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Abstract 

Background:  Individual differences in educational attainment (EA) and physical health, as indexed by body mass 
index (BMI), are correlated within persons and across generations. The present aim was to assess these associations 
while controlling for parental transmission.

Methods:  We analyzed BMI and EA obtained for 8,866 families from the Netherlands. Data were available for 19,132 
persons, including 6,901 parents (mean age 54) and 12,234 of their adult offspring (mean age 32). We employed struc-
tural equation modeling to simultaneously model the direct and indirect transmission of BMI and EA from parents to 
offspring, spousal correlations, and the residual within-person BMI-EA association and tested for gender differences in 
the transmission parameters.

Results:  We found moderate intergeneration transmission for BMI (standardized beta ~ .20) and EA (~ .22), and 
substantial spousal correlations for BMI (.23) and EA (.51). Cross-trait parent to offspring transmission was weak. The 
strength of transmission was largely independent of parent or offspring gender. Negative within person EA-BMI cor-
relations were observed for all family members (fathers, -0.102; mothers, -0.147; sons, -0.154; daughters, -0.173). About 
60% of the EA-BMI correlation in offspring persisted after taking into account the intergeneration transmission.

Conclusions:  The intergenerational transmission for BMI and EA is mainly predictive within traits. Significant spousal 
and within person correlations in the parental generation are responsible for the effect of parental EA on offspring 
BMI. Offspring EA and BMI are further correlated beyond parental influences.

Keywords:  Intergenerational transmission, Educational attainment, Body mass index, Spouse correlation, Structural 
equation modeling
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Introduction
Body Mass Index (BMI) is an important marker of overall 
health and is strongly associated with the risk of – and 
mortality from – chronic diseases [1]. In the last three 

decades, the prevalence of obesity has dramatically 
increased globally [2], and the burden of disease attribut-
able to high BMI has more than doubled, although this 
trend differs across countries [3]. Within countries, over-
weight and obesity are not randomly distributed across 
the population, but tend to be more frequent among peo-
ple with a lower educational attainment (EA) [4] and in 
low socio-economic strata [5].

One possible explanation for the association between 
EA and obesity is that a higher EA leads to better 
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occupations, higher income, and higher socioeconomic 
status (SES). In fact, many studies use EA – as well as 
occupation and income – either as proxy for, or a compo-
nent of, SES measures. SES is inversely related to obesity 
risk in global north countries [6–9]. Higher education 
and socioeconomic status result in a better health knowl-
edge, and provide the individual with resources that 
afford healthy food options [10] and free time to engage 
in physical exercise [11], i.e., behaviors associated with 
lower obesity risk. In addition, early research showed a 
residual link between obesity and cognitive deficiency, 
even after controlling for parental social class [12]. Con-
versely, obesity itself can influence EA [13], employment 
[14], future income [15], and other SES measures [16, 17].

EA and BMI are both subject to intergenerational 
transmission. The average correlation between par-
ent and offspring EA in Western Europe and USA is 
0.39 [18]. As for BMI, a meta-analysis of family studies 
on BMI transmission found a mean parent–offspring 
correlation of 0.19 [19], while another meta-analysis 
showed that having a single parent with obesity is 
strongly associated with childhood obesity (average 
odds ratio of 3.49)[20].

In addition to the effect of parental BMI on offspring 
BMI, studies have shown significant associations between 
parental EA and offspring BMI [21–23]. Of these studies, 
only one included parental BMI as a covariate, with the 
finding that only maternal education had a significant 
effect [21]. Furthermore, many studies have shown sig-
nificant associations between parental SES and offspring 
BMI, yet none of these studies controlled for parental 
BMI [24–30]. When including parental BMI, it is impor-
tant to account for spousal correlation, or non-random 
mating. When spouse choice is not random with regard 
to a particular phenotype, but reflects resemblance 
between spouses that is higher that would be expected 
by chance, then the correlation between the phenotype 
of fathers and mothers needs to be modelled to avoid 
confounding. Overlooking spousal correlation where 
one exists can result in overestimating the association 
between one parent and offspring.

As we have laid out, BMI and EA are intertwined 
through various processes, and both are subject to inter-
generational transmission. Prior studies have generally 
suggested that parental EA has a distinctive effect on the 
BMI of offspring, with similar findings concerning paren-
tal SES and offspring BMI. We note that these studies did 
not account for the correlation between parental EA and 
parental BMI on one hand, and parental BMI and off-
spring BMI on the other hand. Therefore, we conjecture 
that these findings—broadly stated as children growing 
up in low EA households being more susceptible to obe-
sity—may be confounded by parental BMI. Simply put, it 

is possible that the observed association is due to the fact 
that EA and BMI are correlated within an individual, and 
the transmission of both these traits from one generation 
to another might give the appearance of an association 
between one trait (EA) in the parent generation with the 
other (BMI) in the offspring generation. Therefore, we 
utilized structural equation modeling (SEM) to exam-
ine these associations while correcting for the suspected 
confounding. SEM is a powerful multivariate statistical 
technique that allows us to test both direct and indirect 
effects of hypothesized causal relationships among vari-
ables [31]. Its utility to our research question lies in its 
ability to account for the correlation between two causal 
variables in a regression analysis. The SEM approach also 
allows us to estimate the residual correlations between 
EA and BMI in the offspring generation, so that we can 
assess the residual association while controlling for 
parental transmission. This examination is important to 
assess the extent to which EA and BMI associations in 
the children are independent of the parental effects.

Methods
Participants
Participants were registered with the Netherlands Twin 
Register (NTR). The NTR collects longitudinal data on 
health, personality and lifestyle from twin families in 
the Netherlands. These families were recruited by NTR 
across the Netherlands through city councils, newslet-
ters, and the NTR website. The present study is based 
on data collected between 2009 and 2012. Participants 
first received a written invitation including a link to a 
webpage, where they can log on to a web-based version 
of the survey with a unique, personal login name and 
password. If subjects did not access the web-based sur-
vey within the 6 weeks after the invitation, they received 
a paper version of the survey. Between 3–9 months after 
the paper versions of the survey were sent, subjects who 
had not responded received a reminder by post, or a 
reminder by email, if an email address was available. Sev-
eral groups of non-responders (e.g. twins from incom-
plete twin pairs) were reminded by phone call [32]. We 
selected nuclear family members (parents and offspring), 
resulting in a sample of 19,135 participants. The survey 
was collected in two versions, a long and a short version. 
The short version, filled out by 3,421 participants, did not 
include questions concerning EA. Our sample comprises 
twins registered with NTR and their parents and siblings. 
We refer to the twins and their siblings as the offspring 
generation. There are 12,234 offspring aged between 16 
and 97 years and 6,901 parents (2,817 fathers and 4,084 
mothers) aged between 21 and 94 years. Note that the age 
distributions overlap, as twins registered with the NTR 
include younger twins, often registered with their parents 
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and older twins, usually registered without their parents. 
A flowchart of the selection process can be found in sup-
plementary figure S1.

The total number of families was 8,866 with an aver-
age of 1.4 offspring per family, where 18% of the fami-
lies included only members of the parental generation. 
In addition, 45% of families included twins without 
their parents; 18% included twins and 1 parent; and 
19% included twins and 2 parents (see supplemen-
tary table S1). There is information for both parent and 
offspring generation on BMI in 3,214 families (with 
N = 10,650), and on EA in 1,089 families (with N = 3,563) 
(see supplementary tables S2 and S3). EA from partici-
pants below the age of 25 years was not included, as they 
may not have yet reached their highest educational level, 
resulting in a sample size of 12,078 for EA. The data were 
checked for outliers and 5 individuals were excluded due 
to extreme values for height or weight.

Measures/Phenotyping
BMI was based on self-reported height and weight, 
and was analyzed as a continuous variable. EA was 
self-reported and categorized according to the highest 
achieved educational level. In comparison to the one-
dimensional progression that characterizes most second-
ary and tertiary educational systems around the world, 
the Dutch educational system is relatively complex, 
making the number of years of schooling alone insuffi-
cient to accurately capture educational level. The system 
is composed of two fundamental paths, namely a more 

vocational track (oriented towards manual occupation) 
and more general track. We classified the reported edu-
cational levels and ordered them according to academic 
performance requirements, associated SES, and pro-
jected income and occupational prestige associated with 
each level [33]. The resulting continuous EA scale has 8 
levels (see Table  1). EA and BMI were adjusted for age 
of participant at the time of completing the survey. Age 
adjusted measures were used in the analyses. Outlying 
BMI data were checked against measurements obtained 
for the same subject from other surveys in the NTR data-
base. Participants were grouped by sex in the analysis, 
and separate means were estimated for fathers, mothers, 
sons and daughters.

Statistical analyses
The steps included in SEM first involve model specifi-
cation, i.e., specifying the hypothesized relationships 
between the variables, as outlined in Fig.  1. We chose 
full information (a.k.a. raw data) maximum likelihood 
(FIML) estimation to obtain estimates of the parameters 
(and standard errors), and the overall fit (i.e., χ2, RMSEA) 
(Fan et al., 2016) of the model. The parameter estimates 
lead to an expected covariance matrix that is the most 
likely one given the observed data. The overall model fit 
measures provide information on how well our theoreti-
cal model fits the data.

We applied SEM to study the phenotypic transmission 
of BMI and EA from fathers and mothers to their off-
spring in a large population cohort from the Netherlands. 

Table 1  Age, BMI, and EA in parents and offspring

Abbreviations: BMI Body mass index, EA Educational attainment, SD Standard deviation

Fathers n = 2,817 Mothers 
n = 4,084

Sons n = 3,999 Daughters 
n = 8,235

Age N available data 2,817 4,084 3,999 8,235

mean 55.88 53.01 31.64 31.91

SD 7.90 8.04 14.74 14.35

BMI N available data 2,758 3,960 3,865 7,924

mean 26.10 25.66 23.53 23.06

SD 3.27 4.46 3.49 3.84

EA N available data 2,030 2,897 1,902 4,163

EA level Dutch equivalent

Elementary school Basisschool 1.7% 2.3% 1.1% 1.3%

Lower vocational education Vmbo/vocational stream 13.2% 11.3% 7.5% %6.3

Lower general secondary school Mulo, mavo, vmbo/theoretical stream 9.1% 19.5% 6.1% 9.2%

Intermediate vocational education Mbo 20.0% 23.1% 20.8% 27.3%

Upper general secondary school Havo, hbs, atheneum, gymnasium 5.3% 8.7% 2.9% 4.9%

Higher vocational education Hbo 27.9% 25.5% 29.3% 29.1%

University degree Post-hbo degree 18.8% 8.9% 25.7% 18.4%

Post-graduate degree PhD degree 4.1% 0.8% 6.6% 3.6%
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Our model allows us to take into account the correlation 
of BMI and EA within and between parents, while exam-
ining the simultaneous transmission of BMI and EA. 
The latter includes the prediction of offspring BMI and 
EA from parental BMI and EA within (e.g., BMI to BMI) 
and across traits (e.g., BMI to EA). We tested whether 
the strength of the associations depend on the sex of the 
parent and the offspring. We examined direct effects, 
defined as the transmission from parent to offspring 
within or across traits, and indirect effects, resulting from 
1) the correlations between EA and BMI within each par-
ent and 2) the spousal correlations between parents for 
these traits. For instance, maternal EA has a direct effect 
path on offspring BMI, an indirect effect path through 
maternal BMI proportional to the EA-BMI correlation in 
the mother, and two indirect effect paths through pater-
nal EA and BMI, given non-zero spousal correlations. 
We included a maximum of 6 offspring (3 males and 3 
females) per family. We decided to limit the analysis to a 
maximum of 6 offspring because of computational con-
siderations. This did not result in an appreciable loss of 
data: we analyzed 99.32% of the original study sample.

Model specifications: Paternal and maternal transmis-
sions to sons and daughters were specified separately, 
i.e., we estimated 4 sets (mother-daughter, mother-son, 
father-daughter, and father-son) of 4 coefficients (EA to 
EA, BMI to BMI and the cross-transmission coefficients). 
The following parameters were specified, with estimates 
for offspring of the same gender (with a maximum of 3 
sons and 3 daughters per family) constrained to be equal:

•	 16 parent–offspring transmission parameters: 2 traits 
(EA & BMI) × 2 types of transmission (within- and 
cross-trait) × 2 parents × 2 offspring genders

•	 4 spousal correlations: 2 measures (EA & BMI) × 2 
types of correlation (within- and cross-trait)

•	 2 within person EA/BMI correlations in the parental 
generation: fathers and mothers

•	 2 residual EA/BMI correlations in the offspring gen-
eration: sons and daughters

•	 4 variances in the parental generation: 2 traits × 2 
genders (fathers and mothers)

•	 4 residual variances in the offspring generation: 2 
traits × 2 genders (sons and daughters)

We estimated all intercepts for EA and BMI (father, 
mother, son, daughter) and the within and across-trait 
correlations for all residuals, i.e. the part in offspring BMI 
and EA that cannot be ascribed to parental transmission. 
All correlations were estimated without constraints and 
thus included 15 within-trait sibling correlations for EA 
and for BMI and 30 EA/BMI cross-trait correlations, as 
we allowed for 6 offspring per family.

Thus, in the full model (Fig.  1), all coefficients were 
estimated separately for sons and daughters and for 
mothers and fathers. Subsequently we imposed equality 
constraints on transmission parameters across genders of 
parents and offspring to test the differences in influence 
across various parent–offspring gender combinations. 
For these tests, we applied a Bonferroni correction. Given 
a family-wise α of 0.01 and 8 tests, the test-wise alpha was 
0.01/8 = 0.00125. As mentioned above, we used FIML 
estimation to fit the model to the data. An advantage of 
FIML is that it handles missing data optimally: it exploits 
all available data and is more efficient than list- or pair-
wise deletion. Frequency tables and descriptive statistics 
were obtained from IBM SPSS (version 26). We carried 
out the structural equation modeling in the Lavaan pack-
age (version 0.6–6) in R (version 3.6.1).

Results
Descriptive statistics
Mean age of fathers was slightly higher than mothers (56 
vs. 53 years), while offspring of both genders were both 
around 32  years. In both generations, the average male 
BMI was 0.5 points higher than the average female BMI. 

Fig. 1  Full model outline. Abbreviations: BMI, body mass index; EA, educational attainment; XT, cross-trait; SC, spousal correlation. a separate 
coefficients for each offspring gender
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Mean BMI in parental generation was 26.1 for fathers 
and 25.6 for mothers, and in offspring generation it was 
23.5 for sons and 23.1 for daughters. Correcting for age 
reduced the differences in BMI between the two gen-
erations (i.e., males: 2.6, females: 2.5) to 0.07 BMI points 
for males and 0.5 for females. Supplementary Figure  S2 
shows BMI distribution across age for males and females, 
with higher BMI in older individuals, and consist-
ently higher male BMI in all age groups. EA levels were 
higher in males than in females, although the difference 
was smaller in the offspring generation. Figure  2 shows 
unadjusted mean BMI for each EA level clustered by sex, 
with higher EA levels associated with lower BMI, espe-
cially among females. Supplementary Figure  S3 shows 
EA distribution across age for males and females, with 
higher levels of education and a narrowing gender gap for 
younger individuals. The variance of BMI (age adjusted) 

was larger in females than in males in the parental gener-
ation (19.63, CI 18.78–20.48 vs 10.49, CI 9.95–11.03), and 
in the offspring generation (13.27, CI 12.85–13.68 vs 9.30, 
CI 8.88–9.71) (Table 2). The variance of EA (age adjusted) 
was slightly larger in males than in females in the parental 
generation (3.35, CI 3.15–3.55 vs 2.59, CI 2.46–2.72), and 
in the offspring generation (2.83, CI 2.65–3.01 vs 2.33, CI 
2.23–2.43). Negative within person EA-BMI correlations 
were observed for all family members (fathers, -0.102; 
mothers, -0.147; sons, -0.154; daughters, -0.173). Unad-
justed correlations (see supplementary table  S4) tended 
to be higher for most measures compared to age adjusted 
correlations.

Direct and indirect effects, full model
Table 3 summarizes results for the full model, which are 
summarized in Fig. 3. The overall goodness of fit of the 

Fig. 2  Mean BMI by EA level clustered by sex. Clusters: (male/female). Error bars: 95% confidence intervals

Table 2  Observed covariance and correlation table for age adjusted EA and BMI

Upper triangle, covariance. Lower triangle: correlation. Diagonal: variance

Abbreviations: BMI Body mass index, EA Educational attainment

Offspring BMI 
(male/female)

Offspring EA 
(male/female)

Paternal BMI Maternal BMI Paternal EA Maternal EA

Offspring BMI (male/female) 9.298/13.268 -0.791/-0.965 1.804/2.264 1.927/3.432 -0.405/-0.434 -0.269/-0.416

Offspring EA (male/female) -0.154/-0.173 2.796/2.329 -0.384/-0.436 -0.837/-0.410 0.860/0.629 0.597/0.651

Paternal BMI 0.183/0.192 -0.071/-0.088 10.492 3.277 -0.606 -0.583

Maternal BMI 0.143/0.213 -0.112/-0.061 0.228 19.630 -1.402 -1.050

Paternal EA -0.073/-0.065 0.279 /0.225 -0.102 -0.173 3.350 1.509

Maternal EA -0.055/-0.071 0.220/0.265 -0.112 -0.147 0.512 2.593
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full model was acceptable (see supplementary table S7). 
A direct effect was defined as the transmission coefficient 
in the regression of parental BMI/EA on offspring BMI/
EA. An indirect effect was calculated as the sum of three 
paths through correlations of one parental measures with 
the remaining three. For example, if we consider paternal 

BMI, there is one direct path and three indirect paths 
going through maternal BMI, paternal EA, and mater-
nal EA. Total effects were calculated by adding up direct 
and indirect effects. In the full model, within-trait direct 
effects (parental BMI on offspring BMI and parental EA 
on offspring EA) were positive and significant for both 

Table 3  Associations between Parent/Offspring BMI/EA (full model, see Fig. 1)

Abbreviations: BMI body mass index; EA educational attainment; CI confidence interval

*p<0.01

Raw Standardized

Direct Direct Indirect Total

Sons
BMI Estimate Lower CI Upper CI Estimate Lower CI Upper CI Estimate Direct + indirect

  Paternal BMI 0.192* 0.140 0.244 0.207 0.151 0.263 0.047 0.254

  Maternal BMI 0.105* 0.069 0.141 0.154 0.101 0.207 0.064 0.218

  Paternal EA -0.066 -0.195 0.064 -0.040 -0.119 0.039 -0.068 -0.108

  Maternal EA -0.055 -0.191 0.081 -0.030 -0.102 0.043 -0.072 -0.101

EA
  Paternal EA 0.247* 0.151 0.343 0.273 0.167 0.380 0.107 0.381

  Maternal EA 0.165* 0.058 0.272 0.161 0.057 0.265 0.164 0.326

  Paternal BMI -0.030 -0.084 0.025 -0.059 -0.166 0.049 -0.074 -0.132

  Maternal BMI -0.031 -0.064 0.002 -0.083 -0.173 0.006 -0.091 -0.175

EA-BMI residual correlation -0.405* -0.663 -0.148 -0.097 -0.149 -0.044

Daughters
BMI Estimate Lower CI Upper CI Estimate Lower CI Upper CI Estimate Direct + indirect

  Paternal BMI 0.235* 0.183 0.287 0.211 0.164 0.258 0.071 0.282

  Maternal BMI 0.202* 0.168 0.236 0.248 0.206 0.289 0.065 0.313

  Paternal EA -0.065 -0.188 0.059 -0.033 -0.095 0.030 -0.089 -0.122

  Maternal EA -0.077 -0.203 0.048 -0.034 -0.090 0.022 -0.083 -0.118

EA
  Paternal EA 0.127* 0.054 0.200 0.155 0.066 0.243 0.168 0.323

  Maternal EA 0.271* 0.199 0.344 0.290 0.212 0.367 0.097 0.387

  Paternal BMI -0.040 -0.077 -0.003 -0.085 -0.165 -0.006 -0.063 -0.148

  Maternal BMI -0.011 -0.035 0.013 -0.033 -0.104 0.039 -0.096 -0.129

EA-BMI residual correlation -0.490* -0.692 -0.289 -0.104 -0.144 -0.065

Fig. 3  Full model results. Standardized transmission coefficients and correlations (male/female offspring). Solid lines: statistically significant at 
p < 0.01. Dashed lines: statistically insignificant. Abbreviations: BMI, body mass index; EA, educational attainment
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parents, while cross-trait direct effects were insignificant, 
i.e., parental BMI did not have significant direct effects 
on offspring EA, and vice versa. Indirect effects were 
larger than direct effects for cross-trait transmission, due 
to significant cross-trait correlations at the parental level 
(see Table 2). For example, the standardized direct effect 
of maternal EA on male offspring BMI was -0.030, while 
the indirect effect was -0.072, adding to a total effect of 
-0.101). Residual within person EA—BMI correlations 
in the offspring generation remained significant after 
accounting for parental effects, which indicates EA and 
BMI are still associated after controlling for parental 
influence. To check if extreme BMI values (due to dis-
orders such as anorexia nervosa or monogenic causes of 
morbid obesity) influenced the results, the analysis was 
repeated excluding 25 subjects with BMI values less than 
15 or higher than 45. Parameter estimates obtained in the 
reduced sample hardly differed from those obtained in 
the full sample.

Gender differences in transmission parameters
To assess gender differences in transmission from fathers 
and mothers to sons and daughters, we imposed equal-
ity constraints on transmission coefficients, and tested 
these constraints by likelihood ratio tests. We found 
significant differences only for maternal BMI on off-
spring BMI (supplementary table  S5), where the direct 
effect was almost double in females (males: b = 0.105 CI 
0.061, 0.148; females: b = 0.202 CI 0.161, 0.243). Similar 
analyses for parental gender showed no significant differ-
ences between paternal and maternal transmission coef-
ficients (supplementary table S6), i.e., transmission from 
fathers and mothers were of equal magnitude. Based on 
the results of these tests, we arrived at model 2. Param-
eter estimates for this model, shown in Table 4, indicate 

small, but significant, direct effects for cross-trait trans-
mission from parents to offspring. Standardized within-
trait transmission coefficients were similar for both EA 
and BMI, and generally did not depend on the gender of 
the parent or offspring, with the exception of maternal 
BMI on offspring BMI. Cross-trait transmission coeffi-
cients were larger for offspring BMI than offspring EA, 
i.e., parental EA had a larger effect on offspring BMI than 
parental BMI had on offspring EA. Finally, the within 
trait spousal correlations were 0.228 for BMI, and 0.512 
for EA. Cross-trait spousal correlations were -0.112 for 
maternal EA/paternal BMI, and -0.173 for paternal EA/
maternal BMI. Both models had good model fit meas-
ures, with model 2 scoring slightly higher than the full 
model (e.g. x2: 59.5 vs 52.1; degrees of freedom: 51 vs 44) 
with a likelihood ratio test p-value = 0.39, indicating no 
significant difference between the two models. Model fit 
measures are presented in supplementary table S7.

Discussion
Offspring BMI was negatively correlated with parental 
EA (r ~ -0.07) but this correlation was low and insignifi-
cant in the full model, when accounting for parental BMI. 
This suggests that the effect of parental EA on offspring 
BMI is mainly mediated through parental BMI. Similar 
trends were seen when examining the influence of paren-
tal factors on offspring EA. The significant lowering of 
parental EA/BMI regression coefficients, when control-
ling for the other parental traits, supports earlier findings 
of shared factors influencing EA and BMI. This finding 
calls into question the general consensus that parental 
EA – and subsequently parental SES – has a direct effect 
on the odds of developing obesity in the offspring genera-
tion. Rather, it is an individual’s own EA that has a higher 
association with their obesity risk. Potential mechanism 

Table 4  Associations between Parent/Offspring BMI/EA (model 2)

Abbreviations: BMI Body mass index, EA Educational attainment, CI Confidence interval
* p < 0.005

Raw Standardized

Sons Daughters

Offspring BMI Estimate Lower CI Upper CI Paternal Maternal Paternal Maternal

Paternal BMI (sons) 0.212* 0.174 0.251 0.228 - - -

Paternal BMI (daughters) 0.212* 0.174 0.251 - - 0.191 -

Maternal BMI (sons) 0.098* 0.064 0.133 - 0.145 - -

Maternal BMI (daughters) 0.209* 0.177 0.241 - - - 0.257

Parent EA -0.066* -0.107 -0.026 -0.040 -0.035 -0.034 -0.029

Offspring EA
  Parent EA 0.201* 0.177 0.226 0.224 0.197 0.244 0.215

  Parent BMI -0.024* -0.039 -0.009 -0.047 -0.064 -0.051 -0.070
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that explain these associations span a variety of social, 
behavioral, metabolic, and neurocognitive processes. 
Individuals with higher BMI are more likely to have lower 
self-esteem and to experience social marginalization [34, 
35]. Behavioral factors such as self-control and delayed 
gratification are associated with EA [36–38] as well as 
obesity [39, 40]. Decreased cognitive function is associ-
ated with impaired metabolic pathways associated with 
obesity such as insulin signaling [41] and leptin regula-
tion [42]. Finally, obesity appears to have significant 
genetic overlap with brain and cognitive measures [43] as 
well as EA [44].

To our knowledge, this is the first study in an adult 
population to examine the effects of parental EA on adult 
offspring BMI, while controlling for parental BMI. The 
average age of offspring in our sample is 32 years, which 
means that most will have left the parental home around 
10  years earlier, as the average age at which offspring 
leave home in the Netherlands is 22.7 years for daughters 
and 24.2 for sons [45]. Still, we observe parental BMI to 
be correlated with their adult offspring BMI (r = 0.18). 
This is in line with a literature review of studies examin-
ing parent–offspring BMI associations [19]. Age adjusted 
parent–offspring BMI correlations were lower after 
accounting for parental EA, which shows that a portion 
of intergenerational BMI transmission is due to factors 
related to parental EA.

Within-person EA-BMI correlations were small in the 
offspring generation before accounting for parental fac-
tors (r = -0.15 for sons and -0.17 for daughters), with sim-
ilar level for mothers (-0.15) and slightly lower for fathers 
(-0.10). In the offspring generation, these correlations 
were -0.10 after controlling for parental transmission. 
This persistence of association suggests that the rela-
tionship between EA and BMI is largely independent of 
parental factors, which implies that interventions aimed 
at improving EA (and consequently SES) can translate 
into desirable changes in BMI, irrespective of parental 
EA and BMI.

Gender did not play a significant moderating role in 
our model. Transmission coefficients were largely simi-
lar from fathers and mothers to sons and daughters, 
with the exception of BMI transmission from mothers to 
sons, which was lower than other parent–offspring com-
binations, but had the same direction of association (i.e. 
positive). The absence of gender differences confirms 
findings of prior studies [20], although few studies have 
reported differences between fathers and mothers in 
BMI transmission [46, 47].

Parents in our sample exhibited moderate levels of 
spousal correlation for BMI. For EA, the association was 
high. The observed spousal correlation for BMI in our 
study (r = 0.23) is somewhat higher than that reported 

in most other studies, averaging at 0.15 [48]. Increased 
rates of spousal correlation over birth cohorts have been 
hypothesized to have contributed to the rise in obesity 
prevalence [49]. Indeed, the odds of offspring obesity 
increase markedly when both parents have obesity [50]. 
From our study design, it is unclear whether this cor-
relation existed prior to marriage/cohabitation (due to 
phenotypic assortment or social homogamy) or devel-
oped with time (due to marital interaction). However, 
the latter scenario would involve an increase over time 
in spousal correlation for BMI, which is generally not 
found [48].

The main strengths of this study are a large sample 
size and age range for parents and offspring, as well as 
use of multiple offspring within families. Our study 
sample covers different geographic areas and socio-
economic classes in the Netherlands. Recruitment of 
twins – considered representative of the general popu-
lation [51] – and their families into the NTR was done 
through multiple channels including city council regis-
tries, leading to a sample that is reasonably representa-
tive of the Dutch population. Although the study relied 
on self-reported measures for height, weight, and EA for 
parents and offspring, the reliability in self-reporting of 
height and weight is good: in an analysis of a subsam-
ple of 6,026 individuals, we observed a correlation of 
0.93 between self-reported BMI and BMI measured by 
a research nurse or assistant [52]. We analyzed BMI as a 
continuous variable rather than a (clinical) binary vari-
able (obese/overweight vs. normal weight), because we 
wanted to address the process of transmission as it per-
tains to the full range of BMI in the general population 
in the Netherlands. In this approach we assume that the 
process of transmission as we identify it is relevant to 
the full range of BMI and EA. We note that it is possi-
ble to fit our present model (see Fig. 1) to a binary BMI 
variable, but this would merely result in a loss of infor-
mation. Specifically, the analysis in the case of a binary 
BMI variable is based on the liability threshold model, in 
which the model is fitted to latent continuous BMI vari-
ables. There is no advantage to this compared to fitting 
the directly to observed continuous BMI variables, but 
there is the disadvantage of a loss of power associated 
with loss of information. For this reason, we opted to use 
BMI as a continuous variable in our analysis.

There are also some limitations to the current study. 
While BMI is a common, convenient measure of obe-
sity, other methods, such as skin fold thickness and per-
cent body fat from dual energy X-ray absorptiometry, 
may provide more accurate estimates. In our analyses, 
we have modeled the process of transmission of EA and 
BMI from adult parents to adult offspring. Our result-
ing model is supposed to represents this process as it 
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takes place in the general Dutch population, and with 
respect to the full range of BMI. As such, this model is 
based on the assumption that the process is the same 
regardless of the actual level of BMI in the parents or 
their offspring. We recognize that it is possible that the 
transmission process may differ (e.g., in terms of the 
parameters) in extremes of the BMI distribution, i.e., 
in the obese and underweight subpopulations. Detect-
ing such heterogeneity is a statistically challenging task, 
which is beyond our present aim.

Our results pertain to adult offspring who generally 
have left the parental household. A next step in future 
research is to examine whether the associations and 
transmission results based on adult offspring are also 
seen in younger offspring who still live with their par-
ents, and likely share more of the home environment. 
This will facilitate the disentangling of the different 
aspects by which parents influence their offspring’s prob-
ability of having overweight or obesity. This is important 
to inform policy and interventions aimed at reducing the 
prevalence of these conditions. Our results suggest that 
improving the SES of a household may not on its own be 
sufficient to reduce the odds of obesity among offspring. 
It is imperative that policies focus on long term strate-
gies such as educational expansion and improving social 
mobility, which would have a more pronounced impact 
on obesity rates one generation after another.

Conclusions
Our study assessed the EA-BMI association while control-
ling for parental transmission and highlights in its results 
the existence of this association after controlling for paren-
tal EA and BMI. We documented significant within trait 
transmission for both traits, while cross trait transmission 
became insignificant after controlling for the same trait 
in the parental generation. This pattern points towards 
shared factors that influence both measures. Thus, the cor-
relation between EA and BMI within individuals is par-
tially due to parental factors, but the majority portion of 
correlation is independent of parental influences.
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