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Copulas in QTL Mapping

Bojan Basrak,1,6 Chris A. J. Klaassen,2 Marian Beekman,3 Nick G. Martin,4

and Dorret I. Boomsma5

The standard variance components method for mapping quantitative trait loci is derived on the
assumption of normality. Unsurprisingly, statistical tests based on this method do not perform
so well if this assumption is not satisfied. We use the statistical concept of copulas to relax the
assumption of normality and derive a test that can perform well under any distribution of the
continuous trait. In particular, we discuss bivariate normal copulas in the context of sib-pair
studies. Our approach is illustrated by a linkage analysis of lipoprotein(a) levels, whose distri-
bution is highly skewed. We demonstrate that the asymptotic critical levels of the test can still
be calculated using the interval mapping approach. The new method can be extended to more
general pedigrees and multivariate phenotypes in a similar way as the original variance com-
ponents method.
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INTRODUCTION

In human genetics the linkage analysis of quantitative
trait loci (QTL) tries to detect a connection between
genetic similarity at a given marker (commonly mea-
sured by identity by descent [IBD] status) and similar-
ity of phenotypes (measured in many different ways).
Performing a statistical analysis in such a study, we
typically cannot influence the way genetic similarity is
measured, but we can choose the way to measure sim-
ilarity of phenotypes. Most popular procedures use the
notion of linear correlation to do so. The correlation is
the canonical measure of dependence in the world of
(multivariate) normal distributions, but it can be less
suitable when the normality assumption is not met. The
most general way of expressing stochastic dependence
between variables is via copulas. We show how this
well-established statistical tool can be applied in QTL
linkage analysis with a little extra effort and potentially

many benefits. One particular copula, the bivariate nor-
mal copula, is discussed in some detail below. In par-
ticular, we demonstrate how a statistical analysis based
on the normal copula model deals with problems of
nonnormality that appear in many practical studies.

Suppose we are given data from a study based on
n sib-pairs. We denote the trait values of sib-pairs
(phenotypes) by (Yi,1, Yi,2 ) with i = 1, . . . , n . Their
IBD status at a marker t is a random variable with val-
ues in {0, 1, 2} denoted by Xi (t) with i = 1, . . . , n
again. Observe that in the genetics literature Xi (t) are
frequently denoted as 2�̂i (t). In the sequel we concen-
trate on one fixed marker (hence we ignore the vari-
able t and just write Xi ). Moreover, we ignore
uncertainties concerning the measurements of the Xi s.
The classical method of QTL linkage analysis is due to
Haseman and Elston (1972). It suggests regressing the
squared difference (Yi,1 − Yi,2)2 on Xi and declaring
linkage whenever one finds evidence for a negative
slope of the regression line. One can easily see (as in
Sham [1998] for instance) that this boils down to a test
whether the correlation corr (Yi,1, Yi,2 | Xi ) can be lin-
early regressed on Xi with a positive coefficient.

In the last decade, likelihood models have been in-
troduced to obtain more powerful tests for the presence
of QTLs when data satisfy additional assumptions. An
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example of the univariate likelihood model is given in
Kruglyak and Lander (1995). Somewhat later, Fulker
and Cherny (1996) showed an example of a bivariate
model; this approach is commonly known as the vari-
ance components method. Both of these likelihood
methods test essentially for the very same regression
as the Haseman-Elston method, but assuming more
about the data, namely univariate or multivariate nor-
mality of the trait values. Naturally, these methods have
optimal power when their assumptions are met. How-
ever, when the trait distribution deviates from normal-
ity, neither their power nor their significance level can
be guaranteed unless some adjustments are made. This
has been an important topic of research in the last cou-
ple of years (see for instance Blangero et al. [2000] and
Sham et al. [2000]). For an interesting viewpoint that
relates Haseman-Elston and similar methods with vari-
ance components see Putter et al. (2002).

Remark 1.1 Observe that all of the methods above
consider it safe to assume that the marginal distribution
of the phenotypes does not change with IBD status, and
that it is only dependence between them that does. And
it is this change in dependence between traits that we
want to detect. Moreover, in sib-pair studies it is rea-
sonable to assume that the sibs are randomly ordered,
so that the marginal distributions of the traits are equal;
that is, Yi,1 and Yi,2 have the same distribution function.
If they are ordered by sex, age, or some other factor, we
assume that the factor does not influence the phenotype.

DISCUSSION

Copulas

We have explained how the classical methods of
linkage analysis measure dependence between the traits
using correlation coefficients. If the multivariate nor-
mality assumption does not hold, this is not such a nat-
ural idea anymore. It is (almost always) reasonable to
assume that we do not have to worry about a change in
marginal distribution; thus we can apply an extremely
useful tool that statistical theory uses to separate the
marginal distributions from the dependence structure—
copulas.

We restrict attention to sib-pair studies and hence
to the case of bivariate distributions and bivariate cop-
ulas (for the more general theory see Joe [1997] or
Nelsen [1999]). Let us denote by F the joint distribu-
tion function of the random variables Y1 and Y2

F(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2), y1, y2 ∈ �.

This joint distribution function completely describes
the dependence structure as well as the marginal dis-
tributions of the pair (Y1, Y2).

Assume now that the random variables Y1 and Y2

have marginal distribution functions F1 and F2 ,
respectively. The copula of the pair (Y1, Y2) is defined
as the joint distribution function C of the pair [F1(Y1),
F2(Y2)]. By the definition of distribution function it fol-
lows that if F1 and F2 are continuous (which we will
assume throughout), then the transformed random
variables F1(Y1) and F2(Y2) both have a uniform dis-
tribution on the interval [0, 1]. Consequently, any dis-
tribution function of a random vector with values in the
unit square [0, 1] × [0, 1] and with uniform marginal
distributions can be viewed as a copula. Note that

F(y1, y2) = C(F1(y1), F2(y2)), y1, y2 ∈ �. (1)

From this formula we can see how a joint distribution
function “splits into” three parts: the copula C and the
marginal distribution functions F1 and F2.

Remark 2.1 It is straightforward to show that the
copula does not change if we transform each compo-
nent by a strictly increasing function. In other words,
the copula of the random vector [h1(Y1), h2(Y2)] is the
same as the copula of (Y1, Y2) for strictly increasing
functions h1 and h2. The marginal distributions change,
however, from (F1, F2) to (F1 ◦ h−1

1 , F2 ◦ h−1
2 ). For any

function h, by h−1 we denote its inverse.
One of the most important copulas is the inde-

pendence copula

C0(u1, u2) = u1u2, u1, u2 ∈ [0, 1],

which is obtained whenever the two random variables
Y1 and Y2 are independent. On the opposite end of the
spectrum we have the copula of positive dependence

C+(u1, u2) = min{u1, u2}, u1, u2 ∈ [0, 1],

which, for instance, can be obtained when Y1 = g(Y2)
for some strictly increasing function g. Similarly we
can define the copula of negative dependence C− . Ob-
serve that copula C0 has constant (uniform) density on
the unit square. On the other hand, copulas C+ and C−
do not have densities. Their distributions concentrate
on the diagonals u2 = u1 and u2 = 1 − u1, respectively.

As stated earlier, one can frequently assume that
the phenotypic traits of a pair of sibs have the same
marginal distribution, which means that we can set
F1 = F2 . This restricts the class of copulas we have to
consider in our applications even further to the case of
the so called exchangeable copulas. Their distributions
are symmetric around the diagonal u2 = u1.

Roughly speaking, in sib-pair studies we expect
(in the vicinity of QTLs) that the copula of a pair of
phenotypes (Y1, Y2) conditioned on their IBD status
X = x gets closer and closer to C+ (and more distant
from C0) as x increases from 0 to 2. But it is still not
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Fig. 1. Grey level intensity plots of densities for copulas
C0.25

N and C0.8
N .

obvious how to measure this distance in general. This
is one of the reasons why we restrict our attention to
parametric families of copulas.

The most prominent place in our applications is
dedicated to the family of bivariate normal copulas.
They arise, in the way explained above, from a random
vector (Y1, Y2) that has a multivariate normal distribu-
tion. These copulas do not depend on the mean and
variance of the Yi s but only on their mutual correlation
coefficient, �. They are equal to C− and C+ when
� = −1 or 1, respectively. For −1 < � < 1, we denote
them by C�

N (u1, u2) and observe that by (1)

C0
N (u1, u2) =

∫ �−1(u1)

−∞

∫ �−1(u2)

−∞

1

2�
√

1 − �2

× exp

(−(s2 − 2�st + t2)

2(1 − �2)

)
ds dt , (2)

where by � we denote the standard normal distribution
function. This copula has a density as well. Two ex-
amples of this density are shown in Figure 1, namely
for � = 1/4 and � = 4/5.

Recall that the variance components method as-
sumes that the phenotypes (Yi,1 , Yi,2) conditioned on
the IBD values have a bivariate normal distribution.
For simplicity we assume further that the random vari-
ables Yi, j , i = 1, . . . , n, j = 1, 2, are standardized so
that they all have a mean of 0 and variance of 1. It can
be shown (see Tang and Siegmund [2002]) that if we
estimate expectation and variance of the traits in real-
life studies, this does not influence the asymptotic the-
ory of the test statistic (see also the Appendix). To make
the assumptions behind the variance components ap-
proach more precise, we denote by F(·, · | x) the con-
ditional distribution of the phenotypes (Y1, Y2), given
that their IBD status X equals x, that is, F(y1, y2 | x) =
P(Y1 ≤ y1, Y2 ≤ y2 | X = x) , and assume

Condition (A): The conditional distribution function
F(·, · | x) is a bivariate normal distribution function
with a mean of 0, and variance of �2 (assumed to be
equal to 1 unless stated otherwise) and a correla-
tion coefficient that depends on x as � (x) = � +
� (x − 1), x = 0, 1, 2.

Consequently, there is a straightforward likelihood
ratio test for the null hypothesis � = 0 against the
alternative � > 0. To make � (x) a proper correlation
coefficient we need |� | + |� | ≤ 1.

In real-life studies, however, the normality as-
sumption frequently fails to hold even for the univari-
ate variables Yi,1, Yi,2 . Trying to correct for this,

researchers frequently apply some (usually continuous
but nonlinear, for instance, logarithmic) transformation
to the data to bring them more in line with this
assumption. By doing so, they implicitly assume that
the bivariate distribution of the traits comes from the
normal copula model. In other words, they assume that
there is a (strictly monotone) transformation g such that
(Yi,1, Yi,2) = [g−1(Wi,1), g−1(Wi,2)] where the pairs
(Wi,1, Wi,2 ) satisfy condition (A). This leads to the fol-
lowing generalization of the previous condition.
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Condition (B): There exists a strictly monotone
function g such that the distribution function of the ran-
dom vectors

(Wi,1, Wi,2) = [g(Yi,1), g(Yi,2)]. (3)

conditional on Xi = x satisfies Condition (A).

It follows that the copula CY|x of the pair (Yi,1, Yi,2) when
conditioned on Xi = x is the same as the one for
(Wi,1, Wi,2), that is, using the notation of (2) we can write

CY|x = C�+� (x−1)
N . (4)

The marginal distribution of both Yi,1 and Yi,2 has the
form

F1(y) = P(Y1 ≤ y) = �[g(y)], y ∈ �. (5)

By (1), the last two formulas completely specify the
joint distribution of (Yi,1, Yi,2 ) conditioned on Xi .

Hence the bivariate normal copula model is widely
used already. We make it our main assumption in the
rest of the article. Note that this model includes the
standard variance components model when g(x) = x .
But it also allows any continuous marginal distribution
of the phenotypes. The only assumption it makes con-
cerns the dependence structure between them. Still,
there are situations in which such an assumption may
not be appropriate. In such circumstances the depen-
dence between traits should be better modeled by some
other family of copulas. (Many examples can be found
in Nelsen [1999]).

Observe further that by choosing this one-
parameter family of copulas, we can measure similar-
ity between phenotypes Yi,1 and Yi,2 given Xi = xi by
one number again, namely �i = � + � (xi − 1) . How-
ever, �i represents the correlation between W values
and not between Y values. For the latter ones it has an
interpretation as the maximum correlation coefficient
(see the last paragraph of the Appendix).

In real-life studies the function g in (3) is un-
known. One may try to guess g, as one frequently does
in practice, but there is another option. If we would
know the marginal distribution F1 of the trait, we could
use relation (5) to obtain

g(y) = �−1[F1(y)], y ∈ �. (6)

Hence knowing F1 means knowing g too. In some
cases, assuming that we know F1 is not unrealistic be-
cause the marginal distribution of the traits can be es-
timated from the larger population that contains the sibs
and not only from the data in the study. Frequently F1

is not known and has to be estimated from the data. An
obvious estimator of F1 is the empirical distribution of

all of the 2n values Yi,1, Yi,2, i = 1, . . . , n , of the phe-
notypic trait. Details of this procedure will be explained
in the next section.

One can give an alternative explanation for the
procedure we advocate, using the concept of van der
Waerden normal scores rank correlation coefficient.
Readers familiar with this notion will realize that we es-
sentially use this coefficient now to measure similarity
between phenotypic traits given their IBD status and not
the ordinary linear correlation. Apart from that we leave
the variance component approach basically unaltered.

There are other families of copulas that one could,
and in some cases should, use in practice. However, the
bivariate normal copulas have some obvious advan-
tages: most researchers are familiar with them, even
more, they implicitly use them in many studies. More-
over, the commonly used procedures, software, and
significance levels can be applied directly.

Copulas in Linkage

Recall that the variance components method as-
sumes that the data satisfy condition (A) and that it tests
the hypothesis � > 0 using the log-likelihood ratio test
statistic

2

(
max
� ,�

l(� , � ) − max
�

l(� , 0)

)
(7)

where l denotes the logarithm of the likelihood of the
phenotypes given the values of their IBD status. Sib-
pairs are assumed to be independent; thus l is the sum
of the contributions of each pair

l(� , � ) =
n∑

i=1

l(Yi | Xi ; � , � ).

Let us denote by l� (· | ·; � , � ) the score function of the
log-likelihood (i.e., its partial derivative with respect
to �). It is known (see van der Vaart [1998] for
instance) that the likelihood ratio test in (7) is locally
asymptotically equivalent to the test based on the score
statistic

Z0
n = 1√

n

n∑
i=1

l� (Yi | Xi ; �̂n , 0)/
√

I� ,

where �̂n is the maximum likelihood estimator of �,
and I� denotes the diagonal entry of the Fisher infor-
mation matrix corresponding to the parameter � (see
Putter et al. [2002] or Tang and Siegmund [2002]). In
practice, I� above is also replaced by an appropriate
estimate. It gives a suitable normalization when the
assumptions of the model hold. However, in practice it
may be advisable to use a “robustified” version of the
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statistic Z0
n , that is

Zn = 1√
n

n∑
i=1

l� (Yi | Xi ; �̂n , 0)

/
√√√√1

n

n∑
i=1

l2
� (Yi | Xi ; �̂n , 0). (8)

For a detailed derivation of this statistic see for instance
Tang (2000) or Putter et al. (2002). Observe that the
statistic Zn has a standard normal distribution asymp-
totically, even if condition (A) does not hold, as long
as l� has finite variance and the same mean for each
value xi of the IBD status. Linkage is now concluded
whenever Zn is sufficiently large.

Under the bivariate normal copula model, that is,
condition (B), this same procedure can be applied to
appropriately transformed phenotypes, that is, to the
values [cf. (6)]

Y∗
i = (Y ∗

i,1, Y ∗
i,2) = {�−1[F1(Yi,1)], �−1[F1(Yi,2)]},

i = 1, . . . , n. (9)

Observe that the values (Y ∗
i,1, Y ∗

i,2 ) and Xi satisfy as-
sumption (A) directly, because by Remark 2.1 they
have the same copula and the same marginal distribu-
tion as the values (Wi,1, Wi,2 ) given in (3).

As mentioned earlier, if the marginal distribution
F1 of the Ys must be estimated, it is natural to take F̂2n

the empirical distribution function of all 2n trait values
(multiplied by 2n/(2n + 1) to avoid that it takes the
value 1, which would result in �−1(1) = ∞) as the
estimator. It has the form

F̂2n(y) = 1

2n + 1
#{Yi,k ≤ y : i = 1, . . . , n, k = 1, 2}.

Under our conditions we have with probability one

F̂2n(y) → F1(y) for all y ∈ �, as n → ∞,

which follows by the strong law of large numbers. The
accuracy of F̂2n in estimating F1 is maximal if all Yi,k s
are independent. The variance of F̂2n(y) equals
2n(2n + 1)−2 F1(y)(1 − F1(y)) then. In the other ex-
treme case Yi,1 = Yi,2, i = 1, . . . , n , holds and the vari-
ance of F̂2n(y) is two times larger. In any case, this
justifies the application of the variance components
method on the transformed phenotypes

Y′
i = (Y ′

i,1, Y ′
i,2) = {�−1[F̂2n(Yi,1]), �−1( F̂2n[Yi,2)]},

i = 1, . . . , n. (10)

The formula above is not difficult to implement in any
software package for data analysis. In particular, an

Excel macro performing this transformation is avail-
able from the corresponding author on request. It is im-
portant to stress that if any of the statistics introduced
in (7) or (8) is calculated with these new values, as-
ymptotic significance levels (as those in Dupuis and
Siegmund [1999]) stay the same as in the original vari-
ance components model (see Proposition 6.3 in the
Appendix). They will also give us efficient tests as-
ymptotically. We demonstrate applicability and use-
fulness of this approach by a small simulation study in
the next section.

Real Data and Simulations

We apply the method introduced in the previous
section to one particular data set. The phenotypic trait
measured is lipoprotein level Lp(a) and the sibs in-
volved are dizygotic twins. This data set is a part of a
larger data set produced in an international study in-
volving twins from Australia. The Netherlands, and
Sweden. Details of the study can be found in Beekman
et al. (2002). To illustrate the normal copula method
we restrict ourselves to the Australian sample and chro-
mosomes 1 and 6. We ignore the sex of the sibs, be-
cause Lp(a) levels and variances do not systematically
vary with sex. The first histogram in Figure 2 shows
that the Lp(a) levels have a distribution that is ex-
tremely skewed. Therefore the levels have been trans-
formed by a classical device—the natural logarithm.
The resulting histogram (see Figure 2[b]) seems to in-
dicate that skewness is not a serious problem anymore,
but the distribution of the transformed values is still far
from normal. This can be checked by a rigorous test
but it is also clear just from looking at the QQ-plot in
Figure 2(c). If we perform the transformation by the
empirical distribution function given in (10) the mar-
ginal distribution of the data is very close to normal;
see the histogram in Figure 2(d). In fact, the ordered
components of the transformed data are the determin-
istic numbers �−1[1/(2n + 1)], . . . , �−1[2n/(2n + 1)].
The remaining randomness in (10) is in the pairing of
these numbers.

We have performed three tests over a given set of
markers. The first one is the classical Haseman-Elston
test performed on the logarithms of the original data,
the second one is the log-likelihood ratio test performed
on the same values, and the third test is the same as the
second one, but it uses the normal copula approach to
transform the data. For this illustration, we have used
the estimated expectation of the IBD status (usually
called �̂ values) of the twins and not the estimated IBD
probabilities.
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Fig. 2. (a) Histograms of lipoprotein levels, (b) histogram of their logarithms, (c) QQ plot of the logarithms against the normal distribution,
and (d) histogram of the values transformed nonparametrically using formula (10).

(a)

(b) (d)

(c)
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For both chromosomes all three tests achieve their
maximum at approximately the same location, as can
be seen in Figure 3. In both cases the copula–based test
has the highest LOD score at the location of suspected
QTL (i.e., the location of the maximum). Note that it
also gives less significance (i.e., the smaller LOD score)
to the second largest local maximum of the LOD score
based on the usual variance component test. Loosely
speaking, this might mean that the copula–based

test distinguishes better between “true” and “false”
QTLs. We would like to stress that these results change
if we calculate LOD scores conditionally on the QTL
at the other chromosome. In that case, only the known
Lp(a) locus at chromosome 6 appears to be significant
(Figure 4).

We have also performed a small simulation study to
compare the powers of the different test procedures. It is
based on 1000 simulations of 200 pairs of phenotypes

Fig. 3. Three test statistics plotted on the LOD scale over chromosome 1 (left) and chromosome 6 (right).

Fig. 4. Conditional test statistics plotted on the LOD scale over chromosome 1 (left) and chromosome 6 (right).



168 Basrak, Klaassen, Beekman, Martin, and Boomsma

Table I. Power Estimates from 1000 Independent Simulations

Sa Sb Sc mLOD Sa Sb Sc mLOD Sa Sb Sc mLOD

� = 0.2, � = 0.0 � = 0.3, � = 0.1 � = 0.4, � = 0.2

LLR 4.5 0.0 0 0.097 31.0 7.4 0.1 0.492 82.7 53.7 6.8 1.732
C-LLR 5.9 0.1 0 0.114 32.3 7.8 0.2 0.507 82.1 52.5 7.9 1.723
H-E 5.8 0.1 0 0.116 30.9 5.8 0.0 0.474 80.9 40.6 1.0 1.382
Z score 4.5 0.4 0 0.100 27.2 5.8 0.1 0.450 75.0 38.5 2.6 1.348
H-E after g1 6.1 0.3 0 0.114 23.0 3.8 0.0 0.387 64.4 24.1 0.5 0.997
Z after g1 4.5 0.4 0 0.104 26.5 4.8 0.0 0.416 66.7 32.4 2.1 1.184
H-E after g2 4.7 0.2 0 0.110 10.9 0.8 0.0 0.235 15.7 0.9 0.0 0.272
Z after g2 4.7 0.1 0 0.112 14.8 0.4 0.0 0.281 29.1 1.4 0.0 0.422

Note: All test statistics are calculated on the LOD scale. Columns Sa , Sb , and Sc contain the percentages of LOD scores that exceed levels
a = 0.59, b = 1.5, and c = 3.62, respectively. The column mLOD contains the mean LOD score in each case.
LLR, log-likelihood ratio statistic (7); C-LLR, copula–based log-likelihood ratio statistic; Z, score test statistic (8); H-E, Haseman-Elston test
statistic calculated on the original data. The last two are recalculated after two nonlinear transformations (g1 and g2) of the same data.

and their IBD values at a fixed QTL. They are generated
from the standard variance components model for three
different sets of parameters. More precisely, the distrib-
ution of the pairs satisfies Condition (A) with different
values of � and �. After that, we performed the usual tests:
the log-likelihood ratio test, see (7), the Haseman-Elston
test, and the score test, see (8). We present the results
based on the 1000 simulation runs in Table I. It gives the
percentages of the LOD scores that exceed levels
a = 0.59, b = 1.5, and c = 3.62, respectively. Note that
a and c are asymptotic critical thresholds at the signifi-
cance level � = 0.05 for the single marker test and the
genome-wide scan. The first set of parameters (� = 0.2
and � = 0) is chosen to explore behavior of different test
statistics under the null hypothesis of no linkage.

Finally, we transformed the simulated data using
two nonlinear functions. We did this by taking the cube
root and the cube of the generated phenotypes and re-
standardizing them to have mean 0 and variance 1. Ob-
serve that the transformed phenotypes come from the
bivariate copula model, that is, they satisfy Condition
(B). On the transformed data we applied the Haseman-
Elston method and the “robustified” score test (8). They
both exhibit a decrease in power to detect this QTL
now. However, for the copula–based approach this is
not a problem because its results stay the same when
the data are transformed by an increasing function. One
can see this by comparing the rows of the table corre-
sponding to the log-likelihood ratio (LLR) test statis-
tic based on normality and the same statistic applied on
the nonparametrically transformed phenotypes
(C-LLR) [see (10)]. Observe that under the null hy-
pothesis � = 0 all tests have similar empirical type 1
error rates. This suggests that by estimation of the mar-
ginal distribution function, we do not inflate the type 1

error, at least when the sample size is about 200 or
more. Moreover, Table I shows that after a transfor-
mation like g2 the performance of the Haseman-Elston
method and the score test Z can be rather poor.

Observe that all of our samples satisfy Condi-
tion (B). Admittedly, it is also important to investigate
the behavior of the new method when this assumption
fails. However, the class of distributions for which Con-
dition (B) does not hold is extremely large and disor-
dered. Moreover, simulation from a general copula is
not a completely trivial issue. On the other hand, choos-
ing only copulas from which one can easily simulate
may not be very illustrative. This is certainly a topic
that deserves more attention.

CONCLUSION

The bivariate normal copula model suggested in
Condition (B) is well studied in the statistics literature
(e.g., Klaassen and Wellner [1999]). We are convinced
that it can be successfully applied in practical QTL
analysis, in particular when the traits have marginal dis-
tributions that are very far from normal. Researchers
who perform ad hoc transformations of the traits to make
them comply with the model behind the variance com-
ponents method in fact implicitly accept the validity of
the normal copula model. The normal copula model
includes the variance components model, but it also
allows any (continuous) marginal distribution of the
phenotypes. Its only restrictions concern the dependence
structure between traits. Note, however, that the as-
sumptions of Condition (B) are not always justified. In
such a case, one might explore other families of copu-
las. Finally, the marginal distribution function could be
more precisely estimated using not only genotyped
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sib-pairs but all available phenotype data from the pop-
ulation, thus improving on F̂2n from (10). When such
an estimator is available, it should be applied as in (10),
and the resulting copula–based analysis is even more
powerful then. In particular, this method might be very
useful in the case of selected samples.

We have illustrated application of the copula based
method in the case of independent sib-pair studies, but
the method is readily extendable to different pedigrees
in the same way as the variance components method.
The assumption of additivity of the trait can be relaxed
by including a dominance effect as well. The method
performs a simple ranks-based transformation of the
data and then applies the usual test procedures; there-
fore it can be easily applied using any statistical soft-
ware that supports the variance components approach.

In linkage analysis of QTLs we typically need to
adjust the critical values because of multiple testing
issues. Recall that we usually test by checking if
maxt Zn(t) > b where Zn(t) are test statistics, where
the values t belong to a given set of markers, and where
b is a suitably chosen critical value. For a dense set of
markers, the asymptotic theory of Lander and Botstein
(1989) (see also Dupuis and Siegmund [1999]) relates
probabilities of exceedance of score statistics over large
thresholds with the distribution of maxima of a certain
stochastic process (Ornstein-Uhlenbeck process) under
usual assumptions. Because one can show that the con-
vergence in Proposition 6.3 in the Appendix holds not
only for each fixed marker, but also at the level of
processes, it follows that these asymptotic thresholds
and p values apply unaltered to the same statistic ap-
plied to the transformed data. In particular, asymptotic
critical values for the score statistic (Z ′

n in the Appen-
dix) in genome-wide human studies with significance
level � = 0.05 stay at b = 4.08 or 3.62 on the LOD
scale. Similarly, when the markers are equally spaced,
the theory of Feingold et al. (1993) applies directly. Of
course, one can apply Monte Carlo simulations to ob-
tain more precise p values empirically.

APPENDIX

The main result of this section is contained in
Proposition 6.3. Roughly speaking, it states that as-
ymptotically the critical values that are used for the test
in the variance components method remain the same if
we apply the more general bivariate normal copula dis-
cussed in the text. Observe first that the score function
l� (Y | x; �, 0) used in the statistic Zn defined in (8) has
the following form

l� (Yi | Xi ; �, 0) = (Xi − 1)h(Yi , � ),

where h is defined by

h(Yi , � ) = h[(Yi,1, Yi,2), � ]

= �

1 − �2
+ S2

i

2(1 + � )2
− D2

i

2(1 − � )2

with Si = (Yi,1 + Yi,2)/
√

2 and Di = (Yi,1 − Yi,2)/
√

2.
Write

Zn(Y, X, � ) = 1√
n

n∑
i=1

l� (Yi | Xi ; � , 0)

/
√√√√1

n

n∑
i=1

l2
� (Yi | Xi ; � , 0).

and recall that Zn = Zn(Y, X, �̂n). Hence, in the statistic
Zn we approximate � by its sample version �̂n. Our first
lemma claims that this does not influence the asymp-
totic behavior of the statistic Zn . By

P→ we denote con-
vergence in probability.

Lemma 6.1: Let the conditional distribution of the
traits Yi satisfy Condition (A) with � = 0 and |� | < 1.
If �̂n converges to � in probability, we have

Zn(Y, X, �̂n) − Zn(Y, X, � )
P→ 0.

Proof: We observe that the statistic

1

n

n∑
i=1

l2
� (Yi | Xi ; � , 0)

converges to the same constant if we substitute � by �̂n

as long as �̂n
P→ � , because l� is a differentiable func-

tion of � with a sufficiently well-behaved derivative for
|� | < 1. So, it suffices to consider the numerator of
Zn(Y, X, � )

1√
n

n∑
i=1

(Xi − 1)

(
�

1 − �2
+ S2

i

2(1 + � )2
− D2

i

2(1 − � )2

)
.

Observe now that we have

1√
n

n∑
i=1

(Xi − 1)S2
i

(
1

2(1 + � )2
− 1

2(1 + �̂n)2

)
P→ 0,

as may be seen by considering the second moment of
this sum and taking into account the independence
between Xi s and Yi, j s. Because the other terms in the
difference Zn(Y, X, �̂n) − Zn(Y, X, � ) can be treated
similarly the statement of the lemma follows.

Subsequently, we have to show that by using the
values Y′

i from (10) instead of Y∗
i from (9) we do not

change the asymptotic behavior of the test statistic.
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Lemma 6.2: Under Condition (B) and the null
hypothesis � = 0

1√
n

(
n∑

i=1

(Xi − 1)h(Y′
i , � )

−
n∑

i=1

(Xi − 1)h(Y∗
i , � )

)
P→ 0.

Proof: The statement of the lemma follows im-
mediately if we can show that the second moment of
the expression on the left-hand side above converges
to 0. This second moment equals

E(X1 − 1)2 E[h(Y′
1, � ) − h(Y∗

1, � )]2

= 1
2 E[h(�−1(F̂2n(Y1,1)), �−1(F̂2n(Y1,2)))

− h(�−1(F1(Y1,1)), �−1(F1(Y1,2)))]2,

where we have used that under the null hypothesis, the
following holds

E[(Xi − 1)(Xj − 1)(h(Y′
j , � )

− h(Y∗
j , � ))(h(Y′

j , � ) − h(Y∗
j , � ))] = 0, for i 	= j.

To show that the expectation above converges to 0, note
again that F̂2n → F1 pointwise with probability 1.
Therefore we just need to show the uniform square in-
tegrability of

h(�−1[F̂2n(Y1,1)], �−1[F̂2n(Y1,2)])

under the null hypothesis. Because of the form of the
function h, it is sufficient to show that the random
variables

�−1[F̂2n(Y1,1)]�−1[F̂2n(Y1,2)] and �−1[F̂2n(Y1,1)]

are uniformly square integrable. Let us consider only
the first of these because the second one is easier to an-
alyze. Uniform integrability follows if we can show

sup
n

E |�−1[F̂2n(Y1,1)]�−1[F̂2n(Y1,2)] | 2+� < ∞,

for some � > 0. By the Cauchy-Schwarz inequality, it
is sufficient to show

sup
n

E(�−1[F̂2n(Y1,1)])2(2+�) < ∞.

Observe that F̂2n(Y1,1) is a random variable with a uni-
form distribution on the values [k/(2n + 1) : k = 1, . . . ,
2n]. The claim now follows from the fact that

1

2n

2n∑
k=1

[�−1(k/2n + 1)]2(2+�) → E N 2(2+�) < ∞

for a standard normal random variable N and any � > 0.

If we calculate the statistic Zn using the values Y∗
i

and Y′
i , respectively, it follows from the two lemmas

above that these two statistics have the same limiting
behavior. To see this, denote the sample correlations
based on the sequences (Y∗

i ) and (Y′
i ) by

�̂ ′
n = n−1 ∑n

i=1 Y ′
i,1Y ′

i,2√
n−1

∑n
i=1(Y ′

i,1)2 · n−1
∑n

i=1(Y ′
i,2)2

and

�̂∗
n = n−1 ∑n

i=1 Y ∗
i,1Y ∗

i,2√
n−1

∑n
i=1(Y ∗

i,1)2 · n−1
∑n

i=1(Y ∗
i,2)2

.

Observe that by the strong law of large numbers
�̂∗

n → � with probability 1. To show that the same
holds for �̂ ′ , we can use a similar argument as in the
proof of Lemma 6.2. Note, for instance, that the sam-
ple covariances

ĉ′
n = n−1

n∑
i=1

Y ′
i,1Y ′

i,2 and ĉ∗
n = n−1

n∑
i=1

Y ∗
i,1Y ∗

i,2

satisfy ĉ′
n − ĉ∗

n
P→ 0, simply because

E |Y ′
i,1Y ′

i,2 − Y ∗
i,1Y ∗

i,2|2 → 0

holds by the proof of Lemma 6.2. A similar result holds
for the sample variances. So we may conclude �̂ ′

n
P→ � .

Proposition 6.3: Under condition (B) and the null
hypothesis � = 0

Zn(Y∗, X, �̂∗
n) − Zn(Y′, X, �̂ ′

n)
P→ 0. (11)

Proof: As we have shown above �̂∗
n , �̂ ′

n
P→� . So

by Lemma 6.1 we can use � instead of its estimators in
the definition of Z∗

n and Z ′
n . In Lemma 6.2 we have

shown that the difference of the numerators in the two
statistics converges to 0 in probability. It is enough to
show that the denominators satisfy

1

n

(
n∑

i=1

l2
� (Y′

i | Xi ; � , 0) −
n∑

i=1

l2
� (Y∗

i | Xi ; � , 0)

)
P→ 0.

But this follows by exactly the same method as used in
the proof of Lemma 6.2.

It is possible to give yet another interpretation of
the correlation � that is estimated by �̂ ′

n above. For ran-
dom variables Y1 and Y2 we denote the correlation be-
tween them by � (Y1, Y2) . However, we may also
consider the correlation of a(Y1) and b(Y2) for any real
transformations a and b such that 0 < var[a(Y1)],
var[b(Y2)] < ∞. If we take a supremum over all these
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transformations we get the maximum correlation coef-
ficient of the pair Y1 and Y2, namely

�M (Y1, Y2) = sup
a,b

� [a(Y1), b(Y2)].

It is known that for the bivariate normal copula model
given in (3) we have �M = |� | = |� (W1, W2)|. In other
words, the van der Waerden normal scores rank corre-
lation coefficient � ′

n is also an estimator of the maxi-
mum correlation coefficient between phenotypic traits.
The properties of this estimator are studied in Klaassen
and Wellner (1997). They also show that � ′

n is an as-
ymptotically efficient estimator of �.
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