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Abstract
Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are important
biomarkers for disease development and progression. To gain insight into the genetic causes of
variance in NLR and PLR in the general population, we conducted genome-wide association
(GWA) analyses and estimated SNP heritability in a sample of 5901 related healthy Dutch
individuals. GWA analyses identified a new genome-wide significant locus on the HBS1L-MYB
intergenic region for PLR, which replicated in a sample of 2538 British twins. For platelet count,
we replicated three known genome-wide significant loci in our cohort (at CCDC71L-PIK3CG,
BAK1 and ARHGEF3). For neutrophil count, we replicated the PSMD3 locus. For the identified
top SNPs, we found significant cis and trans eQTL effects for several loci involved in
hematological and immunological pathways. Linkage Disequilibrium score (LD) regression
analyses for PLR and NLR confirmed that both traits are heritable, with a polygenetic SNP-
heritability for PLR of 14.1%, and for NLR of 2.4%. Genetic correlations were present between
ratios and the constituent counts, with the genetic correlation (r=0.45) of PLR with platelet count
reaching statistical significance. In conclusion, we established that two important biomarkers have
a significant heritable SNP component, and identified the first genome-wide locus for PLR.

Introduction
Both neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have
been suggested as novel and useful biomarkers for the diagnosis or prognostic prediction of
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diseases. A high NLR level was shown to be an independent predictor of mortality in
patients undergoing cardiac revascularization and in patients with myocardial infarction 4.
Elevated NLR levels were also related to a poor prognosis of various cancers, such as
esophageal, pancreatic, lung, ovarian and hepatocellular cancer. Similar to NLR, PLR was
also reported as an index for diagnosis or prognostic prediction of oncologic disorders and
inflammatory diseases. NLR and PLR thus may serve as biomarkers in patient populations.
However, studies of variation in these biomarkers within healthy populations are scarce.
Recently, we showed that variation in NLR and PLR levels is due to genetic influences, with
a broad sense heritability of 36% for NLR and 64% for PLR, using a twin-family
epidemiological design 10. Here, we investigate if the significant heritability estimates can
be explained by common SNPs (single nucleotide polymorphisms) and if we can identify the
genes that play a role in these two blood ratios. We also investigate if our findings are
unique to the two ratios or whether their count-components (i.e. lymphocyte, neutrophil and
platelet counts) show similar results.

No genome-wide association study (GWAS) has yet been published for NLR and PLR.
However, GWASs on their subcomponents, the neutrophil, lymphocyte and platelet counts
were carried out in different populations including European, African-American, Korean
and Japanese populations. These GWASs for blood cell count in different cohorts have
identified multiple genetic loci for blood cell components. For neutrophil count, the DARC
gene promoter at 1q23.3 was identified in African-American populations and loci at 20p12
(PLCB4 gene) 22 and 7q21.2 (CDK6 gene) were found in the Japanese population. The
chromosomal region nearby PSMD3 on 17q21 was associated in a GWAS meta-analysis in
both Japanese and European ancestry cohorts, but not in African-American cohorts. The
variants at AK123889 on 6p21.33 were novel findings in a European ancestry cohort, and
were also confirmed by meta-analysis. For lymphocyte count, two genetic variants nearby
EPS15L1 gene on 6p21 and LOC101929772 on 19p13 were identified. For platelet count,
many loci were identified: SH2B3 on 12q24, ARHGEF3 on 3p14.3, ZBTB9-BAK1 on
6p21.31, KIAA0232 on 4p16.1, EGF on 4q25, PNPLA3 on 22q13.31 in the Korean
population. ARHGEF3 on 3p14.3, PEAR1 on 1q23.1, BMPR1A on 10q23.2, loci on 6p22,
7q11, 10q21, 11q13, 20q13 were detected in the African-American population and over 55
loci including CCDC71L-PIK3CG, ARHGEF3, BAK1 and HBS1L-MYB in the European
population.

Some blood cell count loci show pleiotropy: they influence multiple hematological indices.
For example, the genetic region nearby AK123889 on 6p21.33 was associated with
neutrophil count, lymphocyte count and total white blood cell count and the DARC
promoter on 1q23.2 was associated with neutrophil count, monocyte count and total number
of white blood cells. The intergenic HBS1L-MYB variants were associated with total white
blood cell count and also with number of neutrophils, lymphocytes, erythrocytes,
eosinophils, monocytes, and platelets. Therefore, we also examined genetic effects across
the ratios and constituent cell counts.

We conducted five GWASs to identify genetic variants associated with NLR, PLR and
neutrophil, lymphocyte and platelet counts. The discovery cohort consisted of 5901 healthy
participants from the Netherlands Twin Register (NTR) and replication of top results was
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sought in the TwinsUK cohort consisting of 2538 participants 34. Furthermore, all top SNPs,
which showed a significant association with our phenotypes of interest, were selected for an
eQTL analysis to test whether these variants have an effect on the gene expression level. For
the ratios, we estimated the proportion of trait variance explained by significant SNPs from
the GWAS and the variance explained by SNPs that were associated with lymphocyte,
platelet and neutrophil counts. Using the summary statistics of the GWAS results, we
applied LD regression to determine the variance explained by all autosomal SNPs, to
examine polygenetic effects between NLR and PLR, and to determine the genetic
correlation between variants affecting the two ratios, their subcomponents and LD-Hub
published GWAS,40.

Material and Methods
Participants

All participants were registered with the Netherlands Twin Register (NTR) and had taken
part in biobank projects conducted between 2004 and 2011. After removing outliers (defined
as values outside mean ±5×SD for NLR, PLR or their subcomponents), the sample size for
PLR and NLR was 9434 individuals from 3411 families. We further excluded individuals
who met one or more of these criteria: 1) illness in the sampling collection week (N=539);
2) values of CRP ≥ 15 mg/L (N=287); 3) basophile count > 0.02×109/L (N=151); 4) report
of chronic immune disease or cancer (N=83); and 5) anti-inflammatory medication,
glucocorticoids or iron supplements (N=537). When linking these data to the genetic data,
6112 individuals had both phenotype and genotype data. After exclusion of 211 individuals
with non-Dutch ancestry (based on genotype information), the sample size was 5901
individuals. Written informed consent was obtained from all participants and the Medical
Ethics Committee of the VU Medical Centre approved the study protocols.

Blood sampling and Cell counts

Blood samples were obtained during a home visit, or sometimes a work visit, between 7 and
10 a.m. Participants were instructed to fast overnight and to refrain from heavy physical
exertion and medication use (if possible) in the morning before the visit. Smokers were
asked to abstain from smoking at least one hour prior to the visit. For fertile women without
hormonal birth control, when possible, an appointment was made within the 2nd to 4th day
of the menstrual cycle and women taking hormonal birth control were visited during the pill-
free week. Peripheral venous blood samples were collected into multiple anticoagulant
vacuum tubes. Within 3 to 6 hours upon blood withdraw tubes were transported to the
laboratory. During the visit, data were also collected on body composition, the presence of
chronic diseases, medication use, and smoking history.

The hematological profile, including the number of neutrophils, lymphocytes and platelets,
was obtained from 2 ml EDTA tubes using the Coulter system (Coulter Corporation, Miami,
USA). NLR was calculated as the absolute neutrophil count (109/L) divided by the absolute
lymphocyte count (109/L), and PLR was calculated as the absolute platelet count (109/L)
divided by the absolute lymphocyte count (109/L).
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Genotype Data

For DNA isolation, we used the GENTRA Puregene DNA isolation kit.. Genotyping was
done on multiple chip platforms, with a number of overlapping participants. Chronologically
the following platforms were used: Affymetrix Perlegen 5.0 (N=1,718), Illumina 370
(N=424), Illumina 660 (N=1,103), Illumina Omni Express 1 M (N=346) and Affymetrix 6.0
(N=3602). Genotype calls were made with the platform specific software (Birdsuite, APT-
Genotyper, Beadstudio) for each specific array. Quality control was done within and
between platforms and subsets. For each platform, the individual SNP markers were lifted
over to build 37 (HG19) of the Human reference genome, using the LiftOver tool (“http://
genome.sph.umich.edu/wiki/LiftOver”). The data were then strand aligned with the 1000
Genomes GIANT phase1 release v3 20,101,123 SNPs INDELS SVS ALL panel. SNPs from
each platform were removed if they had ambiguous locations, mismatching alleles with this
imputation reference set or the allele frequencies differed more than 0.20 compared to the
reference. From each platform, SNPs were also excluded if meeting the following criteria: a
Minor Allele Frequency (MAF) <1%, Hardy–Weinberg Equilibrium (HWE) with p <
0.00001, and call rate <95%. Samples were excluded from the analysis when their expected
sex did not match their genotyped sex, the genotype missing rate was above 10% or the
PLINK1.07 F inbreeding value was either >0.10 or <−0.10.

After these steps, the data of the individual arrays were merged into a single dataset using
PLINK 1.07 42. Within the merged set, identity by state (IBS) sharing was calculated
between all possible pairs of participants and compared to the known NTR family structures.
Samples were removed if the data did not match their expected IBS sharing. The
concordance rate of DNA samples on multiple platforms for overlapping SNPs generally
exceeded 99.0% after data cleaning. The HWE, MAF- and the reference allele frequency
difference <0.20 filters were re-applied in the combined data. As a final step, SNPs with
C/G and A/T allele combinations were removed when the MAF was between 0.35 and 0.50
to avoid incorrect strand alignment. Phasing of all samples and imputing cross-missing
platform SNPs was done with MACH 1 43. The phased data were then imputed with
MINIMAC 44 in batches of around 500 individuals for the autosomal genome using the
above 1000G Phase I integrated reference panel for 561 chromosome chunks obtained by
the CHUNKCHROMOSOME program. To avoid issues having SNPs from different
platforms partly imputed and partly genotyped we took the re-imputed calls for all
genotyped SNPs. After imputation of these SNPs, we generally find a high concordance
between re-imputed SNPs and the original genotype (0.9868). The mean imputation quality
R2 metric is 0.38 (based on all 30,051,533 imputed autosomal SNPs). After imputation,
SNPs were filtered based on the Mendelian error rate in families, which was calculated from
the best guess genotypes in families (trios or sib-pairs with parents) using first GTOOL to
calculate best guess genotypes and then PLINK 1.07 to analyze the data. SNPs were
removed if the Mendelian error rate >0.02, the imputed allele frequency differed more than
0.15 from the 1000G reference allele frequency, MAF < 0.01 or R2 < 0.80. HWE was
calculated on the genotype probability counts for the full sample, and SNPs were removed if
the p-value < 0.00001. This left 6,010,458 SNPs for the GWAS.
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Analyses
Generation of Genetic Relatedness Matrices

Genetic Relatedness Matrices (GRMs) with the values of the identity by state (IBS) allele
sharing for a given set of SNP markers between all possible pairs of individuals were
calculated with the GCTA software 46, after removing SNPs that showed significant
genotyping differences between platforms (p < 0.0001); 6,009,498 SNPs were retained,
which is sufficient for GRM estimation 46. The SNP data were transformed to best guess
Plink binary format, and subsets were made for each of the 22 chromosomes. We generated
25 GRMs: one GRM containing only the significant GWAS SNPs for PLR from our own
study, and one GRM containing the SNPs known to be involved in the cell counts. A third
GRM was constructed for closely related individuals (IBS> 0.05), pairwise relationship
estimates smaller than 0.05 were set to 0 in this matrix. This matrix is used as second
covariate matrix in the GWAS and heritability studies to account for the family structure.
Including family members in the GWAS increases the power to detect genes, and using a
mixed linear model correction as employed in GCTA, corrects for the statistical inflation
that is caused by including the related members. Finally, 22 GRM matrixes were made that
include all autosomal SNPs, except for the one chromosome on which the SNP is present
that is tested in the GWAS: the Leave One Chromosome Out (LOCO) strategy. These
matrixes are used in the GWAS as covariates to remove any remaining statistical inflation
due to subsample stratification.

GWAS

The first three Dutch Principal Components (PCs) as were generated with the EIGENSOFT
software were used as covariates in the GWAS 9. Additional covariates were age, sex and
genotype platform. For NLR and PLR as well as for the three sub-component counts we
modeled the phenotypes as being influenced by SNP and these six covariates. Analyses were
performed with the GCTA software running a mixed linear association model (MLMA)
including the LOCO GRMs for chromosome 1 to 22, and the close-related GRM 50. For the
GWAs, the significance threshold was p-value < 5×10−8.

GWAS replication

Replication of significant GWAS hits for NLR, PLR or individual blood cell counts, which
were not previously found, was examined in TwinsUK. TwinsUK is an United Kingdom
based twin registry with a focus on the genetic and environmental etiology of age related
complex traits and diseases 34. Samples from TwinsUK were genotyped using the Illumina
Hap317K and Hap610K assays (Illumina, San Diego, USA) following standard procedures.
Normalized intensity data were pooled and genotypes called on the basis of the Illumina’s
algorithm 52. No calls were assigned if the most likely call was less than a posterior
probability of 0.95. SNPs were excluded if they that had a low call rate (<95%) and/or
Hardy-Weinberg P value < 10 − 4. Subjects were also removed if the sample call rate was
less than 95%, autosomal heterozygosity was outside the expected range, genotype
concordance was over 97% with another sample and the sample was of lesser call rate.
Imputation of genotypes was carried out using the software IMPUTE 53. The best guess
Plink binary format data was used to conduct the replication analysis. The sample size of the
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TwinsUK dataset was 2538 subjects with genetic and phenotypic information, after values
outside mean±5SD in the phenotype of interest were removed. We tested the association
with the SNPs using a linear mixed model, in which the traits were regressed on the SNPs,
while correcting for age and sex as fixed effects variables.

eQTL analysis

To determine the effects of the GWAS located genetic variants for both ratios as well as the
constituent counts, we conducted eQTL analysis, using the NESDA-NTR Conditional eQTL
Catalog (online accessible: https://eqtl.onderzoek.io) 4. The details of the eQTL analysis are
described in the supplementary method material. In brief, eQTL effects were examined with
a linear model approach using MatrixeQTL 55 with expression level as dependent variable
and SNP genotype values as independent variable. eQTL effects were defined as cis when
probe set–SNP pairs were at distance < 1M base pairs (Mb), and as trans when the SNP and
the probe set were separated by more than 1 Mb on the genome according to the Human
reference genome HG19. To determine whether the observed cis and trans effects may
reflect causal mechanism we checked the LD of our top SNPs with the top SNPS identified
for gene expression in the implicated genes. Since gene expression is related to blood
composition we repeated the analysis with and without correction for blood composition
components (specifically mean corpuscular volume, red cell distribution width, and
neutrophil, lymphocyte, monocyte, eosinophil, basophile and platelet counts).

SNP heritability and genetic correlations

The variance explained by the significant SNPs in our GWAS for PLR was estimated with
the GCTA software 46. The variance explained in NLR and PLR was estimated with GCTA
for the known loci from literature for neutrophil, platelet and lymphocyte blood cell counts.
For each analysis we included family members and therefore included the closely-related
GRM under the Restricted Maximum Likelihood (REML) analysis procedure within GCTA.
Sex, age, genotype platform and three Dutch PCs were used as covariates. The variance
explained by all SNPs was estimated by Linkage Disequilibrium (LD) regression between
our computed GWAS summary statistics effect sizes and the expected Hapmap 3 LD. In
order to do this, we used the HapMap3 LD scores (NSNPs= 1,293,150), computed for each
SNP based on the LD observed in European ancestry individuals from 1000 Genomes
project (online accessible: http://github.com/bulik/ldsc). The criteria of passing quality
control for SNPs were the default by LD regression: imputation quality info > 0.90, MAF >
0.01. SNPs with invalid P values (P >= 1 or P < 0) were excluded. In addition, variants that
are not SNPs (e.g., insertion-deletions), strand ambiguous SNPs, and SNPs with duplicated
RS numbers were also excluded. After quality control, the number of SNPs for these
analyses reduced to 951,097.

Genetic correlations among the ratios and counts were estimated using LD regression38–39.
The principle of this technique is that the genetic correlation of two traits can be calculated
by the slope from the LD regression on the product of effect sizes (z-score) for two
phenotypes. The genetic correlations between published GWAS available online and our
summary statistics were estimated with LD-Hub40. For these regression analyses we
selected the list of recommended SNPs from the website and extracted those from the
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GWAS results for the counts and ratios. Note that this list excludes the chromosome 6 MHC
region. A total of 1,210,244 SNPs were used in the analyses40. Finally, phenotypic Pearson
correlations between PLR, NLR and the constituent cell counts were calculated with the
SPSS 22 program.

Results
GWAS

Summary statistics for the phenotypes of interest are given in Table 1 and GWAS results for
NLR and PLR are summarized in the Manhattan and QQ plots in Figures 1 and 2
respectively. The GWAS inflation factors (λ) were 0.9963005 for NLR and 1.020995 for
PLR, indicating that there is no hidden stratification left in the studied GWAS sample. For
NLR, no loci were found that reached genome-wide significance level. For PLR, there were
20 SNPs located between the HBS1L and MYB genes on chromosome 6q23.3 in the HBS1L-
MYB region, which were significantly associated with the phenotype (in Figure 2
Manhattan, Table 2 descriptive and Figure 3 locus zoom). The top SNP rs9376092 of this
locus has a C allele, which significantly increases PLR level (β=5.48, p =2.75 × 10−9). This
SNP was also significantly associated with platelet count (β=6.98, p =4.05 × 10−8), but not
with lymphocyte count (β=-.039, p =0.008). In the TwinsUK sample, rs9376092 replicated
with a similar effect for PLR (β=4.766, p=0.004) as well as platelet count (β=6.053, p
=0.002). Here again, the SNP was not associated with lymphocyte count (β=0.014, p = 0.49)
(Table 3).

Manhattan and QQ plots for the GWAS of neutrophil, lymphocyte and platelet counts are
given in Figures 4 to 6. For neutrophil counts we found significant associations (P < 5×10−8)
for 65 SNPs in LD in the PSMD3 locus (Table 4). For lymphocyte count we did not detect
any significant genetic associations. For platelet count, a locus in CCDC71L-PIK3CG on
7q22.3 showed the strongest signal in our study (p = 3.45× 10−10). We also detected genetic
variants for platelet count within ARHGEF3, BAK1 and HBS1L-MYB. In supplementary
Table 1 we report the known genetic variants from literature for the three blood cell counts
of interest and their significance level as reported previously, together with the p-values
obtained from our GWAS study. For neutrophil count we replicated the PSMD3 locus,
which also showed an indication of association with PLR (p < 1.0×10−3). The AK123889
locus showed a similar pattern for PLR (p = 3.67×10−4), and this locus also had a p-value of
0.001 for lymphocyte count. For lymphocyte count, the known locus rs25224079 was
marginally significant (p = 3.02×10−4), while this locus showed a stronger association with
PLR (p = 6.56×10−5). We did not detect an association for lymphocyte count with the other
known locus ESP15L1 (p = 0.107). For platelet count, our top hit CCDC71L-PIK3CG was a
replication of earlier studies and it was also associated with mean platelet volume. We also
replicated the loci at ARHGEF3, BAK1 and HBS1L-MYB, with the latter being associated
with PLR as well. Furthermore five loci showed some signal at (p < 1.0×10−3) for platelet
counts: PDIA5, MEF2C, JMD1C, rs7149242 and TAOK1. Other platelet count loci showed
some association (p < 1.0×10−3) with related phenotypes: RCL1, JMD1C, rs7149242 and
SNORD7-AP2B1 with PLR, and MICA with lymphocytes.
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eQTL effects for significant SNPs

Whole blood cis and trans eQTL analysis was performed for the top significant SNPs per
locus identified in the GWAS for PLR (in Table 3) and blood cell counts (in Table 4), with
and without correcting for blood composition. The eQTL results are shown in
supplementary Table 2. Information on the function of the genes and the involved pathways
was retrieved from the GeneCards website (online accessible: http://www.genecards.org ).
Cis effects were found for rs8081692: it increases GSDMB, MSL1 and KRT23 gene
expression and decreases GSDMA expression. However, after blood components correction,
only GSDMA gene expression was left up regulated by rs8081692. The locus rs169738 was
found to increase HLA-DPB1 and decrease TAPBP and HLA-DPA1 expression, which
remained after correcting for blood composition. For rs9376090, we detected a significant
negative association with ALDH8A1 gene expression, but this SNP is not in LD with the top
rs4646871 SNP of the ALDH8A1 gene.

Trans effects for both rs9376090 and rs9376092 were found to increase TMEM158 and
HBE1 gene expression, and while the trans effects were alleviated when correcting for blood
composition, they remained significant. In addition, some eQTLs for genes involved in
platelet activation, signaling and aggregation pathways, were present for the uncorrected
expression results but disappeared when correcting for blood composition: GNAS (for
rs9376090), AQP9 and CREB5 (for rs8081692). The top SNP rs11925835 nearby
ARHGEF3 gene was found to regulate several sets of genes involved in: 1) platelet
activation, signaling and aggregation (ITGB3, PPBP, ITGA2B, PF4, GP1BA, PRKAR2B,
C6orf25, SELP, THBS1, GNG11, CLU, SPARC, F13A1, VCL, EHD3, CD9, PDGFA,
MGLL, GUCY1A3, TBXA2R, MMRN1); 2) immune system (TREML1, CD9, CD226); and 3)
metabolism (PTGS1, VS1G2, EVOVL7, MGLL, ALOX12, MFAP3L, and NDUFAF3). In
addition to these genes, there were several eQTLs for genes that regulate cell division,
proliferation, and differentiation such as ABL1M3, LMSM1, c7orf41, FHL1, MAX, RSU1,
TSPAN9 and MTPN. Furthermore, some genes play a key role in hematopoietic stem cell
differentiation pathways and lineage-specific markers, such as PEAR1 and CD226. For the
majority of these genes the effect was alleviated after correction for blood composition.
Some trans effects were no longer present after the correction, such as the effects for TPM1,
EHD3, PDLIM1, MGLL, LMNA, SLA2, ELOVL7, MGLL, TBXA2R, RSU1, MFAP3L, NEXN,
CMTM5, ALOX12, PGRMC1, SEPT5, CDK2AP1, CD226, NDUFAF3, MMRN1, TSPAN9,
and MTPN.

SNP heritability and correlations among phenotypes

The SNP heritability of NLR and PLR was estimated at 2.39% (se = 0.0816) and 14.12% (se
= 0.0844) respectively using LD regression (Table 5). With GCTA the estimated variance
explained by the known loci from literature was 0.52% (se = 0.300) for NLR and 3.28% (se
= 0.700) for PLR within our study. Finally, the significant SNPs for PLR, the single SHB1L-
MYB region found in our study, explained 0.50% (se = 0.600) of variance.

Significant positive phenotypic correlations were observed between nearly all counts with
the exception of NLR and platelet count, and the significantly negatively correlated
combinations NLR and lymphocyte count, PLR and neutrophil count, and PLR with
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lymphocyte count (Table 6). Significant and nearly significant genetic correlations were
found between PLR and platelet count (r=0.4565, p = 0.0309) and between PLR and
lymphocyte count (r=−0.4858, p=0.0701)Table 6). All other genetic correlations were not
significant. In supplementary table 3 the genetic correlations between the ratios, counts and
all available GWAS phenotypes at May 2017 from LD-Hub are presented. There are clear
genetic correlations between the consortium platelet count GWAS, and our PLR, platelet
counts and neutrophil count. Furthermore, there is a relation between PLR and HDL
cholesterol, and for NLR there is a genetic correlation with Crohn’s disease. For the counts
separately correlations are present with several diabetes related traits, kidney disease, BMI,
(over-)weight, coronary artery disease, autoimmune disease, smoking and lung function
assuming a threshold p-value of 0.05.

Discussion
We studied the genetic architecture of NLR and PLR as well as the genetic relationship
between NLR, PLR, and the corresponding immune cell counts. The intergenic HBS1L-MYB
region is a well-known locus for hematological parameters such as red blood cell count,
platelet count, hemoglobin level 7, MCHC level, and blood related diseases such as
myeloproliferative neoplasms 9, beta-thalassemia 60 and sickle cell anaemia. We found this
intergenic HBS1L-MYB region to be significantly associated with PLR. HBS1L-MYB
intergenic variants reduce the transcription factor binding and affect long-range interactions
with MYB and MYB expression levels. This region was first identified as a quantitative trait
locus (QTL) controlling fetal hemoglobin level and is associated with iron deficiency
anemia, beta-thalassemia, and sickle cell disease 3. The MYB gene encodes a protein with
three HTH DNA-binding domains that functions as a transcription regulator. This protein
plays an essential role in the regulation of hematopoiesis and lymphocyte differentiation.
This gene can be aberrantly expressed, rearranged or undergo translocation in leukemia’s
and lymphomas, and is thus considered to be a (proto-)oncogene. The HBSIL (Hsp70
subfamily B suppressor 1-like) gene encodes a member of the GTP-binding elongation
factor family. A single nucleotide polymorphism in exon 1 of HBS1L gene is significantly
associated with severity in beta-thalassemia/hemoglobin E as found in a sequencing study
and verified in several other studies. Recently, this gene has been associated with several
traits, including erythrocyte and platelet count 70 and cholesterol level. A pleiotropic
association study on a wide number of hematological traits found that rs9373124, also in the
HBS1L-MYB region, was significantly associated with all of the evaluated hematological
traits (p<0.005) including white blood cell count, red blood cell count and platelet count.

The eQTL results show that some of the GWAS top SNPs for PLR and blood cell counts
regulate the expression of genes, which are mainly involved in immune system pathways:
platelet activation, signaling and aggregation; metabolism; cell division, proliferation, and
differentiation; and hematopoietic stem cell differentiation pathways and lineage-specific
markers. These results provide new genetic targets for immune biomarkers and may inform
future functional studies. In our GWAS study, SNPs with significant associations for NLR
were not identified, which is consistent with the small SNP heritability found with LD
regression analyses. Compared to PLR, NLR shows more phenotypic plasticity, because
neutrophils are part of the immune response to viral infections, autoimmune diseases, acute-
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phase reactions and several drugs 72. Furthermore, compared to the longer lifespan of
platelets (8–9 days), the life span of neutrophils is shorter (a few hours to max 5 days). The
phenotype is therefore much more dependent on environmental effects, e.g. the time of
measurement and health state of the individual also indicated by our own heritability
findings 10.

By selecting only healthy individuals, we may have excluded the identification of genetic
loci that are related to both, disorders and an effect on the counts or ratios. With this
particular step it is also unclear whether the identified SNPs are affecting the risk for the
disorders for which PLR and NLR are supposed to be the biomarkers. Another question is if
the effect of the SNPs on the ratios and immune response remains the same once a person
gets affected. We have examined the heritability of the ratios in our full sample of
individuals, and the point estimates were not different. Although, there is currently no direct
association between the top SNP or the HBSIL locus and myocardial infarction in the
GWAS catalog, there are clear genetic correlations between cardiovascular traits, diabetic
traits, HDL cholesterol, weight, smoking, lung function and the examined counts and ratios.
The link between HBS1L and cancer was already established due to translocations in the
genomic region.

For both NLR and PLR a large part of the heritability is still not explained by common SNPs
or genetic variants in LD. This may suggest that other genetic variants, such as rare variants
and copy number variants need to be studied. Furthermore, the missing heritability might be
high because of non-additive effects and genetic interactions, which are not taken into
account with the current applied statistical models. Epistatic effects of genetic variants for
hematological indexes are already found 5. We thus assume that, especially for immune
system phenotypes, gene-gene and gene-environment interactions need to be studied further.

The LD regression results show that polygenic effects, rather than confounding factors
explain NLR and PLR variance in our study. We also demonstrated significant genetic
correlation between PLR and platelet count, but none of the other correlations between
ratios and cell counts were large enough to be significant. Since we found no SNP effects on
NLR, it is not surprising that no genetic overlap between NLR and PLR is detected,
although the genetic background of the lymphocyte count is expected to be affecting both
ratios.

In summary, our study found the HBS1L-MYB locus to be associated with PLR level and
with platelet count. In addition, we verified 3 additional known loci for platelet count
(rs342213 in CCDC71L-PIK3CG, rs169738 nearby BAK1 and rs11925835 nearby
ARHGEF3) and one locus for neutrophil count (rs8081692 nearby PSMD3). We did not
identify any locus or any significant SNP heritability for NLR. Although NLR and PLR are
both utilized as predictive or prognostic biomarkers for the same diseases, and phenotypic
correlations are present, there seems to be no major genetic overlap between the two
biomarkers in our healthy population. The NLR and PLR responses associated with the
disorders, thus likely represent the simultaneous influence of separate and multiple immune
genetic pathways.
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Figure 1.
A) Manhattan and B) QQ plot for the neutrophil-lymphocyte ratio (NLR) GWAS results
with SNPs having a MAF> 0.01.
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Figure 2.
A) Manhattan and B) QQ plot for the platelet-lymphocyte ratio (PLR) GWAS results with
SNPs having a MAF> 0.01.
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Figure 3.
Regional plot for the rs9376092 association with PLR level.
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Figure 4.
A) Manhattan and B) QQ plot for the neutrophil count GWAS results with SNPs having a
MAF> 0.01(λ=1.011742).
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Figure 5.
A) Manhattan and B) QQ plot for the lymphocyte count GWAS results with SNPs having a
MAF> 0.01 (λ=1.022341).
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Figure 6.
A) Manhattan and B) QQ plot for the platelet count GWAS results with SNPs having a
MAF> 0.01 (λ=1.018586).
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Table 1

Summary statistics of neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR), the constituent
blood cell count phenotypes and age in males and females.

mean (SD) males (N=2250) mean (SD) females (N=3651) mean (SD) all (N=5091)

NLR 1.662 (.653) 1.615 (.690) 1.633 (.676)

PLR 116.354 (39.457) 124.770 (42.626) 121.561 (41.643)

Neutrophil 3.404 (1.146) 3.429 (1.256) 3.419 (1.215)

Lymphocyte 2.170 (.622) 2.264 (.699) 2.228 (.673)

Platelet 235.464 (52.147) 262.006 (60.187) 251.886 (58.684)

Age 43.60 (15.88) 42.26 (14.27) 42.77 (14.91)
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