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Background: Despite evidence from twin and family studies for an important contribution of genetic factors to both
childhood and adult onset psychiatric disorders, identifying robustly associated specific DNA variants has proved
challenging. In the pregenomics era the genetic architecture (number, frequency and effect size of risk variants) of
complex genetic disorders was unknown. Empirical evidence for the genetic architecture of psychiatric disorders is
emerging from the genetic studies of the last 5 years. Methods and scope: We review the methods investigating the
polygenic nature of complex disorders. We provide mini-guides to genomic profile (or polygenic) risk scoring and to
estimation of variance (or heritability) from common SNPs; a glossary of key terms is also provided. We review results
of applications of the methods to psychiatric disorders and related traits and consider how these methods inform on
missing heritability, hidden heritability and still-missing heritability. Findings: Genome-wide genotyping and
sequencing studies are providing evidence that psychiatric disorders are truly polygenic, that is they have a genetic
architecture of many genetic variants, including risk variants that are both common and rare in the population.
Sample sizes published to date are mostly underpowered to detect effect sizes of the magnitude presented by nature,
and these effect sizes may be constrained by the biological validity of the diagnostic constructs. Conclusions:

Increasing the sample size for genome wide association studies of psychiatric disorders will lead to the identification
of more associated genetic variants, as already found for schizophrenia. These loci provide the starting point of
functional analyses that might eventually lead to new prevention and treatment options and to improved biological
validity of diagnostic constructs. Polygenic analyses will contribute further to our understanding of complex genetic
traits as sample sizes increase and as sample resources become richer in phenotypic descriptors, both in terms of
clinical symptoms and of nongenetic risk factors. Keywords: Polygenic risk scoring, genome-wide association
studies, psychiatric disorders, heritability, SNP analyses, disease traits.

included in the Glossary section immediately before
the Reference list; this is accompanied by an Appen-
dix listing a directory of key genetic websites
discussed below).

Each SNP is tested for association with the trait,
which is difference in mean score of a quantitative
trait for the alternate SNP alleles, or differences in
allele frequencies between cases and controls in the
analysis of disease traits. The SNPs measured are
common genetic variants with a minor allele fre-
quency of at least 0.01 and mostly higher. About a 1
million independent association tests are conducted
and hence, to avoid chance findings, the threshold
for declaring significance of an association test is
0.05/1 million or 5 x 10~® (Chanock et al., 2007).
The correlation structure of the genome means that
each SNP tested is correlated with many other DNA
variants within a ~ 1 MB region (linkage disequilib-
rium). Thus, an associated SNP is unlikely itself to
be the risk conferring variant but tags a risk region
for follow-up study.

Given the disappointing results of association
studies conducted prior to the GWAS era in which
hypothesis driven candidate genes were tested, there
were high hopes that the hypothesis-free systematic

Introduction

Twin and family studies have reported a significant
contribution of genetic factors to both childhood
and adulthood onset psychiatric symptoms and
disorders, with heritability estimates in the range of
0.4-0.8 (Figure 1), implying that inherited DNA
variants are important in the aetiology of these
disorders. Therefore, identification of specific genetic
variants has been a research goal for some decades
as a mechanism to gain insight into aetiology. Recent
advances in technology have allowed the systematic
testing of genetic variants across the genome for
association with traits measured on wunrelated
individuals. The aims and outcomes of these geno-
me-wide association studies (GWAS) have been
reviewed elsewhere (Manolio, 2010; Visscher,
Brown, McCarthy, & Yang, 2012). Briefly, in GWAS
the genetic variants tested are single nucleotide
polymorphisms (SNPs) or large copy number vari-
ants (CNVs; submicroscopic insertions/deletions,
usually > 100 kb); this review considers analyses
from the SNPs. (Terms in bold below are those
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Figure 1 Heritability of liability from family studies (h2) and GREML SNP-heritability (h2SNP) for psychiatric disorders and related traits.
(For more details and references see Table S1.) For heritabilities the bars show a mixture of 95% confidence intervals from meta-analysis
and of reported ranges. For SNP-heritabilities the 95%Cl| are the estimate + 1.96 SE (OCD, obsessive compulsive disorder; ADHD,

attention deficit hyperactivity disorder)

evaluation of the whole genome in GWAS would
enable identification of genetic variants associated
with psychiatric disorders (and other complex
genetic traits). The first empirical data came from
the GWAS of the Wellcome Trust Case Control
Consortium (WTCCC, 2007) that benchmark the
beginning of the GWAS era. Across all seven disor-
ders studied (including bipolar disorder) each of
~2,000 cases with 3,000 shared controls, 14 inde-
pendent loci surpassed the significance threshold,
but these loci explained only a small proportion
of heritability. The first phase of GWAS for the
major psychiatric disorders schizophrenia, bipolar
disorder, major depressive disorder (MDD), autism
spectrum disorders (ASD) and attention deficit
hyperactivity disorder (ADHD; e.g. Anney et al.,
2010; The International Schizophrenia Consortium
(ISC), 2009; Neale et al., 2010; Sklar et al., 2008;
Sullivan et al., 2009); showed a similar picture with
few or no genome wide significant hits, indicating
that common variants of large effect are not part of
nature’s repertoire. All studies had excellent power
to detect genetic variants with an odds ratio of 1.5
and a minor allele frequency of 0.2 and reasonable
power to detect an effect with an odds ratio of 1.3.
The absence of significant results raised the question
whether common variants are of sufficient relevance
in the development of psychiatric disorders to pur-
sue with GWAS. Here, we review methods that use
data from GWAS to provide critical empirical evi-
dence of an important polygenic contribution to
common psychiatric disorders as was first proposed
45 years ago (Gottesman & Shields, 1967). In this
review, we first define heritability and related mea-
sures. We then consider the methods that have
demonstrated the evidence of a polygenic contribu-
tion to the genetic architecture of complex traits,
diseases and disorders including psychiatric disor-
ders. Next, we review applications of these methods
to psychiatric disorders and related phenotypes.

© 2014 Association for Child and Adolescent Mental Health.

Lastly, we draw conclusions and implications for
future research. In this issue, Thapar and Harold
(2014) contribute an Editorial Perspective article
providing further clinical interpretation of these
methods.

Heritability

Evidence for a genetic contribution to psychiatric
disorders comes from the consistently reported
increased risk of the disorder in relatives of those
affected. However, such increased risks need to be
interpreted with care, since close relatives share a
common family environment so that the increased
risk in relatives may also reflect nongenetic factors.
Estimates of risks of disease in different types of
relatives (e.g. monozygotic and dizygotic twins, first
and second degree relatives) are needed to disentan-
gle genetic from nongenetic factors. These risks to
relatives are used to estimate heritability on the
liability scale. Liability to disease is a nonobservable
or latent, continuous variable with those ranking
highest on liability being affected. Heritability on the
liability scale, h?, quantifies the proportion of vari-
ance of liability to disease attributable to inherited
genetic factors. Comparison of the relative impor-
tance of genetic factors for different disorders is more
intuitive on this scale than comparison of risks to
relatives. Figure 1 shows heritability for a range of
psychiatric disorders. Non-genetic factors include
identifiable (but perhaps not recorded) environmental
factors or measurement error but also unidentifiable
factors which form an intrinsic stochastic noise.
Estimates of heritability on the liability scale depend
on knowledge of baseline risk of disease in the
population from which the twin and family cohorts
are drawn, and estimates of baseline risk are often
surprisingly difficult to pin down. They may also vary
between populations, across ages and may depend on
whether nongenetic factors have been recorded and
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included in the analysis. Hence, in reality heritability
estimates should be viewed as pragmatic bench-
marks representing evidence for low, moderate or
high contributions of genetic effects.

While heritability on the liability scale expresses
the proportion of the variance in liability that is
attributable to genetic factors, it tells nothing about
the underlying genetic architecture of the disease in
terms of number, frequency and effect sizes of
individual causal variants, nor of the mode of action
of causal loci (i.e. additive or nonadditive). Under a
polygenic model, the liability to disease is assumed
to reflect multiple genetic and nongenetic effects
acting additively. Hence, liabilities are assumed to be
normally distributed because such a distribution
results from many additively acting effects. All indi-
viduals in the population carry some genetic risk
variants and likely experience some nongenetic risk
factors, but most individuals in the population are
not affected — disease status results when the
cumulative load exceeds a burden of risk threshold.

Missing heritability in GWAS

GWAS identify associations between SNPs and dis-
ease. Reported results from association analyses
include risk allele frequency (RAF), effect size
(expressed for disease as the odds ratio, OR) and
p-value of association. The contribution of these
genetic variants to variance can be calculated on the
liability scale (Risch, 2000; Sham, 1998; So, Gui,
Cherny, & Sham, 2011) to allow direct comparison of
the contribution to risk of each locus on the same
scale as heritability is reported. Assuming indepen-
dence, the contribution of each genome-wide signif-
icant (GWS) locus can be summed to determine the
proportion of variance in liability explained by these
loci together, thus quantifying the effects of all
genome-wide significant SNPs. This is denoted by
héws-

Given the stringent significance threshold applied,
the ability to detect risk loci (i.e. the power) depends
on whether the sample size is sufficient given the
effect sizes. When the first GWAS were planned the
distribution of expected effect sizes was unknown
and sample sizes were powered to detect OR > ~1.3.
These GWAS yielded few GWS results with h2yg
much less than h?. This difference has been termed
‘missing heritability’ (Manolio et al., 2009). As sam-
ple sizes have increased, the number of GWS vari-
ants have increased for both quantitative traits and
diseases (see figure 2 in Visscher et al.(2012)) pro-
viding empirical evidence that common variants do
play a role in complex genetic traits. Currently,
GWS variants explain <0.02 of variance for bipolar
disorder, MDD, ADHD and ASD and ~0.07 for
schizophrenia. An exception is Alzheimer’s disease
in which ~0.18 of variance is explained, but this is
mostly attributable to variants of the APOE gene,
identified in the pre-GWAS era.

J Child Psychol Psychiatr 2014; 55(10): 1068-87

The observed increase in number of significant
results for the traits for which larger sample sizes
have been accumulated (PGC-SCZ, 2014) implies
that the earlier studies were underpowered to detect
the variants given their effect sizes. However, given
that collection of larger samples is time consuming
and expensive, can we be sure that the same will be
true for other traits? We describe two methods that
were developed to investigate the polygenic architec-
ture of traits using data sets that are currently
available. Although these data sets may be under-
powered to detect the individual small effects as
GWS, they can provide evidence for contributions of
common variants of small effect sizes by also taking
into account contributions from SNPs that do not
reach genome-wide significance. These analyses
increase our understanding of the genetic architec-
ture of traits to which they are applied and provide
empirical evidence to help decisions about future
experimental design.

Genomic profile risk scoring

Many GWAS that report no or few GWS associated
SNPs show more smaller p-values of association than
expected by chance. This tell-tale sign of a polygenic
genetic architecture provided stimulus for the devel-
opment of methods that capture this signature. The
first such method was profile scoring (see Box 1).
Briefly, in its standard application, a GWAS is
conducted in a sample denoted the ‘discovery’ sam-
ple. Therisk alleles and their effect sizes are then used
to generate genomic profile risk scores (GPRSs) in an
independent ‘“target’ sample, using SNPs whose
p-values in the discovery sample are below some
threshold (Box 1, step 5). A GPRS is calculated for
each individual in the target sample as the sum of the
count of risk alleles weighted by the effect size (e.g. log
odds ratio (OR) for case-control) in the discovery
sample. The profile score is evaluated through regres-
sion of the target sample phenotype on the GPRS after
accounting for other known covariates. The target
phenotype could differ from the phenotype in the
discovery sample, allowing cross-phenotype analyses
as we discuss later. In association analysis, the aim is
to identify specific associated variants and the strin-
gent threshold for declaring significance of individual
SNPs is important, providing confidence that the
identified variants are true positives. This is impor-
tant because specific (and costly) follow-up studies
are directed at loci that surpass this cut-off and hence
false positives cannot be tolerated. In contrast, GPRS
analyses aim to provide insight in the genetic archi-
tecture using evidence for association from variants
that do not pass the stringent threshold of associa-
tion. As the threshold of discovery sample p-value
increases, the number of SNPs included in the GPRS
increases and hence the ratio of false: true positives
increases. However, profile score analyses can toler-
ate inclusion of some false positives since, on balance,

© 2014 Association for Child and Adolescent Mental Health.



doi:10.1111/jcpp.12295 Polygenic methods 1071

Box 1 Mini guide to method: Genomic profile risk scoring

Method

1. Identify a Discovery sample with genome-wide association analysis summary statistics.

2. Identify a Target sample with genome-wide genotypes. The Target sample should not include individuals closely related to
those in the Discovery sample. Results can be inflated if there is overlap between samples.

3. Determine the list of SNPs in common between Discovery and Target samples.

4. Construct a clumped SNP list: association p-value informed removal of correlated SNPs, e.g. LD threshold of 7 < .2 across
500 kb. (e.g. in the program PLINK (Purcell et al., 2007): —clump-p1l 1-clump-p2 1-clump-r2 0.2-clump-kb 500).

5. Limit the SNP list to those with association p-value less than a defined threshold (often several thresholds are considered, i.e.
<.00001, .0001, .001, .01, .1, .2, .3, etc.).

6. Generate genomic profile scores in the target sample: e.g. sum of risk alleles weighted by Discovery sample effect size, for
example, log(odds ratio). (e.g. in PLINK: —score).

7. Regression analysis: y = phenotype, x = profile score. Compare variance explained from the full model (with x) compared to a
reduced model (covariates only). Check the sign of the regression coefficient to determine if the relationship between y and xis
in the expected direction.

Outcomes

1. Measure of association between Discovery and Target sample (R, Nagelkerke’s R? (NR?), area under the receiver operating
curve, proportion of variance explained on liability scale, see Lee, Goddard, et al., 2012)

Variance of target

1. GWAS 2. GWAS i
“Discovery “Target L sample phenotype
P Sample” : ‘ | b explained by

SR ample ,m‘,n”.. “\u;n.‘k oredictor
Association  3-5.Select Apply 6. Genomic profiles 7.Evaluate
analysis top SNPs weighted sum of risk
summary and alleles
statistics identify

risk alleles

Discovery & )
Target A. Same Disorder

B. Different disorders
samples C. Disord bt
could be: . Disorder subtypes

2. Genomic profile risk score values for each individual in the Target sample. These can be used in future experimental design,
for example, imaging studies that compare those with high and low polygenic risk score.

Sample size considerations

1. To maximise the test statistic of association between Discovery and Target, these samples should be of equal size (Dudbridge,
20183). Under realistic assumptions there is sufficient power to detect a significant proportion of variance explained when the
Target sample is ~2,000 individuals. A useful rule of thumb is then to make Discovery and Target samples of equal size until
the Target sample is ~2,000 individuals and then allocate additional samples to the Discovery sample to maximise the
accuracy of the GPRS for individuals (Dudbridge, 2013).

2. The p-value threshold (step 5) that maximises the variance explained in the Target sample depends on sample size of the
Discovery sample and the underlying unknown genetic architecture. In discovery samples that are underpowered for a GWAS
(for example, those that identify few genome-wide significant associations) it is not uncommon to find that predictive ability in
the target sample is maximised when a majority or all SNPs are included in the profiling SNP list. However, simulations [see
Figure S8 in ISC (2009)] show that as discovery sample size increases the change in the pattern of the predictive ability of the
SNP set at different p-value thresholds reflects the underlying genetic architecture (i.e. number, frequency spectrum, and
effect size distribution of truly associated variants). The emerging empirical data confirm the simulations: lower p-value
thresholds maximise predictive ability in the target sample as discovery samples increase [Schizophrenia Working Group of
the Psychiatric Genomics Consortium (PGC-SCZ), 2014], reflecting that with larger sample sizes true positives become more
enriched in the SNP sets with lower p-value thresholds.

useful information from the true positives may still variants, and in principle all SNPs could be included
contribute. Selection of SNPs into profile scores is into the score (see Box 1, sample size considerations).
therefore based on much less stringent p-value For quantitative traits, the variance of the pheno-

thresholds than in association analysis of single type explained by the GPRS is expressed by the

© 2014 Association for Child and Adolescent Mental Health.
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regression R* thatis, the squared correlation between
the trait and the GPRS. Given the size of target
samples, a small R? can be highly significant. For
disease traits, following ISC (2009), the scaled
pseudo-R? from logistic regression, Nagelkerke’s R?
(NR? is often reported. However, the NR? is
difficult to benchmark since it depends on the
proportion of cases in the target sample, and is not
on theliability scale, so cannot be directly compared to
heritability estimated from twin or family data. Alter-
native statistics of efficacy of risk prediction are
described and compared by Lee, Goddard, Wray, and
Visscher (2012) and include variance explained on the
liability scale, which can be directly compared to h?.
Factors that can bias GPRS results have been
discussed in detail elsewhere (Wray et al., 2013). An
important consideration is the delineation of the
discovery and target samples. They should be inde-
pendently collected and exclude close relatives.
Another issue is the choice of SNPs used in the
GPRS. SNPs located within the same genomic region
are more likely to be inherited together i.e. the alleles
are correlated and the SNPs are in linkage disequi-
librium (LD). In practice, the most common strategy,
following the initial publication by ISC (2009), is to
prune SNPs based on a p-value informed clumping
algorithm and to choose a relatively stringent LD
threshold (say 7 <.2 across 500 kb). Clumping
aims to select SNPs so that the most associated
SNP in the region is selected into the SNP profile set.
However, this is not an optimal strategy as the LD
threshold selected is somewhat arbitrary so that
multiple SNPs may be retained that show association
generated by the same causal variant and at the
same time correlated SNPs with associations driven
by independent causal variants may be excluded.
We have described the GPRS method as it is most
frequently applied in the psychiatric research liter-
ature. The method is simple, robust and intuitive.
However, other strategies for creation of individual
risks may be more optimal (see, for example, Abra-
ham, Kowalczyk, Zobel, & Inouye, 2013; Kooperberg,
LeBlanc, & Obenchain, 2010). A full discussion of
these methods is beyond the scope of this review.

Estimating variance explained by all SNPs

In standard association analysis the effect of SNPs
are tested one at a time. Since the number of
genome-wide SNPs is currently greater than the
number of individuals in the study and since corre-
lated SNPs will show correlated association results,
simple addition of variance explained by each SNP
may overestimate the true total variance explained
by all SNPs. This can be overcome by LD pruning of
the SNP set, but the choice of LD threshold will be
arbitrary and can influence the results. Therefore,
other methods have been developed that analyse all
SNPs simultaneously, first for quantitative traits
(Fernando, 1998; Goddard, 2009; Habier, Fernando,

J Child Psychol Psychiatr 2014; 55(10): 1068-87

& Dekkers, 2007; VanRaden, 2008; Yang et al.,
2010), and later extended to disease traits (Lee,
Wray, Goddard, & Visscher, 2011). These methods
have been called GREML (for genomic-relation-
ship-matrix restricted maximum likelihood; Benja-
min et al.,, 2012) and are implemented in the
software GCTA (Yang, Lee, Goddard, & Visscher,
2011), see Box 2. Briefly, the method uses the
genome-wide markers to estimate the genetic simi-
larity between individuals in the study who are
conventionally unrelated. The variance explained
by all SNPs (h3yp) is estimated to be greater than zero
when genetically more similar individuals are phe-
notypically more similar, or in a case—control design
when cases are genetically more similar to each
other than they are to controls. Stringent QC (Lee
et al., 2011) is needed to ensure that artefacts do not
bias the estimates, a problem much more likely in
analysis of disease traits than quantitative traits. As
part of the QC process closely related individuals are
removed. These are detected from the genotype data
as large genetic similarities between pairs of individ-
uals. Removal of close relatives ensures that esti-
mates reflect the tagging of causal variants through
population LD. If more closely related individuals
were to be included the estimate would reflect the
much higher LD in family members. Moreover, by
using only individuals conventionally unrelated
the estimates of h3yp are unlikely to be contaminated
by common environmental effects that can bias
estimates of heritability from family data.

In GREML, contributions from any specific locus
are not evaluated. A significant hZy, when few
genome-wide significant associated SNPs have been
identified provides direct empirical support from
currently available data that increasing sample size
is a worthy research objective. We emphasise that
h3yp is not expected to be as large as h?, since hyp
only reflects variants correlated with the common
SNPs included on genome-wide SNP chips. This is
because it is not possible for rare and uncommon
genetic variants to be highly correlated with common
SNPs (Wray, 2005) and so their contribution to hZyp
is limited. In contrast, rare and uncommon variants
are shared between family members and so contrib-
ute to estimates of h? recognising that different
families may have different rare variants segregating.
The difference between h3y, and h? can provide
insight into genetic architecture in terms of the
relative importance of common variants, which may
differ between traits (Figure 1).

A bivariate model (Lee, Yang, Goddard, Visscher, &
Wray, 2012) allows estimation of the SNP-heritability
of two traits and the SNP-correlation (r,.snp) between
them. Some thought is needed for the interpretation
of the SNP-correlation. Firstly, the correlation
reflects the average genome-wide relationship
between two disorders. For example, a zero SNP-cor-
relation could result either from no relationship at all
between the disorders, or from positive correlations

© 2014 Association for Child and Adolescent Mental Health.
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Box 2 Mini guide to method: Estimating variance explained by all SNPs

Method

1. Identify data sets with genome-wide SNP genotypes. For bivariate analyses the same individuals or different sets of
individuals can be measured for the two traits.

2. Apply more stringent QC than for standard GWAS analysis.

3. Calculate the genome relationship matrix (GRM) — a matrix of genome-wide similarities between all pairs of individuals
calculated from the genome-wide SNPs. (In the program GCTA (Yang, Lee, et al., 2011): -make-grm). Multiple GRM can be
made based on SNP annotation to allow partitioning of variance.

4. Exclude one of each pair of individuals who are more related than chosen threshold — usually no more related than second
cousins, so that estimates reflect the signal tagged by common variants through population level LD (e.g. in GCTA: —
grm-cutoff 0.025).

S. Estimate variance attributable to SNPs via residual maximum likelihood (REML) analysis from a linear mixed model with
covariates (e.g. in GCTA: —reml).

6. For case-control analysis transform the result to the liability scale (e.g. in GCTA: —prevalence).

Univariate
Genome- Genetic Linear mixed Case-control:  SNP heritability
wide similarities il transform to
genotypes between all mode liability scale
individuals
Bivariate
Genome-
wide
genotypes Canaie - c | SNP heritability trait 1
trait | similarities I?»lvarlate. ase;contro *  SNP heritability trait 2
between all linear mixed t.rar‘ist ormto  ¢\p coheritability
. T model liability scale
enome-
wide Genetic correlation
genotypes (independent of
trait 2 transformation)

Outcomes

From univariate analysis we estimate the proportion of variance attributable to SNPs or SNP-heritability (sometimes called
chip-heritability), h2yp. From bivariate analyses we estimate SNP-heritabilities for each of the two traits (hdyp_;, hdyp_ o), the
SNP-genetic correlation between them (r,syp) and the coheritability between them 7, gnphsnp-1hsnp2. N.B. The correlation is
independent of scale (i.e. is the same before and after transformation). If multiple GRM are fitted (step 3) then variance is
partitioned according to SNP annotation (e.g. chromosome, frequency, function).

Sample size considerations

Outcome estimates are unbiased, therefore as sample sizes increase the standard errors of the estimates decrease, but the
estimates should not change given the bounds indicated by the standard errors. This assumes that all individuals are samples
from the same idealised genetically homogenous population, and excluding genotyping artefacts. If estimates change more than
expected given the standard error then this assumption may be violated.

It is not ideal to undertake meta-analysis of estimates from individual samples rather than analysing the total sample together.
The standard error of héNP from a total sample of 10,000 but meta-analysed from five estimates each of 2,000 is 0.072 compared
to the standard error of 0.032 when all 10,000 samples are analysed together. This is because the genetic relationships between
individuals in different subsamples are not used in meta-analysis.

at some genomic locations cancelled out by negative
correlations at other locations. Calculating correla-
tions for different functional categories of SNPs could
identify genomic locations that show different direc-
tions of sharing between disorders. Secondly, the
extent to which the SNP-correlation reflects the
genetic correlation estimated from family data (i.e.,
whether the SNP-correlation estimated from com-

© 2014 Association for Child and Adolescent Mental Health.

mon SNPs is the same as the correlation across the
whole allelic spectrum) depends on the genetic
architecture of disease which is unknown. The
SNP-coheritability (i.e. rgsnphsnp-1hsnp-2) allows
direct comparison of the relationship between disor-
ders on the same scale as the SNP-heritabilities.
Bivariate methods can be applied to data sets in
which all individuals are measured for both traits,
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Box 3 The relationship between GPRS and GREML

J Child Psychol Psychiatr 2014; 55(10): 1068-87

Genomic profile risk scores and GREML can be applied to the
same data sets and both can provide evidence for a polygenic
contribution to the trait or a shared polygenic relationship
between traits that is tagged by the common SNPs. Necessarily
the methods must be tapping into the same signal provided by
the data. In the first application of GPRS in the study of the
International Schizophrenia Consortium (ISC), extensive sim-
ulations were undertaken in order to understand the likely
underlying genetic architecture that could generate the
observed results. The simulations showed that a range of
underlying genetic architectures (in terms of number, fre-
quency and effect size of causal variants) could have generated
the observed GPRS results in which the ISC Discovery sample
(3,322 cases, 3,587 controls) generated a Nagelkerke’s R of
.032 p-value of 2 x 1072% in the Molecular Genetics of Schizo-
phrenia (MGS, 2,687 cases, 2,656 controls) target sample based
on SNPs with p-value threshold .5 out of 74,062 LD-pruned
SNPs. However, all simulation genetic architectures that were
consistent with the empirical results pointed to a hZy, of .34.
Application of GREML to the ISC data generated a direct
estimate of h2yp = 0.33 (95% CI 0.24-0.42; Supplementary
table 2 in Lee, DeCandia, et al. (2012)), reducing to hZy, = 0.27
(95% CI 0.21-0.33) after stringent QC, designed to reduce the
chances that the reported estimate is inflated by artefacts such
as population stratification. These results demonstrate the
relationship between GPRS and GREML via simulation. Using
regression theory and, for case—control studies the liability

threshold model, Dudbridge (2013) provided the theoretical
framework to directly estimate h2y, from same disorder appli-
cations of GPRS and ry_gnp from cross-disorder applications of
GPRS. For example, using the ISC sample characteristics as
described above, his R code calculator “estimateVg2FromP”
(p = 2e-28, nl1 = 3,322 + 3,587, nsnp = 74,062, n2 = 2,687 +
2,656, vgl = 0, corr = 1, plower = 0, pupper = 0.5, weighted =
T, binary =T, prevalencel = .01, prevalence2 = .01, sam-
plingl = 3,322/(3,322 + 3,587), sampling2 = 2,687/(2,687
+ 2,656), lambdaS1 = NA, lambdaS2 = NA, nullfraction = 0,
shrinkage = F, logrisk = F) generates an estimate of h2y, =
0.287 (95% CI1 0.236-0.337).

We applied the “estimateCorrFromP” calculator to the GPRS
results from the Cross-Disorder Group of the Psychiatric
Genomics Consortium (PGC-CDG) analyses (PGC-CDG
2013Db); their Figure 3 and Table S5, see also Table S6). The
estimated SNP-correlation is compared to the direct GREML
estimate of the SNP-correlation (Figure 3) and shows good
agreement, particularly in terms of benchmarking high,
medium or low correlation. In this example, the application
of the Dudbridge approximation is optimised as an input to
the calculation of hZy, for which the GREML estimates are
used. The validity of the approximate method (Dudbridge,
2013) needs to be tested further to determine if any assump-
tions impact results compared to those calculated from the
statistically more complete methods.

but in this case inflation of estimates of genetic
sharing by sharing of environmental risk factors may
be difficult to avoid. More interesting is the applica-
tion of bivariate methods to independent data sets
each measured for a different trait, so that sharing
between individuals reflects only genetic factors (Lee,
Yang, et al., 2012).

While the methods that estimate hZy, from geno-
me-wide SNP data considered jointly in a single
analysis are statistically optimal, the analyses can
be time consuming and computationally demanding
due to the calculation of genomic-relationship matri-
ces. Moreover, the large sample sizes required often
involve sharing of genotype data among research
groups, which is not always possible (see sample size
notes in Box 2). Therefore, approximate methods
based on association summary statistics (of RAF,
OR, p-value, sample size) are appealing. Under a
polygenic model, test statistics of association are
expected to be inflated compared to the distribution
of test statistics in the absence of association, and
hZyp can be estimated directly from the mean test
statistic (So, Kwan, Cherny, & Sham, 2011; So, Li, &
Sham, 2011; So, Gui, et al., 2011; Yang et al., 2011)
as well as from the results of GPRS association
testing (Dudbridge, 2013). As discussed above,
biases due to artefacts are a particular concern for
case-control studies. When estimating hZyp from the
SNP data, QC strategies can investigate the potential
of biases, but such strategies are not available for
analyses based on summary statistics and so the
potential for biases in these results should be
recognised. The relationship between GPRS and

GREML results are discussed in Box 3. Studies that
apply multiple methods can help evaluate the valid-
ity of approximate methods.

Power and sample size

Prior to undertaking a polygenic analysis a power
calculation establishes boundaries of what can be
achieved. In GPRS, power depends on both the
sample size of the discovery and target samples.
Firstly, detecting a variance explained as being
significantly different from zero depends on the
sample size of the target sample. Secondly, the
ability of the GPRS to explain variance in the target
sample depends on the underlying genetic architec-
ture of the disorder (unknown and not in our control)
and on the sample size of the discovery sample to
estimate accurately individual SNP effects. Once
target sample sizes reach a reasonable size there is
little to be gained in increasing them as they already
have excellent power to detect a variance explained
as different from zero. In contrast, increasing the
discovery sample size will continue to increase the
variance explained and the GPRS for each individual
become more accurate, which is advantageous for
other analyses (e.g. relating GPRS to subpheno-
types). Only when researchers have access to geno-
type data for all samples can a choice be made about
division into discovery and target samples. Dud-
bridge (2013) provides a power calculator for GPRS
and also a pragmatic rule of thumb under circum-
stances when the split into discovery and target can
be chosen: discovery and target samples should be of
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equal size until the target sample is ~2,000 cases
and 2,000 controls, and then the additional samples
should be included into the discovery sample.

For GREML, power can be estimated from an
online calculator (Visscher et al., 2014) in which
sample size (number of pairwise relationships) can
directly predict the standard error of the estimate of
hZyp Which is independent of the magnitude of the
estimate. For a quantitative trait a sample size of
4,500 is needed to have 80% power to detect h3yp of
0.2 as being significantly different from zero. For
case—control studies, power also depends on the
proportion of cases in the sample and the risk of
disease in the population. Samples of 4,500 with
equal proportion of cases and controls have at least
80% power to detect hdyp of 0.2 as being significantly
different from zero for disorders of disease risk 0.1 or
less. In bivariate analyses the SE of the correlation
depends on both the magnitude of the SNP-herit-
abilities for the two disorders and the magnitude of
the correlation, as a rough rule of thumb samples of
at least 5,000 are needed for each of the two
disorders for h3y, of 0.2 and SNP-correlation of 0.2.

Polygenic analyses in psychiatry

There are three broad applications of polygenic
analyses in psychiatry: single disorder analyses,
cross disorder analyses and subphenotype analyses.
Here, we review the results of studies using any one
of these applications. Studies were identified in Web
of Knowledge by searching for studies that cited ISC
(2009), Yang et al. (2010) or Lee et al. (2011).

Single disorder analyses. Amongst the psychiatric
disorders, schizophrenia is the flagship disorder
achieving larger samples more quickly than the
other disorders. In 2008, GWAS for schizophrenia
(ISC, 2009; Shi et al., 2009) were published with
sample sizes of ~3,000 cases and identified only 1
genome-wide significant association (and also an
excess of large rare copy number variants in cases
(ISC, 2008; Stefansson et al., 2008). At this point,
many considered GWAS in psychiatry a failure
(Sullivan, 2012). Polygenic analysis methods were
central in demonstrating that the first phase of
GWAS were underpowered, which propelled the drive
for larger sample sizes that is now starting to pay off.
We first consider polygenic results for schizophrenia
and illustrate the relationship between the GPRS
and GREML methods.

The first application of GPRS used the ISC data as
the discovery sample and the Molecular Genetics of
Schizophrenia (MGS) cohort as the target sample
and gave a NR? of 0.032, which through simulation
was shown to be consistent with hZy, of 0.34, that is
34% of the variance in liability to schizophrenia is
explained by many common SNPs of small effect. The
approximation method (Dudbridge, 2013) applied to
these GPRS results gives hZyp = 0.29. Application of
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GREML to the ISC data generated a direct estimate of
h2yp = 0.33 (reducing to h3yp = 0.27 after stringent
QC). These results are discussed in detail in Box 3
and demonstrate some robustness in that different
methods (although underpinned by similar theory)
generate convergent results. The NR? of 0.032 is
modest since many SNPs included in the GPRS do
not contribute and only add noise. The simulations
conducted by the ISC 2009; their Figure S8) sug-
gested that as sample size increased there would be
a better separation of true and false positives and an
increase of NR?. Application of GPRS using the
Psychiatric Genomics Consortium data as discovery
(8,832 cases, 12,067 controls) and the independent
Swedish Schizophrenia sample as target (5,001
cases, 6,243 controls) generated NR? = 0.06, with
maximum NR? achieved using SNPs with p-value
threshold <.3, very much in line with predictions
from the ISC simulations.

Table 1 and Table S2 give an overview of other
studies that investigated the polygenic architecture
of psychiatric traits and disorders using GPRS. The
studies show a rather consistent pattern over the
various phenotypes with significant predictions but
low explained variance (between 0.001 and 0.03).
The results, to date, are mostly less significant than
in the schizophrenia studies, which reflects the more
limited sample sizes available.

Univariate GREML analyses show that the vari-
ance explained by all SNPs (h2yp) (Figure 1, Table S1)
is mostly estimated at around 0.2 or higher for
psychiatric disorders. Further insight into the
genetic architecture is achieved by partitioning hyp
based on SNP annotation such as based on chromo-
some, function and minor allele frequency (Lee,

Table 1 Studies using GPRS with discovery and target sam-
ples of the same trait (univariate analysis). Above: adult
psychiatric disorders, below psychiatric disorders usually
diagnosed during childhood (see Table S2 for more details)

Phenotype Reference

Alcohol dependence

Bipolar disorder

Cloninger’s temperament scales: harm
avoidance, novelty seeking, reward
dependence, persistence

Major depressive disorder

Neuroticism and extraversion

Panic disorder

Schizophrenia

R = 0o Qa

ADHD

Autism spectrum disorders

Behavioural disinhibition, alcohol use,
drug use, nicotine use/dependence

o

References: ®Frank et al. (2012); PCollins et al. (2012); Whalley
et al. (2012); “Service et al. (2012); “Demirkan et al. (2011);
®Luciano et al. (2012); ‘Otowa et al. (2012); 8ISC (2009); Derks,
Vorstman, Ripke, Kahn, & Ophoff (2012); Ikeda et al. (2011);
Levinson et al. (2012); Ripke, O’Dushlaine, et al. (2013);
"Hamshere, Langley, et al. (2013); ‘Anney et al. (2012); ¥Vrieze,
McGue, & lacono (2012).
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DeCandia, Ripke, Yang, & Wray, 2012). Partitioning
by chromosome confirmed the polygenic model with
variance attributable to each chromosome being
proportional to chromosome length. In contrast, for
Alzheimer disease (Lee, Harold, Nyholt, Goddard, &
Visscher, 2013) significantly more variance was
attributable to the chromosome 19, the genomic
location of APOE. The variance explained by the
subsets of SNPs based on minor allele frequency bin
indicated that the variance attributable to SNPs
must be explained, at least in part, by common
causal variants (rather than common SNPs tagging
only rare causal variants; Lee, DeCandia, et al.,
2012). Finally, SNPs in and around genes that are
preferentially expressed in the brain explain a larger
proportion of the variance than expected based
on the proportion of the genome that they repre-
sent (0.3 of the variance explained vs. 0.2 of the
genome represented; Lee, DeCandia, et al., 2012;
PGC-CDG, 2013a). Variance partitioning has been
applied to schizophrenia (Lee, DeCandia, et al.,
2012), bipolar disorder (PGC-CDG, 2013a), ASD
(Klei et al., 2012; St Pourcain et al., 2013), all
generating qualitatively similar results. Application
to Tourette Syndrome (TS) and OCD (Davis et al.,
2013) using the same control set for each disorder
provided evidence for a different genetic architecture
between the disorders in which less common vari-
ants contributed more to hZp for TS than for OCD.

For psychiatric related quantitative traits the trend
is towards smaller estimates of h2y, compared to the
psychiatric disorders. Analysis of a wide range of
quantitative traits measured in ~2,500 unrelated
children from the Twins Early Development Study
(TEDS; Trzaskowski, Dale, & Plomin, 2013; Trzas-
kowski, Eley, etal.,, 2013; Viding etal.,, 2013)
showed significant hy, for height, weight and cog-
nitive ability in line with those reported from other

J Child Psychol Psychiatr 2014; 55(10): 1068-87

studies, but negligible hZy, for childhood behaviour-
al traits (anxiety, depression, hyperactivity, conduct)
despite substantial estimates of heritability using
the family data from which the samples were drawn.
Similarly, estimates of hy, for neuroticism and
extraversion from samples of ~12,000 unrelated
individuals were 0.06 (SE 0.03) and 0.12 (SE 0.03)
respectively (Vinkhuyzen et al., 2012). These results
may point to quantitative behavioural traits being
composite genetic traits, such that family members
score similarly (hence substantial estimates of her-
itability) but that different families may score simi-
larly but for different genetically determined reasons
(hence low estimates of hZyp). More data sets are
needed to explore this further, since other studies
show higher estimates but with high standard
errors, e.g. 0.26 (SE 0.12, meta-analysis of three
sample estimates) for preschool internalising symp-
toms (Benke et al.,, 2014) and 0.18 (SE 0.07) for
quantitative scores of social communication skills
measured in a community sample (St Pourcain
et al., 2013). The finding for social communication
skills, related to ASD, is especially noteworthy given
the evidence for the involvement of rare variants in
ASD (Jiang et al., 2013). These results show that
common variants are also of importance in ASD (Klei
et al., 2012).

Bivariate analyses can be applied to two data sets of
the same disorder, such analyses generate three
estimates of hZyp, one from each subset and one
estimated between subsets (from the co-heritability).
The estimate from the two samples combined into a
single sample will be a weighted average of these
three values. Such analyses explore the heterogeneity
of GWAS data sets within a disorder, which can be
summarised through the SNP-correlation. This cor-
relation is expected to be 1 when the two data sets are
of the same disorder and sampled from the same

ASD/ASD

Schizophrenia/Schizophrenia

ADHD/ADHD

Bipolar disorder/Bipolar disorder
Schizophrenia/Bipolar disorder
Schizophrenia EUR/Schizophrenia AA

MDD/MDD

Bipolar disorder/MDD
Schizophrenia/MDD
Tourette's syndrome/OCD

ADHD EUR/ADHD Chinese
MDD/ADHD
Schizophrenia/ASD
Scizophrenia/ADHD

MDD/ASD

Bipolar disorder/ADHD
Bipolar disorder/ASD
ASD/ADHD —E—

'T!WH ._

——
T

O Same disorder
@ Cross disorder
O Cross ethnicity

|
-0.2 0.0

| | | | |
0.2 0.4 0.6 0.8 1.0

GREML SNP-correlation

Figure 2 Quantifying the genetic relationship between independent data sets through the SNP-correlation (Davis et al., 2013; de Candia
et al., 2013; PGC-CDG, 2013a,b; Yang et al., 2013. The 95%Cl are approximated as the estimate + 1.96 SE (see Table S5 for more details)

© 2014 Association for Child and Adolescent Mental Health.



doi:10.1111/jcpp.12295

homogeneous population. SNP-correlations less than
1 could imply inflation of hy, from each data set
relative to the h2,, estimated between data sets
reflecting genotyping artefacts or else data set spe-
cific variants. When PGC data sets were split into
either 2-3 subsets, heterogeneity between estimates
was much more evident for bipolar disorder, MDD,
and ADHD than for schizophrenia and ASD (as shown
by SNP-correlations in Figure 2). Future studies
designed to understand this observation that may
reflect genetic and phenotypic heterogeneity implicit
in diagnostic class may be critical to maximise power
in GWAS (since the observed heterogeneity will also
impact association analysis). Analyses have also
been conducted for data of the same disorder from
different ethnicities (Figure 2), for example the
SNP-correlation between schizophrenia in European
American ancestry versus African American ancestry
was 0.63 (SE 0.22) compared to the correlation of
0.83 (SE 0.09) between the European ISC and the
European American MGS samples (de Candia et al.,
2013). Likewise SNP-correlation between Chinese
and European ADHD samples was estimated to be
0.39 (SE 0.15) compared to 0.71 (SE 0.17) between
European ADHD subsets (Yang et al., 2013). These
analyses demonstrate that there are likely ancient
common variants contributing to the aetiology of
these disorders, even though different LD structure
and recent population specific causal variants gen-
erate lower correlations between ancestries than
between sample subsets of the same ancestry. In
general, these results provided strong support for a
polygenic contribution to psychiatric disorders.

Polygenic methods 1077

Cross-disorder analysis. The first application of
cross-disorder polygenic analyses was with the ISC
as the discovery sample and the WTCCC bipolar
disorder sample as the target (ISC 2009), generat-
ing a NR? of 0.01 (Wellcome Trust Case Control
Consortium, 2007) with p-value of 1*10 2. Impor-
tantly the schizophrenia discovery sample did not
significantly explain any variance in the other six
nonpsychiatric WTCCC traits, which all used the
same set of controls. Genome-wide sharing between
the schizophrenia and bipolar disorder cases is
implicated. GPRS and bivariate GREML results have
been reported between all five disorders in the
Psychiatric Genomics Consortium study (PGC-CDG,
2013a,b). Applying the quantitative genetics theory
(Dudbridge, 2013; Box 3) to the GPRS results pro-
vides estimates of the genetic correlation that agree
well with the GREML results (Figure 3).

Studies investigating the overlap between disor-
ders using GPRS are summarised in Table 2 and
Table S3. On the whole, genetic relationships
between disorders implied from GPRS and bivariate
GREML agree in broad terms with expectations from
twin and family studies, i.e. most studies show
genetic overlap between disorders. However, some
cross-disorder results are unexpected or inconsis-
tent. For example, the genetic correlation of 0.43
between schizophrenia and MDD was surprising for
many, but when translated to the expected increased
risk to first-degree relatives of 1.6, this was found to
be highly consistent with a meta-analysis of results
from family studies (OR 1.5, 95% CI 1.2-1.8;
PGC-CDG 2013a). That a genetic correlation of
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Figure 3 Relationship between SNP correlation estimated from GREML (PGC-CDG, 2013a) and SNP-correlation estimated from the
Dudbridge (2013) method using the GPRS results published in PGC-CDG (2013b), discovery disorder: target disorder. The same data were
used (black triangles) except for analyses using ADHD (grey circles) for which more data were used from PGC-CDG (2013a). Dotted line
y = x. Correlation between GREML and Dubridge estimates = 0.88 (see Table S6 for more details). The Dudbridge correlation estimates
are calculated using univariate GREML estimates of SNP heritability. (ADHD, attention deficit hyperactivity disorder; ASD, autism
spectrum disorder, BPD, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia.)
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Table 2 Overlap in genetic risk factors between two different disorders/traits, GPRS studies (see Table S3 for more details)

Discovery: Target phenotypes Evidence for genetic overlap Reference

BD: BD with family history, brain activation BD activation in anterior cingulated cortex and the a
during sentence completion test right amygdala across case and control groups.

MDD: anxiety MDD genetic factors overlap with anxiety b

MDD or BD: white matter integrity MDD with white matter integrity N

MDD: brain structure MDD and reduced cortical thickness of the d

amygdala-medial prefrontal cortex

Extraversion or neuroticism: anxiety, MDD Mixed results with nominal significance reflecting ¢
or psychological distress sample size

5 personality traits: MDD or BD Neuroticism with MDD.Extraversion BD f

Schizophrenia: BD Schizophrenia with BD g

5 Psychiatric disorders (schizophrenia, BD, Schizophrenia with BD, MDD and ASD h
MDD, ADHD and ASD each uses as discovery BD with MDD and ASD.
and target (All reciprocal)

Behavioural disinhibition, alcohol use, Shared genetic factors i
drug use, nicotine use/dependence

Schizophrenia and/or BD: ADHD GPRS from schizophrenia associated with ADHD i

but stronger association when discovery was
schizophrenia and bipolar disorder

BD, bipolar disorder; MDD, major depressive disorder; ASD, autism spectrum disorder.
References: *Whalley et al. (2012); "Demirkan et al. (2011); “Whalley et al. (2013); fiHolmes et al. (2013); ®Luciano et al. (2012);
"Middeldorp et al. (2011); 8ISC (2009); PPGC-CDG (2013b); Vorstman et al. (2013); Vrieze et al. (2012); JHamshere, Stergiakouli,

et al. (2013).

0.43 translates into a modest increased risk to
relatives may seem surprising but is a direct reflec-
tion that MDD is a common disorder. (We discussed
above that it is difficult to benchmark the genetic
contribution to disease from risks to relatives). The
lack of genetic overlap between ADHD and ASD (and
also between these disorders and other disorders)
from the GPRS and bivariate GREML analyses was
unexpected since family studies point to a shared
genetic background for ASD, ADHD and bipolar
disorder (Lichtenstein, Carlstrom, Rastam, Gillberg,
& Anckarsater, 2010; Larsson et al., 2013; Romm-
else, Franke, Geurts, Hartman, & Buitelaar, 2010;
Sullivan et al., 2012). As discussed above, sample
sizes can impact on GPRS results and sample sizes
for ADHD and ASD samples are small relative to
other disorders. For example, GPRS generated from
a schizophrenia discovery sample and applied to
ASD target sample was not significant in the Vorst-
man et al. (2013) study, but did reach significance
(p < .05) when additional samples had accumulated
(PGC-CDG, 2013a). In principle, GREML results
should be unbiased regardless of sample size, with
the standard error of the estimate decreasing with
sample size. However, as discussed above, the esti-
mates of hZyp between and within subsets showed
more heterogeneity between subsets for some disor-
ders (Figure 2) than expected from the standard
errors, which could imply phenotypic or genetic
heterogeneity or artefacts and these could impact
the GPRS and bivariate GREML results. Interest-
ingly, GPRS analysis using the PGC schizophrenia
and/or bipolar disorder sets as discovery samples
and 727 ADHD cases and 2,067 controls as target
sample found the most significant association
when SNPs with association p-value <.5 for both
schizophrenia and bipolar disorder were used to

generate the profile score SNP list (Hamshere, Ster-
giakouli, et al., 2013). These results point to impor-
tant sharing of genetic risk factors between the
disorders. However, the more significant result from
the combined disorder discovery sample may also
reflect increased power for disorder-shared variants
through larger sample size. More data are needed to
fully understand the relationship between disorders.

GPRS applied to personality traits to explore
relationship with psychiatric disorders such as anx-
iety/depression and bipolar disorder suggest that
neuroticism is related to anxiety/depression disor-
ders or related traits (as expected from family stud-
ies), although results are somewhat inconsistent
(Luciano et al., 2012). For extraversion, the picture
is more complicated. Extraversion polygenic scores
were found to positively predict bipolar disorder and
psychological distress (Luciano et al., 2012; Middel-
dorp et al.,, 2011), but also to negatively predict
anxiety/depression or related traits. The latter is
more in line with the negative phenotypic correlation
between extraversion and anxiety, depression and
bipolar disorder (Barnett et al., 2011; Middeldorp
et al., 2011). However, extraversion is related to a
manic prone illness course in bipolar disorder (Bar-
nett et al.,, 2011). Again, sample size seems to
influence the variation in results.

Sub-type analysis. In addition to shared genetic
risk across diagnostic classes, heterogeneity within
diagnostic classes is well recognised in psychiatry. It
is appealing to attempt to use genome-wide associ-
ation data to explore if genetic heterogeneity under-
pins the phenotypic heterogeneity. Currently, such
analyses are often limited by sample size (Table 3,
Table S4), and to date most applications have been
on schizophrenia subtypes. Limited sample sizes
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Table 3 Overlap in genetic risk factors between disorders/traits and subtypes, GPRS studies (see Table S4 for more details)

Discovery: Target phenotypes Evidence for overlap

Reference

ADHD: ADHD with /without conduct
disorder

ADHD: ADHD-related traits in a
population sample

Polygenic risk scores are higher in those with conduct disorder

ADHD explained significant variance in the traits measured in
a population sample implying that ADHD is represents the

a

extreme end of traits present in the general population

Schizophrenia: schizophrenia
spectrum including unaffected
relatives

3 schizophrenia symptom
dimensions: schizophrenia

Schizophrenia: bipolar subtypes

schizophrenia

Significant prediction with the most significant result for the
narrow phenotype and the less significant result for being
an unaffected relative

Negative/disorganised dimension is most associated with

Schizophrenia derived GPRS discriminate between schizoaffective

bipolar disorder and non schizoaffective bipolar disorder but not
between bipolar disorder with and without psychosis

Schizophrenia: positive, negative,
disorganisation, mania and
depression symptom dimensions.

Schizophrenia: schizophrenia +
schizoaffective disorder +
psychotic bipolar disorder

Schizophrenia GPRS are associated with all symptom dimensions
in case versus control analysis, but not for symptom dimensions
within case or control sample separately.

Schizophrenia GPRS are associated with a broad psychosis phenotype

References: *Hamshere, Langley, et al. (2013); "Martin et al. (2014); °Bigdeli et al. (2013); 9Fanous et al. (2012); “Hamshere et al.

(2011); Derks et al. (2012).

have prohibited GREML analyses, to date. We antic-
ipate that subtype analyses will become more com-
mon in the future and GPRS provides a mechanism
to use the power of a larger discovery sample
recorded only for case—control status to probe differ-
ences between subtypes recorded in smaller samples
of the same or different disorder. Extending such
analyses to larger samples requires consistent phe-
notypes across samples, which may be a problem.
For example, many subtypes of schizophrenia have
been proposed based on cognitive deficit, symptom
profiles or treatment resistance. But, to date, GPRS
results for schizophrenia subtyping do not show a
clear pattern (Table 3), which may reflect, in part,
heterogeneity of the discovery sample. The most
interpretable application of subtype analysis is
between one disorder (say schizophrenia since it
currently has the most powerful discovery sample)
and subtypes of another disorder. Applications
between one disorder and subtypes of the same
disorder may be more difficult to interpret. For
example, if the PGC schizophrenia sample is used
as a discovery sample to compare polygenic risk
scores in independent samples of cognitive deficit
versus cognitive normal cases or between clozapine
treated (usually treatment resistant) and noncloza-
pine cases the detailed interpretation depends on the
proportion of these subtypes in the discovery sam-
ple, which is likely unknown. Nonetheless, some
interpretation is possible and, for example, GPRS
scores from an ADHD discovery samples were higher
in target samples of ADHD cases with conduct
disorders versus ADHD samples without conduct
disorder (Hamshere, Langley, et al., 2013) , implying
some genetic basis for differences in the aetiology of
these classes. Interestingly, application of ADHD
GPRS in a population sample of children measured
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at 7 and 10 years for ADHD-related traits provided
empirical evidence for the hypothesis that ADHD
represents the extreme end of traits present in the
general population (Martin, Hamshere, Stergiakouli,
O’Donovan, & Thapar, 2014).

Discussion
Why are common loci of small effect important?

Other than for schizophrenia, the number of geno-
me-wide significant DNA variants identified for psy-
chiatric disorders or related traits are few, to date.
The success for schizophrenia is largely explained by
greater sample size which was achieved by combin-
ing data across >50 studies (PGC-SCZ, 2014).
Indeed, no single locus had been robustly associated
with schizophrenia when sample sizes were similar
to those currently available for many other psychi-
atric disorders. The trajectory of GWAS discovery for
schizophrenia, which increased from 1 locus (ISC
2009; Shi et al., 2009) to 7 (Ripke et al., 2011) to 22
(Ripke, O’Dushlaine, et al., 2013) to 62 (Ander-
son-Schmidt et al., 2013)to >100 (PGC-SCZ, 2014)
as the number of cases increased from ~3K to 36K, is
not dissimilar to that of other (nonpsychiatric) dis-
eases (Kim, Zerwas, Trace, & Sullivan, 2011).
Whereas, the first 3K cases identified only 1 risk
variant, the last 3K cases added to make the total of
36K cases identified ~40 additional loci). This suc-
cess was predicted from polygenic analyses applied
to the data sets that found only 1 locus (Lee,
DeCandia, et al., 2012; ISC, 2009). The same poly-
genic analyses applied to other psychiatric disorders
imply that common SNPs explain a significant pro-
portion of variance implying that current sample
sizes are underpowered to detect the effect sizes that
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exist in nature, and that more individually associ-
ated loci for these disorders will be identified as
sample size increases. However, collection of larger
samples is time consuming and expensive, so why is
it important to identify common loci of small effect?

First, although verified GWAS effects are usually
small individually, their cumulative effect is not.
Second, there is evidence that loci found to harbour
common alleles of small effect for schizophrenia are
also enriched for rare mutations of larger effect in
whole exome sequencing studies in schizophrenia
(e.g. voltage-gated calcium channel genes; Fromer
et al.,, 2014). Convergent results from GWAS and
sequencing can help to prioritise genes for follow-up
studies (Gratten, Visscher, Mowry, & Wray, 2013).
Third, small effect size may partly reflect the heter-
ogeneity of the diagnostic construct that is imposed
from a diagnostic system based on self-report and
clinical observation. As sample sizes and genomic
technology improve, the genomics era has the
potential to identify more biologically based diag-
nostic constructs for which effect sizes may be
larger. Fourth, there are now many examples of
diseases for which GWAS hits are for known drug
targets (Plenge, Scolnick, & Altshuler, 2013; San-
seau et al., 2012) or identify relevant biology (Jostins
et al., 2012; Klein et al., 2005). For example, genes
identified through GWAS associated with variation
in LDL levels are the targets of statins (Teslovich
et al., 2010) and those associated with rheumatoid
arthritis are the targets of known drugs that are
effective therapies for this disease (Okada et al.,
2013). Similar insights may be forthcoming in psy-
chiatric disorders, because identified loci for schizo-
phrenia include known targets of existing
antipsychotics (PGC-SCZ, 2014). These examples
indicate that although GWAS loci have small effect
sizes, they may help identify targets for novel ther-
apeutics (Teslovich et al., 2010), or may identify
existing drugs that can be repurposed for treatment
of diseases that they were not initially developed to
treat (Manolio, 2013; Sanseau et al., 2012). For
these reasons identification of common variants of
small effect is a worthy goal and polygenic methods
provide strong guidance based on currently available
data that increasing sample size will identify more
associated variants in future. To maximise the value
of new sample collections they should be accompa-
nied by more detailed clinical data.

Implications for nosology

The results from the cross-disorder analyses are an
important outcome of polygenic methods, providing
direct empirical evidence for genetic relationships
between disorders. These results will contribute to
nosology. The genome-wide era provides a new
paradigm to explore the genetic relationship between
disorders. In the pregenomics era genetic relation-
ships between disorders could only be determined by
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collection of large cohorts of families measured for
the two disorders. Low population risk, variable age
of onset, ascertainment biases and confounding with
family environment make such data difficult to
collect. For example, where the genetic relationship
between disorders has been investigated through
twin and family studies, the results generally con-
verge with the latest results obtained with polygenic
methods (see citations in PGC-CDG, 2013a). This
supports further use of genome-wide SNPs to explore
the genetic relationship between case—control sam-
ples collected independently for pairs of disorders.
Another approach to explore the genetic overlap
between disorders is the conditional false discovery
rate (cFDR) method (Schork et al., 2013) in which
the search space for associated SNPs in the target
sample is limited to SNPs associated to some thresh-
old in the discovery sample. In this way, more
true-positive associated SNPs surpass the stringent
level of association significance. In contrast to GPRS
and bivariate GREML methods, cFDR is agnostic to
direction of effect and so considers a more general
pleiotropy in which the same SNPs but different risk
alleles can be identified. Lastly, as discussed above
and below, increased sample size accompanied by
consistent clinical data and advances in genomic
technology have the potential to add knowledge to
both shared genetic factors across disorders and
heterogeneity within disorders to create more
biologically valid diagnostic constructs.

Where to find the still-missing heritability

The polygenic analyses have been successful in
identifying “hidden heritability”, i.e. the increase
from hyg to h3yp. In theory, with sufficiently large
sample size, h3ys can become as large as hiyp.
However, the ‘still-missing’ heritability, i.e. the dif-
ference between hdyp and h” remains substantial for
psychiatric disorders and, indeed, for most other
complex traits, at least half is still missing. It is
important to note that it is not necessary to explain
all heritability when the goal is to open new biological
research doors that may impact treatment, and
indeed it is likely to be impossible to do so. None-
theless, seeking further insight for the still-missing
heritability may also provide important guidance of
future research directions. In human populations,
part of the still-missing heritability may simply
reflect overestimation of h® since typical human
family designs for estimation of heritability use very
close relatives (e.g. full siblings and twins) who share
nonadditive gene combinations and a common envi-
ronment and these confounding factors can be
difficult to separate (Tenesa & Haley, 2013; Visscher,
Hill, & Wray, 2008). The difference between esti-
mates of h? from family data and the ‘true’ h® has
been termed ‘phantom heritability’ (Zuk, Hechter,
Sunyaev, & Lander, 2012) when the difference is
attributable to nonadditive genetic variance, but our
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ability to quantify this based on realistically collect-
able data is limited. Others have argued that the
contribution from nonadditive genetic variance to
complex traits is likely limited (Hill, Goddard, &
Visscher, 2008; Stringer, Derks, Kahn, Hill, & Wray,
2013) and that presence of important epistasis and
small epistatic variance are not inconsistent (Mac-
kay, 2014).

The extent to which gene-environment interaction
(GXE) or G and E correlation inflate estimates of
heritability from twin and family studies is unknown.
Nonetheless, it seems intuitive that exposure to
environmental risk factors increases risk of disease
only in those that are already genetically susceptible
and hence SNP effect sizes may differ in cases
stratified by environmental exposure. However,
G xE studies to date are limited by a dearth of samples
that are informative for G and consistently recorded E
(Dunn et al., 2011). For this reason, studies of
candidate GxE interactions in psychiatry have gen-
erally lacked replication and the field is plagued by
publication bias towards studies with positive results
(Duncan & Keller, 2011). Polygenic risk scores analy-
ses provide a novel paradigm to quantify G x E
(Iyegbe, Campbell, Butler, Ajnakina, & Sham, 2014;
McGrath, Mortensen, Visscher, & Wray, 2013; Plo-
min, 2013).

Part of the still-missing heritability must reflect
genomic variants not well tagged by SNPs (Manolio
et al., 2009; Yanget al., 2010). Since the SNPs on SNP
chips are chosen because both their alleles are
common they cannot be in high 7* linkage disequilib-
rium with a causal variant with one rare allele. A very
large number of rare variants are needed to explain the
still-missing heritability, since such variants individ-
ually explain a very small proportion of the variance.
For example, a locus with risk allele frequency .0001
and heterozygous relative risk (RR) of 10 explains
approximately the same proportion of variance in
liability as a locus with allele frequency 0.5 and RR
1.06. It is notable that the relative importance of small
structural variants to genomic variation is currently
not well documented and since recurrent tandem
repeat polymorphisms are known to modulate a range
of biological functions (Hannan, 2010a, 2010b), these
may represent an example of an important, but as yet
unprobed, source of disease associated variation.

Disorder heterogeneity is a possible explanation
for still-missing heritability of particular relevance
to psychiatric disorders. One aspect of disorder
heterogeneity may be reflected by lower estimates of
heritabilities of psychiatric disorders from large
national registries than from clinically ascertained
cohorts. For example, estimates of h® for schizo-
phrenia and bipolar disorder were 0.64 (95% CI
0.62-0.68) and 0.59 (0.56-0.62) from the Swedish
national data (Lichtenstein et al., 2009), 0.67 (0.64-
0.71), 0.62 (0.58-0.65) estimated from reported
summary statistics of Danish national data (Wray
& Gottesman 2012), compared to estimates from
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meta-analysis of clinically ascertained studies
(McGuffin et al., 2003; Sullivan, Kendler, & Neale,
2003) of 0.81 (0.73-0.90) and 0.85 (0.73-0.93). The
lower estimates from national data may reflect, in
part, differences in diagnostic criteria that may be
more relevant to the large samples brought together
for genome-wide genotyping, whereas careful and
consistent diagnostic practice is likely to be used in
the clinical samples ascertained for estimation of
heritability. However, another aspect of diagnostic
heterogeneity may be that biologically different
disorders are labelled the same given the clinically
available symptom data. For illustrative purposes,
consider a nonpsychiatric paradigm. Crohn’s dis-
ease and ulcerative colitis are both forms of inflam-
matory bowel disease (IBD) and based on patient
symptoms and clinical observation it is difficult to
discriminate between them. It is only in the last
forty-odd years, for example with the advent of
colonoscopy, that differential diagnosis has become
possible. GWAS have identified 163 IBD loci, the
vast majority of which have odds ratio in the same
direction for both disorders (Jostins et al., 2012).
Despite the strong common biological mechanisms,
many of the risk alleles have significantly different
effect sizes between the disorders, and it is notable
that two risk alleles for Crohn’s Disease (in PTPN22
and NOD2) are significantly protective for ulcerative
colitis. In other words these loci would not be
identified or would be identified with reduced odds
ratio in association analysis of IBD. The parallels
with psychiatric disorders are clear (although the
differences may be more subtle), currently we may
not have the phenotypic benchmarks to allow
subtype distinction of disorders and hence variants
that differentiate between subtypes may be
obscured. The genomics era has allowed good
progress in subtyping of cancers (e.g. ER +ve/ER —
ve and over-expression of HER2 as a breast-cancer
subtype (Wang et al., 2005; Slamon et al., 1987) or
K-ras mutations in colorectal cancer and EGFR
mutations in lung cancer, reviewed in (Ferraldeschi
& Newman, 2011); however, other branches of
medicine are able to supply measures of phenotypic
heterogeneity in the tissue of relevance for mapping
onto the genetic heterogeneity. Lack of access to
brain tissue will make progress slower in psychia-
try. It is well recognised that affected family mem-
bers tend to have more similar symptom profiles
than with other affected individuals (Kendler et al.,
1997; Lieb, Isensee, Hofler, & Wittchen, 2002;
Schreier, Hofler, Wittchen, & Lieb, 2006), implying
that if association analyses were limited to a subset
of individuals with similar symptom profiles effect
sizes of individual variants may be higher. In other
words, the current disease classification might
obscure different subtypes and identifying the sub-
types that currently cannot be differentiated is an
important goal of psychiatric genomics. Especially
of relevance in child psychiatry is the heterogeneity
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in course of psychiatric disorders from childhood
into adolescence and then adulthood. One apparent
example is ADHD for which symptoms can persist
into adulthood, but can also decline (Faraone,
Biederman, & Mick, 2006). It is yet unknown
whether this difference in course represents genet-
ically heterogeneous subtypes. Another issue is the
transition of childhood symptoms into a range of
other adulthood disorders, recently studied in the
context of SNPs suggestively associated with adult-
hood mood and psychotic disorders investigated in
childhood ADHD and ASD and internalising symptoms
at age 3 (Benke et al., 2014). In summary, the most
tangible way forward to gain a more complete picture of
still-missing heritability are large samples informative
for G, E and clinical symptoms.

Recommendations for polygenic analyses

In this review we have considered the polygenic
methods most commonly applied to psychiatric
disorders and traits, namely GPRS and GREML.
The GPRS results interpreted through simulation
(ISC 2009) and theory (Dudbridge, 2013) generate
estimates of hZy, consistent with those from
GREML. That three different methods generate
consistent results provides some support for the
robustness of the estimates, although of course they
are detecting the same underlying signal and make
some similar assumptions. GREML estimates of
hZyp and SNP-correlations from genome-wide SNP
data considered jointly in a single analysis are
statistically optimal, are robust to perturbations in
underlying assumptions and explicitly test for infla-
tion by artefacts. The robustness of the method to
underlying assumptions has been tested in detail
(Speed, Hemani, Johnson, & Balding, 2012; Zaitlen
& Kraft, 2012). As sample sizes increases even more
interesting partitioning of variance based on anno-
tation of SNPs will become possible. However,
application of GREML requires access to genome--
wide genotypes for all samples, which is not always
possible, whereas GPRS requires genome-wide
genotypes only for the target sample. Moreover,
GREML is orders of magnitude more demanding in
computing resources than GPRS. The validity of the
approximate method (Dudbridge, 2013) needs to be
tested further to determine if any assumptions
impact results compared to those calculated from
the statistically more complete methods. We recom-
mend application of the GPRS plus the Dudbridge
(2013) approximation alongside GREML estimates
so that this can be fully evaluated. Application of
the Dudbridge approximation to published GPRS
results is difficult because not all the needed input
parameters have been reported. A potential pitfall is
that, currently, it is not possible to determine if
there is overlap between discovery and target sam-
ple when only summary statistics are available for
the discovery sample and overlap would serve to
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inflate results (Wray et al., 2013). However, as a
rule of thumb if application of GPRS shows no
significant variance explained then there is little
point in bothering with more refined analyses.
However, if GPRS analyses provide evidence for an
important polygenic component then GREML analy-
ses use data in the optimal way. For example,
integration of functional annotation into GPRS
methods is limited because arbitrary decisions are
made about which SNPs out of sets of correlated
SNPs are retained in the analysis. In GREML
analyses, the correlation structure between SNPs
is accounted for, and hence, the data drive how
variance is attributed to different functional classes
(Gusev et al., 2014).

Current and future value of genomic risk predictors

Genomic profile risk scores are genetic risk predic-
tion scores for individuals. These are currently not of
diagnostic value and indeed a genetic predictor alone
will always have limited predictive value when the
heritability is less than 1 (Wray, Yang, Goddard, &
Visscher, 2010). Even as sample sizes increase their
utility will be limited to identification of high-risk
strata that may contain the majority of individuals
who are or become affected, even though the major-
ity of individuals in the high-risk strata may not be
affected (i.e. high sensitivity, low specificity; Chat-
terjee et al., 2013; So, Kwan, et al., 2011). However,
predictive ability will increase if nongenetic risk
factors are combined with the genetic predictors.
Moreover, genetic studies may lead to the identifica-
tion of other biomarkers, such as proteomic biomar-
kers (Sokolowska et al., 2013), through discovery of
novel pathways. The challenge in psychiatry is not
the classification into cases versus controls, but into
treatment relevant subsets amongst individuals pre-
senting in prodromal phase of their disorder trajec-
tory (Kapur, Phillips, & Insel, 2012). Despite these
challenges predictors may be a tangible outcome of
the genomics era, as understanding of biological
mechanisms are not needed for classifiers to have
clinical utility (Kapur et al., 2012).

Conclusions

The genomics era has provided the empirical evi-
dence that complex genetic diseases and disorders
are indeed complex. The complexity can seem over-
whelming, but the genomic data have provided some
traction. Only time will tell what the knowledge of the
100+ loci detected to date for schizophrenia
(PGC-SCZ, 2014) will deliver in terms of prevention,
diagnosis, prognosis and treatment option and
whether the number of risk loci identified for other
disorders will increase as predicted with increasing
sample size. However, we conclude that polygenic
analyses will contribute further to our understand-
ing of complex genetic traits as sample sizes increase
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and as sample resources become richer in pheno-
typic descriptors, both in terms of clinical symptoms
and of nongenetic risk factors.

Supporting information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Estimates of heritabilities from family studies
and estimates of SNP-heritability.

Table S2. Studies using polygenetic risk scores for the
same trait (univariate analysis).

Table S3. Overlap in genetic risk factors between two
different disorders/traits, GPRS studies.

Table S4. Overlap in genetic risk factors between
disorders/traits and subtypes, GPRS studies.

Table S5. Genetic correlations from GREML studies.
Table S6. Applying the Dudbridge approximation to
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GPRS from analyses of five psychiatric disorders and
comparing to GREML estimates.
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Key points

polygenic burden of risk alleles.

diagnostic constructs.

e Genome-wide association data provide evidence for the polygenic architecture of psychiatric disorders
and traits, i.e. these traits are influenced by many genetic variants and affected individuals may carry a

e We provide mini-guides for polygenic methods of genomic profile (or polygenic) risk scoring and of
estimation of variance (or heritability) from common SNPs.

e Polygenic methods applied to currently available samples provide evidence that part of the missing
heritability is just hidden and that with increasing sample sizes the number of genome-wide significant
hits will substantially increase, as already achieved for schizophrenia.

e The identification of genetic variants provides the starting point of functional analyses that might
eventually lead to new prevention and treatment options and to improved biological validity of
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Appendix

URLs

PLINK: http://pngu.mgh.harvard.edu/~purcell/
plink

GREML: http:/ /www.cnsgenomics.com/software/
geta//

GREML (power calculator): http://www.cnsge-
nomics/software

ABC tool to convert Nagelkerke’s R? to variance in
liability explained: http://www.cnsgenomics.com/
software/
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Dudbridge approximation: sites.google.com/site/
fdudbridge/software/

Glossary

Clumping: Selection of SNPs based on association
p-value and LD threshold between SNPs to generate
a SNP set that includes the most associated SNP
within LD regions.

Complex genetic trait: A trait or disease that
tends to “run in families” but shows no clear pattern
of inheritance and so is likely underpinned by
multiple genetic and nongenetic factors.

Conventionally unrelated: Individuals from that
are not closely related, for example more distantly
related than 2nd cousins.

Epistasis: Nonlinear interactions between segre-
gatingloci; when the phenotypic effect of the genotype
atonelocus depends on the genotype atanotherlocus.

Epistatic variance: The variance partitioned out
from the total genetic variance that is orthogonal to
additive genetic variance, i.e. additive variance is
the variance attributable to average effects and the
epistatic variance is the variance attributable to
deviations from average effects. Hence, epistasis
contributes to both average effects and to devia-
tions from additive effects and the presence of
epistasis and small epistatic variance are not
inconsistent.

GREML: Genomic-relationship-matrix restricted
maximum likelihood; a method to estimate the
variances of random effects from a mixed linear
model in which the correlation structure between
the genetic random effects is defined by the geno-
mic-relationship matrix calculated from SNPs.

Linkage disequilibrium (LD): Two alleles at dif-
ferent loci that occur together on a chromosome
more often than would be predicted by random
chance.

Pleiotropy: The phenotypic effect of a genetic
variant on more than one trait.

Polygenic: A genetic architecture of “many”
genetic variants and includes risk variants that are
both common and rare in the population.

Population stratification: Structure within the
sample due to differences in genetic ancestry among
samples.

Profile score: A weighted sum of the number of
risk alleles carried by an individual. The risk alleles
and their effect sizes (the weights) are calculated
from an independent sample.
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