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Abstract: Structural brain changes that occur during development and ageing are related to mental health
and general cognitive functioning. Individuals differ in the extent to which their brain volumes change
over time, but whether these differences can be attributed to differences in their genotypes has not been
widely studied. Here we estimate heritability (h?) of changes in global and subcortical brain volumes in
five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861).
Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar
gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum).
Heritability estimates of change rates were generally higher in adults than in children suggesting an
increasing influence of genetic factors explaining individual differences in brain structural changes with
age. In children, environmental influences in part explained individual differences in developmental
changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates
and baseline volume significantly overlapped for many structures. The genetic influences explaining indi-
vidual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were
independent of the genetic influences explaining differences in their baseline volumes. These results
imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself.
Identifying these genes may increase our understanding of brain development and ageing and
possibly have implications for diseases that are characterized by deviant developmental trajectories of
brain structure. Hum Brain Mapp 38:4444—4458,2017.  ©2017 Wiley Periodicals, Inc.
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INTRODUCTION

Global and subcortical brain volumes continue to change
throughout life, from early development to old age
[Dennison et al., 2013; Fjell et al., 2013; Gilmore et al.,
2012; Hedman et al., 2012; Mills et al., 2016, Swagerman
et al., 2014; Wierenga et al., 2014; Ziegler et al., 2012]. The
extent to which brain structure changes with age is highly
relevant, especially at both extremes of the lifespan. Dur-
ing childhood development, deviant developmental pat-
terns of brain structure may be a better characterization of
diseases such as childhood onset schizophrenia, autism,
and attention deficit-hyperactivity disorder, than brain
differences between health and disease at a fixed time
point [Giedd et al, 2008; Rapoport and Gogtay, 2008;
Shaw et al., 2010]. At the other end of the age spectrum,
the extent of hippocampal volume decline has been related
to memory performance [Kramer et al, 2007, Mungas
et al., 2005; Stewart et al.,, 2011]. Schizophrenia has been
associated with brain changes in young adulthood [for

reviews see Chiapponi et al., 2013; Hulshoff Pol and Kahn,
2008; van Haren et al., 2012]. In healthy individuals, struc-
tural changes (cortical thickness and surface) throughout
the lifespan have been associated with intelligence
[Schnack et al., 2015]. The speed at which the brain
changes may, therefore, shed light on mental health, and
may aid in prediction of mental health at the individual
level.

Both global and subcortical brain volumes have been
shown to be highly heritable [Baare et al., 2001; Batouli
et al., 2014a; den Braber et al., 2013; Kremen et al., 2010;
Renteria et al.,, 2014; Swagerman et al., 2014; Thompson
et al., 2001; for reviews see Blokland et al., 2012; Peper
et al., 2007]. The extent to which the longitudinal changes
in these volumes in healthy development or ageing are
driven by genes—based on longitudinal twin studies—has
not been widely studied and are mostly based on the
Dutch population (Supporting Information Table S1).
These studies used a variety of modeling techniques to
obtain heritability estimates of brain changes that may not
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TABLE I. Cohort characteristics

Brain
Demographics SCALE QTIM Utwinsl VETSA OATS
No. subjects 127 160 331 194
in total 861
MZ/DZ complete pairs 25/27 10/12 36/37 75/53 57/40
in total 203/169
Sex (M/F) 69/58 17/32 95/55 331/0 65/129
in total 577/274
Mean age at baseline in yr (sd) 9.2 (0.1) 15.0 (2.0) 29.7 (7.8) 56.3 (2.6) 69.3 (4.7)
Mean scan intervals in yr (sd) 2.9 (0.2) 3.5(0.4) 5.3 (0.7) 5.5 (0.5) 2.3 (0.7)

be directly comparable. The first longitudinal brain imaging
study in twins addressed changes in ventricular volume in
the elderly [Pfefferbaum et al., 2004], with a later report
addressing changes in total brain volume and total cerebro-
spinal fluid [Lessov-Schlaggar et al., 2012]. They found sta-
bility of genetic factors over time and no significant
heritability of univariate change rates in any brain structures
that were measured. In young adulthood, changes in global
brain volumes and cortical thickness were found to be heri-
table, and genetically associated with the level of intelligence
[Brans et al., 2010; Brouwer et al.,, 2014], and the risk of
schizophrenia [Brans et al., 2008]. Limited evidence of heri-
tability of subcortical change was found in bipolar disorder
[Bootsman et al., 2015]. In the period between childhood and
adolescence, changes in global brain volumes and cortical
thickness [van Soelen et al., 2012a, 2013] but not subcortical
structures or white matter microstructure [Brouwer et al.,
2012; Swagerman et al., 2014], were found to be heritable to
some extent. Finding genes for these brain changes may aid
in identifying genetic pathways to brain development in
health and disease.

The ENIGMA consortium [Thompson et al., 2014, 2017]
provides an excellent platform to study genes implicated in
brain structures [Hibar et al., 2015; Stein et al., 2012]. As part
of the ENIGMA consortium, the ENIGMA Plasticity Work-
ing Group aims to identify genes involved in longitudinal
brain changes. It is difficult to draw firm conclusions from
the aforementioned studies on heritability of brain changes
due to differences in methodologies and sample sizes.
Therefore, as a first step, here we study generalizability and
robustness of heritability of global and subcortical brain vol-
ume changes across multiple longitudinal twin cohorts from
across the world and in different stages of the lifespan, in a
meta-analysis. We further compare a variety of univariate
and multivariate data analytic techniques to investigate
whether different models to assess heritability of brain
changes provide similar heritability estimates. Furthermore,
we ask the question whether individual differences in
changes in these volumes are explained by the same genetic
factors as those that explain individual differences in the
volumes themselves. At this point, it is an open question
whether the recently found SNPs influencing total brain

volume and subcortical volumes [Bis et al., 2012; Hibar et al.,
2015; Stein et al., 2012] are overlapping with those for volu-
metric change rate. If so, we may benefit from the existing
literature on the genetics of brain volumes and possibly
increase power, by investigating those genes that have been
found to influence brain volumes. If not, we have the oppor-
tunity to search for additional genes unique to changes in
the brain that could shed light on the biological pathways of
development and healthy ageing.

METHODS
Participants and Protocols

Five longitudinal twin cohorts (BrainSCALE, QTIM,
Utwinsl1, VETSA, OATS) were included in the present meta-
analysis to estimate heritability of global and subcortical
change rates across different cohorts and ages (Table I).
These twin cohorts are all characterized by having two mag-
netic resonance imaging scans made at an interval of several
years, in each subject.

MRI Processing

All MRI data were processed using the FreeSurfer seg-
mentation pipeline [Fischl et al., 2002, 2004; Reuter et al.,
2012]. Details on the cohort characteristics and image acqui-
sition and processing can be found in the Supplementary
Material. Quality checking for all sites was done according
to the ENIGMA-2 protocols [Hibar et al., 2015; http://
enigma.ini.usc.edu]. Left and right volumes of subcortical
structures (thalamus, caudate nucleus, putamen, pallidum,
hippocampus, amygdala, nucleus accumbens) and global
structures [total brain volume (including cerebellum but
excluding brainstem), cortical gray matter, cortical white
matter, cerebellum gray matter, cerebellum white matter,
lateral ventricles] were extracted for each cohort. Change
rates per year were computed by subtracting baseline
volume from follow-up volume, divided by the scanning
interval in years.

It must be noted that some of our cohorts used a different
scanner at baseline and follow-up. This could potentially
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influence the results. However, if we assume the effect of
scanner update to be linear, this may lead to a bias in
the estimate of mean change, but maintains the individual
differences between subjects, and hence still allows for esti-
mating heritability. More generally, this also explains why
heritability of brain volume changes may be detected in
age ranges where there is little change observed at a group
level, as long as there are intraindividual differences. In
contrast, if brain changes are prominent but similar for all
subjects in a certain period of life, heritability is expected to
be low.

Whether a genetic component influencing a change rate
can be detected directly strongly depends on the variance of
the error compared to the variance of the change. Assuming
that V;,is the true volume of subject i at baseline, the
measured volume at baseline is W;,=V;;, + €;3, where the
latter term is a measurement error. The measured volume
at follow-up Wis can be written as Wi+ (AV), + €ir — &,
where (AV);is the true change of subject 7 over time, and &;¢
is the measurement error at follow-up.

Hence, the variance of observed change can be written as

Var(W;—W,)= Var(AV)+ Var(gs) +Var(g;) or

@

=Var(Wf) + Var(W,)— 2COV<Wf, Wb)7
assuming error terms are independent. To investigate
whether the variance of the direct change is large enough
compared to the measurement error, we first implemented
a univariate model using the change rate only, to estimate
heritability for change in global volumes in four cohorts,
and change in subcortical volume in all five cohorts.

The Univariate Twin Model

Twin cohorts provide information on the heritability of
traits, through the comparison of monozygotic (MZ) and
dizygotic (DZ) twin pairs. MZ pairs generally share 100%
of their genes, and DZ pairs share on average 50% of their
segregating genes. Hence, if the volumetric change rates in
MZ twins are more alike than in DZ twins, it can be con-
cluded that genes contribute to the individual differences
observed in a trait, under the equal environment assump-
tion. The equal environment assumption states that MZ
twins are not exposed to a more similar environment than
DZ twins. If this assumption fails, the traditional twin
model will overestimate variance attributed to genetic fac-
tors. If both MZ and DZ twins are alike to a similar extent,
it can be concluded that common environmental effects
influence the trait. The total variance of a trait was split in
additive genetic variance (A), common or shared environ-
mental variance (C) and environmental variance (E)
unique to the individual. From these estimates, heritability
was computed as the proportion of the variance that was
attributed to additive genetic factors (Fig. 1, Supporting
Information, Model 1). Significance of heritability of
change rates in the individual cohorts was based on twice

the difference between the log-likelihoods of the full
model, and the model in which the influence of additive
genetic factors was set to zero. Minus twice the
log-likelihood difference comparing a model in which a
variance component is free to a model in which this com-
ponent is set to zero is distributed as a 50:50 mixture of x*
distributions with 0 and 1 degrees of freedom, respectively
[Dominicus et al., 2006]. The significance level was set to
0.05. Significance of the common environmental compo-
nent was determined similarly. We fitted the ACE model
and submodels (AE, CE, and E) for each structure and
each cohort. When a variance component (A or C) could
be dropped from the model without deteriorating the fit,
the most parsimonious model was selected. If either A or
C could be dropped but not both, the best fitting model
(AE or CE) was selected based on the AIC criterion.

Because of the highly skewed distributions of ventricu-
lar volumes, which could potentially influence the herita-
bility results, a log transformation was applied to lateral
ventricle volumes [Kremen et al., 2012]. The included phe-
notypes were corrected for age, sex, and scanner (where
appropriate) beforehand, combining baseline and follow-
up data in one linear model when both phenotypes were
entered in the model, thereby accounting for individual
differences in scanning interval.

Meta-Analysis of Heritability

Heritability estimates h? (i=1...5) from the ACE model
were pooled based on the cohort size N; (i =1.. .5, the num-
ber of twin pairs in study i), following [Batouli et al., 2014b;
Blokland et al., 2012; Verweij et al., 2010]. Even though the
ACE model was not the best fitting model in the individual
cohorts, using the full model allowed us to combine the esti-
mates from different cohorts and additionally had the poten-
tial to detect significant variance components that could not
be detected in cohorts separately.

The meta-analytic heritability was defined as

NN
=3 (%)

i=1

where N=N; +...+ Nj, the total number of twin pairs.
Confidence intervals for these estimates were computed
based on the variance of heritability estimates in the set of
twin cohorts:

(N (215’
§- (vt )

i=5

Subsequently, because several of the structures we study
here follow a developmental pattern of growth and
subsequent volume loss, we split up the processes of devel-
opment and ageing. Because of the large age gaps between
our cohorts, our data is not best suited to determine the turn-
ing point between growth and decrease. Based on the
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Figure I.

(A) Univariate twin model. The path loadings a|, c|, and e, represent
the genetic, common environmental influences and unique environ-
mental influences on change rates, respectively. (B) Latent change
model. The factors A, C, and E; and corresponding factor loadings
aL, ¢, and e represent the influences of genetic, common environ-
mental, and unique environmental influences on “level,” the non-
changing component of the volumes. Likewise, Ac, Cc, and Ec and
corresponding factor loadings ac, cc, and ec reflect the influences
that are unique to change. The contributions to level and change are
allowed to be different for left and right, and baseline and follow-up,
represented by the factor loadings f; and f,. The overlap between the
factors for baseline and change are modelled by the paths a ., ¢/,
and e ¢, Heritability of change in this model is computed as
(aLCZ-i- acz)/(aLc2+ ac2+ CLC2+ CC2+ e._c2+ ecz). (C) Bivariate
twin model including baseline volume and change rate. The path load-
ings ajy, aj, and ay; represent the influences of genetic factors, the

longitudinal literature [e.g. Hedman et al., 2012; Mills et al.,
2016; Vijayakumar et al., 2016; Wierenga et al., 2014], this
point usually lies in the early to late teens for those struc-
tures that show nonlinear developmental patterns (total

path loadings c,|, ¢}, and ¢y, represent common environmental influ-
ences and e||, €|, and ey, represent unique environmental influen-
ces. The factors A, C|, and E, are shared between baseline volume
and change rate, and A,, C,, and E, represent influences on change
rate that are independent from the factors influencing baseline vol-
ume. (D) Bivariate twin model including baseline volume and volume
at follow-up. The path loadings a,, a5, and ay, represent the influen-
ces of genetic factors, ¢, €5, and ¢y, represent common environ-
mental influences and €|, ej;, and ey represent unique
environmental influences. The factors A,, C,, and E, are shared
between baseline volume and followup, and A,;, C,, and E, represent
influences on follow-up volume that are independent from the factors
influencing baseline volume. Heritability of change rate is derived
from this model by computing (aj %+ a;2+ an’-2aja5)/
((a| 242t e |2) + (a|22+ ap’+ e+ o’ e+ 9222)) -2
[(anan +cpcintenen)l).

brain, cerebral white matter, cerebellum, thalamus, pal-
lidum, hippocampus, amygdala). We therefore chose to
compute meta-heritability in the adolescent (BrainSCALE
and QTIM) and adult cohorts separately.
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Longitudinal Genetic Modeling

We first chose to apply the simplest genetic model to esti-
mate heritability of change as change rates per year are the
easiest phenotype to model and can easily be implemented
when we search for genes involved in individual variation in
brain plasticity. It is, however, not the optimal model for
detecting heritability of a change measure. In addition, sev-
eral models have been used to assess heritability of brain
changes in the literature (Supporting Information Table S1).
Hence, we apply three other models to compare approaches.
Ideally, the genetic influences explaining individual differ-
ences in changes are estimated using a latent factor model
[McArdle, 2009]. The latent change model makes optimal use
of all available longitudinal data to estimate the heritability of
volumetric measures at each time point, the heritability of
change, and the relationship between baseline and change. In
such a model, variables that represent baseline and follow-up
volume—in this case left and right volume at baseline and
follow-up—are entered directly. “Level” and “change” are
included as latent factors in this model. These latent factors
capture the shared variance of volume based on all four input
variables and residual variance for follow-up measures.
Genetic and environmental influences on these factors are
estimated using family structure (model 2; Fig. 1B). Addition-
ally, genetic overlap between baseline and change can be
estimated. While the latent change model has been applied
to brain structure [Raz et al., 2005], to our knowledge, the
genetically informed variant [Panizzon et al., 2015] has not
been applied to change in brain structure before. As a second
longitudinal model, we estimated heritability of change in a
bivariate twin model using baseline volume and change
rate (model 3, Fig. 1C). Apart from estimating heritability of
volumetric change, this model, like model 2, can also estimate
the genetic overlap between baseline volume and change.

Finally, we implemented a bivariate twin model including
baseline and follow-up volume. This model includes a
genetic factor influencing both baseline and follow-up vol-
umes and one genetic factor that is unique to the follow-up
volume (model 4, Fig. 1D). This model is often used to study
stability of the genetic factor acting on traits measured over
time by testing whether the genetic correlation between the
volumes over time is significantly different from 1. If so, this
model shows the existence of a genetic factor explaining
residual variance at follow-up. It must be noted that exis-
tence of a genetic factor influencing follow-up only is not the
same as the existence of a genetic factor influencing change
and in that aspect, model 4 is different from the ones
described above. However, the existence of genetic variance
of the difference between baseline and follow-up measures
can be inferred using Eq. (1) above. All models were imple-
mented using structural equation modeling contained in the
OpenMx package [Boker et al., 2011] in R [R Developmental
Core Team, 2008]. See Supporting Information for a more
detailed description of the models.

The comparison of the four models estimating heritability
of change was done in three of the cohorts that had sufficient

sample size and all structures available. In all four models,
genetic influences on individual differences in change were
estimated. From models 2 and 3, we estimated the genetic
overlap individual variation between baseline volume and
change rate.

RESULTS

Univariate Heritability of Change
Rate—Meta-Analysis

Heritability estimates for change in global volumes for
each cohort separately ranged from 0% to 72%. Fit statistics
for the ACE model, submodels, and variance components
for the best fitting model for each cohort and each structure
separately can be found in Supporting Information Tables
S3 and 54, see also Figure 2.

Heritability estimates for change in subcortical volumes
for each cohort separately ranged from 0% to 58%. Fit statis-
tics for the ACE model, submodels and variance compo-
nents for the best fitting model for each cohort and each
structure separately can be found in Supporting Information
Tables S3 and 54, see also Figure 3.

Variance components for the meta-analysis in the full
group and in the child and adult cohorts can be found in
Table II, see also Figures 2 and 3. The change rate for all
global volumes was significantly heritable in the full group
analysis, with estimates ranging between ~20% for both
white matter of the cerebrum and cerebellum, up to ~40%
for change rate in total brain, gray matter of the cerebellum,
cerebellum and lateral ventricles. These findings were
mostly driven by the adult population [heritability estimates
~45% to ~55% with the exception of change rate in white
matter volume (17%)]. Heritability estimates in children
were low, with the exception of change in white matter vol-
ume (26%). In the child cohorts, a significant contribution of
common environment could be detected for change in cere-
bellum volumes (total, gray, and white matter) and for total
brain volume (~15% to ~35%). The change rate for caudate,
hippocampus, amygdala, nucleus accumbens, and putamen
were significantly heritable in the full group analysis, with
heritability estimates ranging from 16% to 31%. Similar to
the change rates in global volumes, these findings seemed to
be driven by the adult cohorts. Individual differences in the
change rate of the thalamus were significantly influenced by
common environmental influences (15%) in the full group,
but in children genetic influences significantly explained
part of the variance.

Comparison of Longitudinal Genetic Models

Using four different modeling approaches (Supporting
Information Fig. 1), we found that heritability estimates
were very similar for most brain structures, using either a
direct change rate in a univariate or bivariate model
(models 1 and 3), or by computing the variance of change
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Figure 2.

Variance components of global change rate per year for four
cohorts. The upper panel displays variance components for the
meta-analyses in the full group, and child/adult cohorts sepa-
rately. The lower panel shows results for the individual cohorts.
The colours of the bars represent the different structures.

from the variances and the covariance (model 4) in all
cohorts. The latent factor model (model 2) was slightly
more sensitive in detecting genetic or common environ-
mental variance for most structures (Supporting Informa-
tion Tables S2a,b,c). It must be noted that structures
showing higher heritability estimates were more robust
when comparing the four models, probably due to better
signal to noise for that structure (global volumes more sta-
ble than subcortical volumes) or cohort (older cohorts
more stable than younger cohort).

Genetic Overlap Between Baseline
Volume and Change Rate

From models 2 and 3, the overlap between the genetic fac-
tors explaining individual differences in baseline volume
and change rate could be estimated. Phenotypic correlations
were generally negative, indicating that greater baseline

Heritability estimates (bottom) are displayed in the darkest, solid
colour. Common environmental influences (middle) are displayed
with diagonal shading. Unique environmental influences are
displayed in the lightest colour. Significant h® and ¢* estimates in
the meta-analyses are marked with a star.

volume was associated with greater negative change (i.e.,
greater volume reduction). This pattern may partially indi-
cate regression to the mean. Positive phenotypic and genetic
correlations were found for total brain and gray matter vol-
ume change in the oldest cohort and for total white matter
volume in the youngest cohort. Genetic correlations were
significantly different from zero for cerebellar gray matter
volume, lateral ventricle volume and putamen, amygdala
and nucleus accumbens in the VETSA cohort, and white
matter volume in the BrainSCALE cohort, indicating overlap
in the genetic factors influencing volume and volume
change. The genetic correlation was significantly different
from —1 and 1 for cerebellum, and gray matter of the cere-
bellum in both adult cohorts, and lateral ventricle in the
VETSA cohort, implying the existence of a genetic factor
unique to the change rate, i.e. not shared with baseline vol-
ume. It must be noted that change in cerebellar gray matter
volume correlated highly with change in cerebellum volume
so these are probably representing the same phenotype.
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Figure 3.

Heritability of subcortical change rates per year for the five
cohorts. The upper panel displays variance components for the
meta-analyses in the full group, and child/adult cohorts sepa-
rately. The lower panel shows results for the individual cohorts.
The colours of the bars represent the different structures.

DISCUSSION

Based on a meta-analysis of longitudinal twin cohorts,
we find that change in several global and subcortical vol-
umes in the human brain is heritable: genes play a signifi-
cant role in the extent to which the brain changes over
time between individuals. Heritability estimates of change
rates in our meta-analysis ranged from 5% (pallidum, n.s.)
to 42% (cerebellar gray matter) and were larger for the
older cohorts than for the child cohorts. Individual differ-
ences in change rates of cerebellum volume, cerebellum
gray matter volume change, and lateral ventricle volume
were explained by genetic influences that were indepen-
dent of the genetic influences of individual differences in
baseline volume. An important finding is that longitudinal
MRI is sensitive enough to detect influences of genes on
individual variation in volumetric change of global and
subcortical brain structures across multiple studies and
age ranges.

Heritabilities for change rates in the meta-analysis were as
high as 42%, but not as high as the heritability estimates that
are generally reported for global and subcortical volumes
themselves [Blokland et al., 2012; Peper et al., 2007; Verweij
et al., 2010]. These lower estimates may be explained, in

Heritability estimates (bottom) are displayed in the darkest, solid
colour. Common environmental influences (middle) are displayed
with diagonal shading. Unique environmental influences are dis-
played in the lightest colour. Significant h? and & estimates in
the meta-analyses are marked with a star.

part, by the observation that quantifying individual brain
volume changes is harder than measuring a volume at one
time point: assuming the volumes are obtained with similar
measurement error, the part of the variance due to mea-
surement error is about twice as large for a change measure
compared with the error variance for the volume itself, and
this puts an a priori upper bound on the heritability of
change rates. The fact that the subcortical change rates
seem less heritable than the change rates of the global vol-
umes seems to underline this reasoning. A more interesting
possibility is that environmental effects such as life experi-
ences, play a greater role in the heritability of developmen-
tal and ageing trajectories than they do in determining
brain structure volumes at a single point in time. At this
point, we cannot distinguish between the two, but consid-
ering that we find genetic influences in this unique meta-
analysis of longitudinal twin cohorts, we may conclude
that genes are to some extent implicated in individual vari-
ation in several global and subcortical brain volumes
changes. Of particular importance, these findings imply
that it is relevant to search for genes involved in brain vol-
ume change such as undertaking a genome-wide analysis
within the ENIGMA consortium [Thompson et al., 2014,
2017].

® 4451



¢ Brouwer et al. ¢

TABLE Il. Meta-heritability estimates in the full group, and child and adult cohorts separately

Full group meta-analysis,
variance components

Child cohorts meta-analysis,
variance components

Adult cohorts meta-analysis,
variance components

Change rate W A & W A & I & &

Total brain 0.41 0.07 0.52 0.14 0.15 0.71 0.51 0.04 0.45
Cerebral gray 0.37 0.07 0.55 0.09 0.14 0.77 0.48 0.04 0.48
Cerebral white 0.19 0.11 0.69 0.26 0.00 0.74 0.17 0.16 0.67
Cerebellum 0.40 0.09 0.51 0.01 0.33 0.67 0.54 0.00 0.46
Cerebellar gray 0.42 0.10 0.48 0.00 0.37 0.63 0.57 0.00 043
Cerebellar white 0.19 0.07 0.74 0.13 0.18 0.69 0.21 0.03 0.75
Lateral Ventricles 0.41 0.00 0.59 0.30 0.00 0.70 0.45 0.00 0.54
Thalamus 0.11 0.14 0.75 0.27 0.19 0.54 0.07 0.13 0.80
Caudate 0.16 0.03 0.80 0.16 0.00 0.84 0.16 0.04 0.80
Putamen 0.31 0.01 0.68 0.00 0.00 1.00 0.38 0.02 0.60
Pallidum 0.05 0.12 0.82 0.08 0.05 0.87 0.05 0.14 0.81
Hippocampus 0.17 0.11 0.73 0.08 0.23 0.69 0.19 0.08 0.73
Amygdala 0.22 0.04 0.74 0.04 0.07 0.89 0.27 0.03 0.70
Nucleus Accumbens 0.22 0.00 0.78 0.18 0.01 0.81 0.23 0.00 0.77

12, heritability, proportion of variance attributed to additive genetic factors; ¢?, proportion of variance attributed common environmental
factors; €%, proportion of variance attributed to unique environmental factors. Significant #* and ¢* components are displayed in bold.

We find moderate heritability estimates for change in sev-
eral brain structures in the combined analysis. However,
there were substantial differences in heritability at the site
level, with estimates ranging from 0 to 72% and sometimes
wide confidence intervals due to sample size. This stressed
the importance of combining information from several
cohorts, but we should not ignore true differences that may
exist. One of the obvious explanations for the differences in
heritability estimates between our cohorts is the difference
in age. The youngest cohorts showed very little evidence for
heritability of change rates. Individual differences in the
extent to which the brain changes in the youngest cohorts
seemed to a large extent to be driven by shared and/or
unique environmental influences. In adults, the heritability
estimates of change rates seemed to increase and possibly
decrease again in old age. It is important to realise that a
heritability estimate is the proportion of variance that can be
attributed to genetic sources, and therefore, is also sensitive
to changes in both genetic and environmental variance.
Based on a largely cross-sectional cohort, heritability
increased for white matter volume and decreased for gray
matter volume during development, mainly as a result of
changes in the size of the environmental variance [Wallace
et al., 2006]. The heritability of cortical thickness has been
found to increase as well in this cohort [Lenroot et al., 2009;
Schmitt et al. 2014]. Reviews of cross-sectional heritability
studies on brain volumes showed that heritability tends to
increase during development, but decreases in older ages
[Batouli et al., 2014b; Jansen et al., 2015]. In contrast, a cross-
sectional comparison of five studies with average ages rang-
ing from childhood to late life showed that the heritability
of ventricular volume increased substantially with age
[Kremen et al., 2013], due to an increase in absolute genetic

variance. Longitudinally, we find heritability of change in
ventricular volume to be present already at a young age.
One might expect the heritability of change in brain struc-
ture to be paralleled by heritable changes in general cogni-
tive ability. Cross-sectional data on children and young
adults seem to suggest such change because they show
increases in genetic influences explaining individual differ-
ences with increased age [Haworth et al., 2010]. However, a
longitudinal study over 35 years from young adulthood to
middle age showed no genetic influences on individual dif-
ferences of change in general cognitive ability [Lyons et al.,
2009]. To conclude, the seeming inconsistencies between
cross-sectional and longitudinal studies serve to highlight
the fact that a change in heritability of volumes and in the
heritability of change rates is not the same.

Apart from age, other differences between cohorts can cre-
ate differences in heritability, especially since the cohorts
have different size, scanners, scanning intervals, imaging
protocols, and segmentation techniques. For example, the
two oldest cohorts showing on average the highest heritabil-
ity estimates of change rates, are also the largest. It is possi-
ble that sample size, in combination with a large follow-up
duration for one of these cohorts, may have increased the
power to detect heritability of change measures. Finally, we
should be aware that even if the heritability estimates are
similar in the different cohorts, it is not guaranteed that the
same genes play a role at all ages. As an example, a recent
study using family data from several generations showed
indeed that different sets of genetic factors contribute to
heritability of cortical thickness over healthy ageing
[Chouinard-Decorte et al., 2014]. This results fits with the
finding that a different set of genes influence baseline
thickness and thickness change [Brans et al.,, 2010; van

® 4452 ¢



# Heritability Estimates of Brain Changes ¢

Soelen et al., 2012b] but does not necessarily extrapolate to
different sets of genetic factors contributing to change rates
at different periods of life. In our full meta-analysis, we com-
bined estimates from structures that at a group level show
growth in development and loss in ageing. At this point, it is
not clear that the biology underlying individual differences
in change rates is the same or different for these two periods:
it is possible that variants that code for efficient growth, may
also cause more efficient brain stability, or slower decay at
later ages. It is also possible that these processes are driven
by different genetic factors. Separating our analyses into a
younger and older age group, did show however that herita-
bility was more robust in ageing than in development. This
is potentially an interesting finding as it suggests that during
development environmental influences may play a substan-
tial role. In adults, activities ranging from physical exercise
to learning a new skill have shown to cause changes in the
brain [Valkanova et al., 2014]. This may suggest that In
childhood and adolescence, a period in which the brain
acquires many new skills, offering the right environment
could cause the brain to develop in an optimal manner. We
have to be careful interpreting our data as such, because the
younger cohorts are relatively small and were measured
with a short age interval. Indeed, preliminary data from
third wave of the BrainSCALE study shows that heritability
measured between the ages of 9 and 17 compared to the age
range from 9 to 12, increased from 0 to 32% and from 22% to
54% for annual gray and white matter volume change,
respectively. One way to further investigate the question of
the same genetic factors influence brain changes throughout
the lifespan would be to examine longitudinal family studies
spanning several generations. Alternatively, we plan to
investigate the role of age when doing a genome-wide asso-
ciation (GWA) study on volumetric changes in global and
subcortical volumes.

The finding that an individual’s genotype influences the
rate of his/her brain changes, particularly in the adult and
elderly populations, can be interpreted as the existence of
genes that influence individual differences in the speed of
brain ageing. Indeed, many genetic pathways that regulate
ageing have been identified in animal studies [Kenyon,
2010] and it is possible that some of these could be
involved in the longitudinal changes we observe. Addi-
tionally, accelerated brain ageing has been observed in
diseases such as schizophrenia [Koutsouleris et al., 2014;
Schnack et al., 2016], bipolar disorder and depression
[Koutsouleris et al., 2014], and mild cognitive impairment
and Alzheimer’s disease [Gaser et al., 2013; Lowe et al.,
2016]. Genetic vulnerability for disease could be related to
individual differences in the rate of brain changes. As
many psychiatric disorders are thought to be developmen-
tal diseases, it is possible that these genes also influence
individual variation in the rate of brain development.

It is an important question whether the genetic factors
influencing brain volumes themselves are the same as the
genetic factors influencing brain change rates. One could

speculate that a brain volume is the sum of the brain changes
that occur up to that time. In that case, the genetic factors
that influence the volume and change rate may be expected
to overlap and indeed we found this at least partly to be the
case for several structures. It must be noted that these incre-
mental volumes could be influenced by different genes act-
ing explaining individual differences in brain changes at
different ages, so that full genetic overlap between volume
and change rate is probably not expected if such epigenetic
effects are present. At this moment, it is not known whether
the effects of individual genes will be easier to detect from
the volumes or the change measure. If these genetic factors
are different, gathering longitudinal rather than cross-
sectional data in imaging genetics studies is worth the addi-
tional effort because it could lead to finding genomic var-
iants that influence plasticity directly. For the cerebellum,
cerebellar gray matter and lateral ventricle volumes, we
found evidence that part of the genetic variance involved in
adult change rate is indeed independent of the genetic sour-
ces that influence baseline volume. One interpretation of this
finding would be that plasticity of these structures as a reac-
tion to environmental sources is dependent on the genetic
profile. Another explanation would be that developmental
and ageing trajectories of brain structure are not only pheno-
typically different [Fjell et al., 2013, Tamnes et al., 2013], but
also driven by genetically different processes. In both cases,
the genes that influence the susceptibility for environmental
sources or ageing are considered to be independent from the
genes that code for the “innate” volume.

This study has several limitations to take into account.
One, the meta-heritability is based on the assumption that
the genetic factors explaining individual differences of
change are the same throughout the lifespan. Considering
the highly nonlinear developmental and ageing patterns of
the brain and the fact that gene-expression in the brain
varies with age [Berchtold et al., 2008; Colantuoni et al.,
2011; Kumar et al., 2013], it is possible that this assumption
is not valid. There was little evidence of heterogeneity in our
meta-analysis (data not shown) but this might be an effect of
the low number of studies included rather than true homo-
geneity. The estimates we provide here should therefore be
considered an average over the lifespan, rather than a con-
stant value. Two, there are differences between the cohorts
that are intertwined with age, sex and methodology. It is
therefore not possible to draw definite conclusions about the
possibility that different genes play a different role at differ-
ent ages, or that the influence of genes on individual differ-
ences in brain changes may differ between the sexes. Three,
the balance of the variance of the change rate and the vari-
ance of measurement error may be cohort and age depen-
dent and data quality and quality control procedures will
still be an important factor when performing genetic studies.
Four, the twin model presumes that the equal environment
assumption holds, which we could not test for our data.
Five, there were changes in scanning methods over time in
the two oldest cohorts. We assume that possible effects of a
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scanner change are linear but we cannot rule out that this is
not the case. However, both members of all twin pairs were
scanned on the same scanner. As we may expect that a scan-
ner update has the same effect on a subject regardless his/
her zygosity, any scanner-related variance would be labeled
as common environment in the twin model. Given that the
estimated C components are rather small in both the VETSA
and OATS cohort, we can argue that scanner updates did
not strongly influence our results.

To conclude, this study shows that annual change rates
of global and subcortical volumes are heritable, especially
in adulthood. This implies that the individual’s genetic
profile contributes to the rate of brain changes, specifically
in older age. Identifying those genes may help us under-
stand the genetics of ageing and brain diseases that are
characterized by accelerated brain ageing. Finally, this
study shows that measuring brain changes using volumet-
ric MRI carries enough genetic signal to attempt a GWA
study and this will be the next goal of the ENIGMA plas-
ticity group.
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