) = −5.71, robust-z = −12.0, p = 2.03 10−33,
rt = 0.23; wave 16: t(365) = −5.60, robust-z = −12.6, p = 3.56
10−36, rt = 0.28). Effect sizes were moderate.

3.2. Brain TS and attention problems development

Brain TS changed with age. Figs. 3–5 shows the histograms of the TS
scores (left), the scalp topography, and the stepwise difference between
12 and 14, 14–16, and 16–18 years of age. Fig. 3 shows theta, Fig. 4
alpha, and Fig. 5 TS in beta oscillations. The TS topography (middle col-
umn) showed a consistently higher level of TS in posterior brain areas
for both alpha and beta oscillations, regardless of age. Change between
the measurement waves (right column) was quite diffuse, although TS
increase was less in the most frontal areas for beta oscillations. For
theta oscillations, increases were largely confined to left and right fron-
tal areas. A linear regression of brain TS on age corrected for sexwas sig-
nificant for all leads in the alpha and beta bands (GEE robust z N 3.93,
FDR corrected-p b 8.2−5). For theta oscillations, the increase in TS was
significant mainly in a cluster of bilateral frontocentral leads.

Attention problems decreased from 12 to 16 years in the SWAN-
AP. The linear regression was highly significant (GEE robust
z = −5.11, p = 3.2−7). Fig. 6A shows the results. Attrition was
assessed by checking for initial SWAN scores for dropout subjects
compared to non-dropout with an unequal-variances paired t-test.
The effect was not significant for 12–14 dropout (t(104.5) = 0.37)
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but significant for 14–16 (t(288.5) = 3.82, p = 0.0002). However,
the change between the ages were still significant when considering
only subjects with data available at both waves (12–14: GEE robust-
z = −4.44, p = 0.000009; 14–16: GEE robust-z = −3.68 p =
0.0002).
Fig. 2. Longitudinal ACE (for attention problems) and ADE (for brain TS) pathmodels. A. Longitu
Cholesky decomposition. Additive genetic effects (A) correlate 1.0 between MZ and 0.5 betwe
Common environment (C) are correlated 1.0 between all sibling types regardless of their gen
scalp as well as channel-by-channel. DFA exponents describing temporal stability in oscillati
25 Hz). Additive genetic effects (A) correlate 1.0 between MZ and 0.5 between DZ twins. No
Unique environmental effects (E) are uncorrelated between all individuals. Broad-sense herita
to total trait variance.
3.3. Genetic modeling and equality of correlations across sex

Table 1 shows the male and female variances and the test for equal-
ity of these. In no situation, sex varianceswere unequal after FDR correc-
tion. Correlations were not different for TS or SWAN-AP. The resulting
dinal ACEmodelswere applied to the attention problems scale SWAN-AP using a so-called
en DZ twins. Unique environmental effects (E) are uncorrelated between all individuals.
etic resemblance. B. ADE models were applied to brain TS for average values across the
on amplitude was analyzed per frequency (Theta: 3–5.5 Hz; Alpha: 6–13 Hz; Beta: 15–
nadditive genetic effects (D) correlate 1.0 between MZ and 0.25 between DZ twin pairs.
bility is the combined effect of nonadditve and additive genetic effects (A plus D) relative



Fig. 3.Development of TS in theta oscillations. Each row represents theDFA exponents for ameasurementwave (12, 14, 16, and 18 from top to bottom). Left are the histograms of TS (scalp
wide average). Middle column are the scalp topographies. Right column are scalp topographies of the increase betweenmeasurement waves 12 to 14, 14 to 16, and 16 to 18, expressed as
Cohen's d. Theta oscillation TS have a parietal maximum and showmaximal increase between 14 and 16 (mostly frontal).
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MZ and DZ twin correlations are shown in Table 1. Subsequent variance
decomposition models assumed equality across the sexes. These corre-
lations corroborate earlier findings in showing strong heritability for TS
in alpha oscillations and – in many instances – DZ correlations that are
lower than half the MZ correlations, indicating a presence of nonaddi-
tive genetic effects. These results in concordant with the extant litera-
ture (Derks et al., 2007; Hudziak et al., 2005; Linkenkaer-Hansen et al.,
2007; Polderman et al., 2007).

3.4. Brain TS variability and heritability

Twin modeling proceeded with a tetravariate variance decomposi-
tionmodel with additive genetic, nonadditive genetic, and unique envi-
ronmental effects (ADE model). These models showed that there is
evidence for nonadditive genetic effects for TS for many leads and oscil-
lation frequencies (Table 2) as tested by the omnibus effect of D. For
alpha oscillation TS, D was significant for 22 of the 30 leads after FDR
correction. For Beta oscillations, D was significant for 17 of the 30
leads. For theta oscillations, although D seemed present for almost all
leads, it was not significant. Broad-sense heritability was significant
for all leads in alpha oscillations, for 29 out of 30 leads for beta oscilla-
tions, but only 5 out of 30 leads for theta oscillations.

3.5. Attention problems heritability

There was no evidence for sex differences in attention problems.
Heritability was estimated in trivariate longitudinal models (Table 1).
SWAN-AP scores were highly heritable (Table 3) at all ages (12, 14,



Fig. 4.Development of TS in alpha oscillations. See Fig. 4. Alpha oscillation TS have a clear occipital parietal maximum and show large increases with large effect sizes between 14 and 16.
The increases are visible at all scalp locations. The scalp topography suggests a developmental lag for frontal areas.
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16). C was significant for SWAN-AP in the omnibus test (χ2(6) = 48.5,
p b 0.001). C was also significant for ages 14 and 16, but not for age
12. These findings have been reported earlier (Peng et al., 2015). The
AE model as best fitting model at age 12 is consistent with earlier find-
ings in large twin samples from other countries (Polderman et al.,
2007). Due to the appearance of C at 14, heritability scores reduced for
ages 14 and 16.

3.6. No significant correlation between attention problems and TS

To assess a direct effect of brain TS on attention problems, we fitted
longitudinal common factor models. These models fitted a single factor
for brain TS (across four waves) and a single factor for attention prob-
lems (across three waves), and subsequently estimated the correlation
between the two factors. No significant correlation was found for any
of the frequency bands. Although some correlations were significant at
p b 0.05, these were not significant after FDR correction across the 30
leads. Correlations were at best modest (r b 0.26). Genetic and environ-
mental correlationswere also not significant for any of the genetic com-
mon factor models. Fig. 6B–C shows the topoplots for the phenotypic
correlations.

3.7. Change in brain TS is heritable in specific regions

Change in TS from 12 to 14, 14 to 16, and 16 to 18 was available for
427, 291, and 119 subjects respectively. Change scores showed no evi-
dence for effects of D or C (all p N 0.12, unadjusted), therefore, we con-
tinued with AE models. Brain TS for theta and beta oscillations showed



Fig. 5. Development of TS in beta oscillations. Beta oscillation TS are in absolute terms lower. They have a midline oriented central/posterior maximum and show very large effect sizes
between 14 and 16. Frontal beta TS does not increase as much as other scalp locations.

Fig. 6. (A) Development of SWAN-AP strongly decreased from 12 to 16 years of age. B-C Topographic plots of the correlation of SWAN-AP with brain TS in the theta, alpha and beta
frequency bands are consistently positive, but not significant. Correlations shown are calculated as partial correlations across all available measurements corrected for age and sex.
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Table 1
Twin correlations, variance per sex, and significance testing for equating correlations and variances across sexes.

Variable Age group

MZ DZ Testing equality of variances
Testing equality of
correlations

R p R p s2male s2female p FDR p FDR

TS Theta 12 0.29 0.010 0.11 0.165 0.029 0.034 0.011 0.543 0.350 0.780
14 0.40 0.000 0.18 0.025 0.033 0.031 0.214 0.577 0.988 0.988
16 0.45 0.000 0.14 0.272 0.037 0.037 0.738 0.865 0.253 0.780
18 0.48 0.000 0.13 0.305 0.034 0.035 0.865 0.865 0.487 0.780

TS Alpha 12 0.60 0.000 0.27 0.002 0.053 0.057 0.159 0.577 0.048 0.259
14 0.65 0.000 0.28 0.001 0.059 0.064 0.347 0.577 0.419 0.780
16 0.49 0.000 0.13 0.253 0.067 0.074 0.055 0.577 0.041 0.259
18 0.51 0.000 0.30 0.015 0.079 0.084 0.410 0.577 0.049 0.259

TS Beta 12 0.49 0.000 0.11 0.210 0.040 0.041 0.481 0.577 0.211 0.780
14 0.61 0.000 0.38 0.000 0.047 0.051 0.207 0.577 0.741 0.808
16 0.53 0.000 0.01 0.963 0.058 0.063 0.137 0.577 0.446 0.780
18 0.49 0.001 0.23 0.064 0.067 0.074 0.341 0.577 0.420 0.780

SWAN-AP 12 0.81 0.000 0.21 0.066 0.940 0.762 0.040 0.120 0.032 0.096
14 0.82 0.000 0.61 0.000 1.045 0.970 0.165 0.247 0.473 0.473
16 0.86 0.000 0.62 0.000 1.088 1.097 0.519 0.519 0.187 0.280

Note. Correlations for brain TS were estimated for average DFA exponents across the whole scalp (removing any missing data). FDR corrected p-values for unequal variances between
males and females were corrected across waves and frequencies for TS, and across measurement waves for attention problems.

Table 2
Broad-sense heritability and standardized estimates of genetic and environmental effects on the scalp-wide average of the DFA exponent, with significance testing using the likelihood-
ratio test in Structural Equation Modeling.

Variable Age A D E Broad-sense h2 pD in 10 df test ph2 in 20 df test

TS Theta 12 0.07 0.16 0.77 0.23 0.999 0.042
14 0.22 0.06 0.72 0.28
16 0.07 0.32 0.61 0.39
18 0.10 0.07 0.83 0.17

TS Alpha 12 0.39 0.12 0.49 0.51 1.000 b0.001
14 0.47 0.08 0.45 0.55
16 0.35 0.21 0.44 0.56
18 0.32 0.18 0.50 0.50

TS Beta 12 0.20 0.17 0.63 0.37 1.000 b0.001
14 0.23 0.01 0.76 0.24
16 0.05 0.30 0.64 0.36
18 0.05 0.17 0.78 0.22

Note. TS=Temporal stability. A=additive genetic, D=nonadditive genetic, E=unique environment. Variance components A,D and E effectswere estimated in tetravariate longitudinal
models for TS, and trivariate models for attention problems (SWAN, CBCL). D and broad-sense heritability (h2) were tested for significance in an omnibus test for all D or A + D effects
within and between time points, resulting in a 10df test for D and a 20df test for h2 (see Fig. 2).
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no significant effect. Fig. 7 shows the results for alpha oscillation TS.
Changes between waves 12 and 14 showed scalp-wide significant her-
itability. From 14 to 16 a large frontal heritable cluster was seen. Inter-
estingly, the heritability topographic patterns were quite dissimilar to
the developmental pattern as shown in Fig. 5. For example, scalp-wide
heritability of change from 12 to 14 with maximal increase in (right)
central area did notmatch the pattern of reduced increase in the central
areas from Fig. 5. In addition, the moderate to strong development over
the whole scalp from 14 to 16 with effects sizes around Cohen's d 0.5
were only heritable for frontal areas, and reflect unique environmental
effects for central, temporal, and posterior areas. Therefore, the herita-
bility was clearly not an issue of signal-to-noise, where absence of
Table 3
Variance decomposition into genetic and environmental effects for the SWAN.

Age A C E h2 pC pA

12 0.77 0.02 0.21 0.77 9.8·10−6 1.8·10−12

14 0.46 0.36 0.17 0.46
16 0.55 0.28 0.16 0.55

Note. A = additive genetic, C = common environment, E = unique environment. Vari-
ance components A, C, and E effects were estimated in trivariate models for SWAN-AP. A
and Cwere tested using SEM in an omnibus test removing all A or C effects within and be-
tween time points, resulting in p-values pA and pC respectively.
change could have reflected absence of signal and zero heritability by
definition.

3.8. Brain developmental trajectories differ between high and low attention
problems

We investigatedwhether brain developmental trajectorieswere dif-
ferent for the 25% highest and lowest scoring attention problems sub-
jects. Because of the stratified selection the number of females was
n = 87 for both high and low SWAN-AP, n = 82 for males. Ethnicity
was n=143 for Caucasian and n=22 for other in both groups. Pearson
chi-square tests showed that self-reported ethnicity and sex did not in-
teract between low and high attention problems groups (χ2(2) b 4.5,
p N 0.13). The actual proportion of subjects selected was slightly lower
than 25% at 24.8%. Since subjects were selected without regard for
data availability at specific waves, we assessed the ages for which
brain TS data was available. The ages did not differ between the two
groups (Mlo = 15.1, Mhi = 15.0, GEE robust-z = 0.55). Low and high
SWAN-AP groups differed strongly in ADHD diagnosis (0.8% vs 15.1%
respectively).

Fig. 8 shows the results of the age-by-attention-problem interaction
effect. Frontal leads showed developmental differences in alpha band
brain TS (Fp2 is shown in Fig. 8A). Low-attention problems groups
showed greater change in brain TS. The significance of the interaction



Fig. 7. Heritability topographies for change in TS between waves 12–14, 14–16, and 16–18, for 6–13 Hz alpha oscillation modulation. Top row are heritability estimates from models
estimating the relative contribution of additive genetic and unique environmental factors (AE). Bottom row are the FDR corrected p-values (correction across 30 channels only). 12–14
showed moderate heritability in change scores, which was significant across a widespread area. Change from 14 to 16 was visible (and significant) in the frontal areas only.
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effect while taking into account multiple comparisons was established
using the cluster permutation test, revealing a significant frontal cluster
of 5 channels (empirical p=0.031). However, the effectwas somewhat
dependent on the proportion selected (e.g., using 15% or 20% top and
bottom attention-problem selections yielded p= 0.026 for a 7-channel
cluster and p = 0.049 for a 5-channel cluster, respectively). FDR
corrected effects of single channels were not significant. Therefore, the
Fig. 8. High and low attention problems show different trajectories in brain TS
development. Top and bottom 25% in attention problems were selected stratified within
the ethnicity by sex. (A) Low attention problems showed stronger development than
high attention problems in brain TS. The effect is shown for frontal lead Fp2. (B) Scalp
topography with results of the cluster permutation effect shows a significant 5-lead
cluster in the medial/right-frontal area. The cluster's empirical-p was 0.031.
results indicate that the effect was noisy, necessitating clustering across
channels to obtain more robust effects.

4. Discussion

The current data confirmed familial influences on attention prob-
lems scale of SWAN-AP. Using a differentmodel than the one presented
earlier on these data, we confirmed the existence of effects of common
environment (Peng et al., 2015). The data also confirmed the heritability
of brain TS (Linkenkaer-Hansen et al., 2007).Moreover, the longitudinal
modeling indicated that nonadditive genetic effects were significant—a
novel finding when comparing to previous results in a Dutch twin fam-
ily sample (Linkenkaer-Hansen et al., 2007).

Both attention problems and brain TS developed within the age
range investigated within adolescence (12 to 16 and 12 to 18 years re-
spectively). Attention problems showed a consistent decline, which is
partly consistent with results from the extant literature. For example,
the review by Costello et al. (2011) reports consistent decrease in atten-
tion problems from childhood to adolescence, which continues into
young adulthood. Bongers et al. report a curvilinear effect, with peak
levels of CBCL attention problems around age 11 and subsequent de-
cline consistent with the current results (Bongers et al., 2003). Kan et
al. (2013) showed relatively stable levels of Youth Self Report attention
problems during adolescence and a decline only in later adolescence
and young adulthood, but importantly, strong rater effects (mother vs
self-report). Likewise, the mixed modeling approach by Robbers et al.
(2011) categorizing the developmental trajectories of CBCL attention
problems revealed that most subjects could be categorized as systemat-
ically low scoring, whereas an almost equal proportion in an upward or
downward developmental path. The age range for Robbers et al. (2011)
was however 6–12 years. These studies havemade clear thatmethodol-
ogy (instrument aswell as rater bias) can severely influence the report-
ed trajectories in attention problems.

Brain TS reflected in the DFA exponent showed a substantial and
highly significant increase that was visible over the whole scalp for
alpha and beta oscillations. This finding is consistent with findings in a
Dutch sample that showed a large increased in brain TS from childhood
to adolescence (about 7 to 16 years of age) and within adolescence (16
to 18 years) (Smit et al., 2011). This changewas heritable depending on
age, frequency, and scalp location. For alpha oscillations, fromwaves 12
to 14 the DFA exponent was moderately heritable widespread over the
scalp. From 14 to 16, it was heritable for frontal areas. For beta oscilla-
tions, only left parietal change between 12 and 14 was significant after
FDR correction. This suggests that change in brain TS does not reflect
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the homogenous expression of genetic and environmental effects, but
rather a complexmixture of genetic unfolding and unique environment.
This pluriformity provides insight into how unique environmental ef-
fects in the developing brainmay form a separate set of factors affecting
brain activity at a particular (cross-sectional) wave. If timing of brain
maturation is of such a complex nature, then this may obscure or con-
found cross-sectional observations of correlations between brain activ-
ity and behavior.

We argued that assessing the temporal decay in autocorrelation in
brain activity measured by EEG could reflect the tendency of the brain
to show random walk patterns. High levels of autocorrelations, we hy-
pothesized, may be related to a greater level of mind wandering, and
thus serve as an endophenotype for attention problems. Previous re-
sults had shown that individual variation in the exponent \alpha was
able to predict performance in simple cognitive and motor tasks
(Palva et al., 2013; Smit et al., 2013). However, we found no significant
correlations, or correlations that failed to reach significance after
adjusting for FDR. Therefore, we must conclude that brain TS is not a
useful endophenotype for attention problems as measured with the
SWAN-AP, in spite of both traits' high heritability.

The developmental trajectories differed significantly between the
25% highest and lowest SWAN-AP scores. Low-attention problems sub-
jects showed stronger development of frontal brain TS (i.e., larger
change) than high attention problems. This may indicate that high at-
tention problems subjects differ in their developmental phase. Previ-
ously it has been reported that ADHD-patients have a developmental
lag (Shaw et al., 2007), however, the current EEG data cannot indicate
whether high-attention problems have lagged development compared
to low-attention problems or vice versa. The frontal location of the effect
is consistentwith effect of delayed cortical thinning observed in the pre-
frontal cortex in (Shaw et al., 2007). Note, however, that these develop-
mental delays in the prefrontal cortex occurred at a much earlier age
(up to age 12.5) than in the current sample.

The significant frontal cluster of leadswhere brain TS trajectories dif-
fered between high and low-attention problems subjects may highlight
the involvement of the prefrontal cortex. This finding is consistent with
neuroscientific findings in attention problems and ADHD research. At-
tention problems and ADHD are marked by executive dysfunction
(Willcutt et al., 2005), resulting in deviant ability to suppress inappro-
priate responses (response inhibition) with prolonged reaction times.
These processes are consistently localized in the prefrontal cortex
(Ridderinkhof et al., 2004). Also error monitoring and reward evalua-
tion are suboptimal in attention problems and ADHD, and have been lo-
calized in the prefrontal cortex (Castellanos and Tannock, 2002;
Oosterlaan et al., 1998; Ridderinkhof et al., 2004). Differential develop-
mental trajectories, however, could indicate that the relative immaturi-
ty of frontal brain areas (Shaw et al., 2007) may underlie some of the
symptomatology in attention problems. Immature frontal brains could
result in insufficient control, and thus, induce age-inappropriate behav-
ior and symptoms.

Genome-wide studies of ADHD have not yet pinpointed to specific
genetic variants (Neale et al., 2010), possibly due to the phenotypic
complexity of the trait (van der Sluis et al., 2010). Aswithmost complex
(psychiatric) traits, the lack of significant hits lies in the fact that the ef-
fect sizes for specific genetic variants are low, resulting in loss of power
for detecting such effects. One solution to ameliorate the power loss due
to phenotypic complexity may be to look for endophenotypes that are
related to symptoms of ADHD (Castellanos and Tannock, 2002; de
Geus, 2010, 2002; Gottesman and Gould, 2003; Rommelse et al.,
2011). These endophenotypes may have a simpler genetic structure
by tagging a single genetic expression pathway rather than the full com-
plex phenotype by tagging brain-based subcomponents of the complex
disease. The current results indicate that TS developmental trajectories
may act as an endophenotype.

In sum, we confirm earlier reports of high heritability of brain TS,
and showed a significant nonadditive genetic contribution. SWAN-AP
also was heritable, but also showed significant effects of common envi-
ronment, as previously shown in the current sample (Peng et al., 2015).
TS generally increased from 12 to 18 years of age, but the strength of in-
crease depended strongly on scalp location and frequency band. This in-
crease was only significant for alpha band TS between 12 and 14, and
between 14 and 16 for selected frontal leads. Brain TS did not signifi-
cantly correlate with SWAN-AP. However, high and low attention prob-
lems subjects' frontal brain area seemed to develop with different
trajectories, suggesting that brain TS is a biomarker for brain develop-
ment rather than a direct endophenotype reflecting the (in)ability to
show focused attention. Future research is needed to establish whether
the findings reflect a developmental lag for high attention problems
subjects.
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