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A B S T R A C T

Background: Tobacco, alcohol, and cannabis use are prevalent behaviors that pose considerable health risks.
Genetic vulnerability and characteristics of the neighborhood of residence form important risk factors for sub-
stance use. Possibly, these factors do not act in isolation. This study tested the interaction between neighborhood
characteristics and genetic risk (gene-environment interaction, GxE) and the association between these classes of
risk factors (gene-environment correlation, rGE) in substance use.
Methods: Two polygenic scores (PGS) each (based on different discovery datasets) were created for smoking
initiation, cigarettes per day, and glasses of alcohol per week based on summary statistics of different genome-
wide association studies (GWAS). For cannabis initiation one PGS was created. These PGS were used to predict
their respective phenotype in a large population-based sample from the Netherlands Twin Register (N=6,567).
Neighborhood characteristics as retrieved from governmental registration systems were factor analyzed and
resulting measures of socioeconomic status (SES) and metropolitanism were used as predictors.
Results: There were (small) main effects of neighborhood characteristics and PGS on substance use. One of the
14 tested GxE effects was significant, such that the PGS was more strongly associated with alcohol use in in-
dividuals with high SES. This was effect was only significant for one out of two PGS. There were weak indications
of rGE, mainly with age and cohort covariates.
Conclusion: We conclude that both genetic and neighborhood-level factors are predictors for substance use. More
research is needed to establish the robustness of the findings on the interplay between these factors.

1. Introduction

Use of tobacco, alcohol, and cannabis is prevalent in the Western
world. Twenty percent of European and US individuals older than 14
smoke on a regular basis (WHO, 2016a). The worldwide average daily
intake of alcohol is 13.9 g in this age group (about one glass; WHO,
2018a). In Europe, around 23 % has ever used cannabis (in the age
group ≥15 years) versus 52 % in the US (age ≥16; European
Monitoring Centre for Drugs and Drug Addiction (EMCDDA, 2011).
Smoking, alcohol use, and cannabis use can have deleterious health
effects (World Health Organization (WHO, 2016b, 2017; 2018a),
making the etiology of these behaviors an important topic of study.

Heritability estimates for tobacco, alcohol, and cannabis use are

substantial (Kendler et al., 2008), with even higher estimates for abuse
and dependence (Ducci and Goldman, 2012; Mbarek et al., 2015;
Verweij et al., 2010; Vink et al., 2005). Molecular genetic studies aim to
identify specific genetic variants that increase risk for substance use.
Hypothesis-free, large genome-wide association studies (GWASs) of
smoking (Liu et al., 2019; The Tobacco and Genetics Consortium,
2010), alcohol use (Clarke et al., 2017; Liu et al., 2019), and lifetime
cannabis use (Pasman et al., 2018) have had success in achieving this,
but heritability estimates based on the accumulative effect of measured
SNPs are still lower than estimates from twin and family studies. One of
the causes of this ‘missing heritability’ might be the neglect of the in-
terplay between the environment and genes (Manolio et al., 2009).

Neighborhood characteristics might increase risk for substance use,
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although results are often mixed. For instance, urbanicity has been
associated with higher rates of smoking (Idris et al., 2007), cannabis use
(Martino et al., 2008), and alcohol use (Atav and Spencer, 2002), but
there is also evidence for associations in the opposite direction (Donath
et al., 2011; Leatherdale et al., 2007; Lutfiyya et al., 2008). Some stu-
dies find that substance use is associated with a low average socio-
economic status (SES), but results seem to depend on study character-
istics and the type of substance under investigation (for reviews, see
Galea et al., 2004; Karriker-Jaffe, 2011). General measures of low
neighborhood SES or deprivation have been shown to be positively
associated to smoking (Stimpson et al., 2007). Alcohol and cannabis use
might be more prevalent in high SES neighborhoods, but results have
been mixed (Karriker-Jaffe, 2011).

Possibly, genetic vulnerability to substance use influences the re-
lationship between these neighborhood characteristics and substance
use. In the case of gene-environment interaction (GxE) adverse en-
vironmental circumstances may lead to deleterious outcomes only (or
more strongly) in genetically vulnerable individuals (‘contextual trig-
gering’), or reversely, a beneficial environment can protect against the
effect of genetic vulnerability ('compensation,' Shanahan and Hofer,
2005). In other words, some individuals have a higher innate reactivity
to environmental circumstances, meaning that there is ‘differential
susceptibility’ (Belsky and Pluess, 2009). Previous studies into GxE have
mainly used twin or candidate-gene methodology. For example, herit-
ability of alcohol use was found to be higher when neighborhood al-
cohol outlet density (selling points) was high than when the density was
low (Slutske et al., 2018). Some twin studies have suggested that the
genetic contribution to alcohol use and abuse is larger for people living
in urban areas than for people living in rural areas (Davis et al., 2017;
Legrand et al., 2008; Rose, 1998; Rose et al., 2001). Few studies have
investigated GxE in the neighborhood using polygenic scores. A poly-
genic score (PGS) is a weighted count of risk alleles for a trait, where
the weights are based on the SNP effect sizes in a GWAS. PGS might be
the best available measure of genetic risk to date for use in GxE studies
(Pasman et al., 2019). The only study to our knowledge that has used a
PGS to test gene-neighborhood interaction focused on smoking and
showed that more social cohesion in the neighborhood buffered against
the effect of genetic risk (Meyers et al., 2013). No interaction effect was
found for a measure of neighborhood poverty and disrepair.

Even less studied in this context is gene-environment correlation
(rGE). In rGE, there is an association between genetic predisposition
and the environment, such that genetic factors are associated both with
the outcome of interest and with the environmental context. For ex-
ample, if lower intelligence is associated with both substance use and

with living in low-SES environments (Fergusson et al., 2005) this can
lead to rGE when a genetic measure for substance use includes variants
that are also predictive of lower intelligence (i.e., variants that are
pleiotropic). Also, ‘evocative’ rGE arises when genes contribute to some
behavior (e.g., aggression) that elicits a response in the environment
(e.g., rejection; Plomin et al., 1977). Few studies to our knowledge
investigated rGE with neighborhood characteristics specifically. One
study showed that a PGS for alcohol dependence was positively related
to neighborhood social deprivation (Clarke et al., 2016). Another
showed significant correlations between substance use PGS and
Townsend neighborhood deprivation indices (Abdellaoui et al., 2019).
Some GxE studies report the (uncorrected) correlation between their G
and E factors (e.g., Meyers et al., 2013). Not accounting for rGE effects
can lead to an overestimation of genetic or (shared) environmental
variance (Blokland et al., 2013; Purcell, 2002), and to misinterpreted or
even spurious GxE findings (Jaffee and Price, 2007).

The current study looked at the main effects of neighborhood
characteristics and polygenic risk on substance use, and the interplay
(interaction and correlation) between these factors.

2. Methods

2.1. Participants

We used cross-sectional data (survey 5, 6, 7, 8, and 10) collected
between 2000 and 2014 from an ongoing longitudinal study in twin
pairs and their family members registered at the Netherlands Twin
Register (NTR; Willemsen et al., 2013). For the current study, a sub-
sample of 6567 Dutch ancestry participants was selected. We linked the
most recent substance use data to neighborhood information as ob-
tained from governmental registration systems that was closest in time
(either from 2010 or 2004; Centraal Bureau voor de Statistiek (CBS,
2012), using postal code at time of survey completion. Table 1 sum-
marizes this data selection procedure and the resulting sample com-
position. There were small differences in distributions or mean values
for the variables depending on what survey was used (Supplementary
Table S1). These differences in predictor and outcome variables may
stem from cohort effects (for example due to the economic crisis), age
effects, or they may represent random fluctuations. However, results
did not change when we controlled for the effects of measurement wave
(results not shown).

About half (55 %) of the sample consisted of twins. The sample
included 65 % females and 38 % highly educated individuals (higher
vocational education or university). Mean age at the time of completing

Table 1
Participant data from each measurement year (survey number) per phenotype.

*For N=6567 data were complete for at least one analysis.
Shaded rows: for these participants, postal code data were linked to information on neighborhood
characteristics available from 2010; for the others, these data were linked to information available
from 2004.
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the survey was M=45.3 years (SD=15.7; range 18–91 years).
Average birth year was 1964 (for more details on the NTR sample, see
e.g., Geels et al., 2013; Willemsen et al., 2013).

2.2. Substance use outcomes

Substance use outcomes were based on self-report measures
(Supplementary Table S2). For smoking initiation, participants were
coded as ever smokers if they classified as current smokers at any
survey (smoking at least weekly) or ex-smokers. When answers to these
questions were incomplete or inconsistent, information was com-
plemented with answers to different questions (Treur et al., 2016).

For tobacco use, we used an open-ended question asking how many
cigarettes per day someone smoked at their heaviest period of smoking
for survey 7, 8, and 10. For survey 5 and 6, cigarettes per day was
available only for current smokers and was measured on an ordinal
scale. For these surveys, the mid-point of each answering category was
analyzed on a continuous scale.

For alcohol use, glasses of alcohol consumed per week was used as
an outcome. If individuals drank less than 1 glass per week (N=1,297)
their value was put to 0. Individuals who never drank alcohol (N= 87)
were excluded from analysis. We deemed it likely that a response of
more than 70 glasses per week (N=7) represented an invalid answer
rather than a true estimate; these responses were excluded. In survey 8
and 10 alcohol use was measured continuously; we used the midpoint
of the answering categories in survey 7, 6, and 5.

For lifetime cannabis use, participants were asked if they had ever
used cannabis (yes/no). This measure was only available for survey 5,
8, and 10.

2.3. Neighborhood characteristics

In the Netherlands postal codes exist of four digits, identifying areas
at the level of neighborhoods, and two letters, identifying areas at the
level of streets. We linked the four digits of the postal codes to regis-
tered neighborhood characteristics from governmental registration
systems (Centraal Bureau voor de Statistiek (CBS, 2012). Information
was available on urbanicity in addresses/km2, housing values, percen-
tage of non-western immigrants (% immigrants), monthly income,
percentage of inhabitants receiving low income (% low income), per-
centage receiving high income (% high income), and percentage re-
ceiving governmental benefit payments (% benefits; Table 2). For some
variables, there were large proportions of missing data on the neigh-
borhood characteristics. We selected variables that had less than 30 %
missing data: urbanicity, % immigrants, housing values, and monthly
income. We used the automatic multiple imputation procedure in SPSS
to complete missing data in these variables. Five imputed datasets were
created and merged back to one dataset by averaging the estimations of
the missing data points. Because of the conceptual and statistical
overlap between the variables we performed principal component

analysis (PCA) in SPSS with an oblimin rotation. The PCA yielded two
factors (see Table 2) with Eigenvalues of 1.62 and 1.34. The first factor
was defined by high urbanicity and a high percentage of non-western
immigrants; we dubbed this factormetropolitanism. The second factor
was defined by housing values and monthly income; this variable was
called socioeconomic status (SES). The factor solution explained 74 %
of the variance in these variables.

2.4. Polygenic scores

Genome-wide single-nucleotide polymorphism (SNP) data for NTR
participants were obtained using several genotyping platforms over
time (Lin et al., 2017; Willemsen et al., 2010). The genotyping, im-
putation, and quality control procedures have been described earlier
(Abdellaoui et al., 2018; Nivard et al., 2014). PGS were generated with
PLINK (version 1.9; Purcell et al., 2007), summing the one- or two risk
allele effects of the weighted beta's for each set of summary statistics.
The weighted beta's were calculated with LDpred, taking into account
the LD structure in the European population to improve prediction
(described in detail in Abdellaoui et al., 2018; Vilhjálmsson et al.,
2015). PGS can be calculated for several expected fractions of causal
genetic markers to further optimize prediction accuracy; we present
results for the 30 % fraction, which has shown good results in previous
studies on complex behavioral traits (Hugh-Jones et al., 2016;
Vilhjálmsson et al., 2015). We used multiple source GWAS to extra-
polate our results because the quality and predictive power of summary
statistics can differ. Predictive power does not depend solely on sample
size, but for example also on the SNP-based heritability, which is the
variance explained in the phenotype by the SNP effects in the GWAS
(Dudbridge, 2013). For smoking, PGS were created for smoking in-
itiation and for cigarettes per day. The first set was based on GWAS
summary statistics from The Tobacco and Genetics Consortium (2010;
excluding the NTR, NESDA and GAIN samples) with N=69,207 and a
SNP-based heritability of h2SNP= 12 % for smoking initiation, and
N=35,173, h2SNP= 6% for cigarettes per day. The second set was
based on GSCAN summary statistics (excluding NTR; N=1,224,825,
h2SNP= 8% for smoking initiation and N=334,609, h2SNP= 8% for ci-
garettes per day; Liu et al., 2019). For alcohol use, PGS were based on a
2017 GWAS on alcohol consumption in glasses per week (N=112,117,
h2SNP= 13 %; Clarke et al., 2017), and the GSCAN GWAS on the same
phenotype (excluding NTR; N=936,196, h2SNP= 4%; Liu et al., 2019).
For cannabis initiation, the PGS was created based on GWAS data on
lifetime cannabis use, (excluding NTR; N=157,664, h2SNP= 11 %;
Pasman et al., 2018).

2.5. Covariates

Sex and age were included as covariate. The participants’ birth year
had a tri-modal distribution due to recruitment of different age groups.
Therefore, we created two cohort dummy variables (for 1960-< 1980

Table 2
The neighborhood variables (with their components and measurement levels) for the main and exploratory analyses. For correlations between the original neigh-
borhood variables, refer to Supplemental Table S3.

Analysis Variable Comprises original variables Variable levels Loadings

Main Metropolitan factor urbanicity: addresses/ km2 <500, 500–1000, 1001–1500, 1501–2500, > 2500 .83
% non-western immigrants < 5%, 5–10 %, 11–20 %, 21–40 %, >40% .81

SES factor housing value continuous .90
average monthly income continuous .89

Exploratory SES index housing value continuous
average monthly income continuous
% low income continuous
% high income continuous
% receiving governmental benefits payments continuous

Urbanicity NA <500, 500–1000, 1000–1500, 1500–2500, > 2500
% non-western immigrants NA <5%, 5–10 %, 11–20 %, 21–40 %, >40%
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and ≥1980, with<1960 as the reference category) to correct for co-
hort effects. To control for stratification within the Dutch population,
ten principal components (PCs) based on systematic ancestry differ-
ences were included in each analysis that included genetic predictors
(models 2 and 3; Abdellaoui et al., 2013). As over time different gen-
otyping platforms were used, dummy variables were included to control
for genotype platform stratification (Boomsma et al., 2013).

2.6. Statistical analyses

We tested the effects of the neighborhood factors, PGS, and their
interactions using the generalized estimating equations (GEE) proce-
dure in SPSS, controlling for family relatedness. For the binary out-
comes, binary logistic GEE was used. Groups of variables were entered
in four blocks. We first regressed the substance use outcomes on sex,
age, and cohort (model 0), then added neighborhood characteristics
(model 1), and then genetic predictors (model 2). In model 3 we added
the interaction terms. In a separate GEE analysis, we used the PGS as
outcome and the neighborhood variables as predictors to test rGE while
controlling for sex, age, cohort, batch (genotyping platform), and
principal components. In all analyses we used standardized predictors.
We applied a Bonferroni correction for four independent tests for the
four outcomes (the PGS based on different discovery GWAS not being
strictly ‘independent’) resulting in a significance threshold of 0.0125.

3. Results

45.3 % of the participants had ever smoked. Current smokers
smoked on average 13.9 cigarettes per day and ex-smokers smoked 14.2
cigarettes per day in their period of most heavy smoking. Individuals
drank on average 6.1 standard glasses of alcohol per week and 19.3 %
of the participants had ever used cannabis. The correlation between the
metropolitan factor and SES factor was small (r=−0.05, p < .001).

3.1. Main effects

Sex, age, and cohort were entered in model 0 (see Supplementary
Table S4). Effects of sex were significantly positive for all substances,
indicating higher (chance of initiation of) use for males. The association
with age was positive for alcohol per week, negative for lifetime can-
nabis use and not significant for smoking. Younger cohorts were less
likely to have smoked and more likely to have used cannabis compared
to the cohort born before 1960. The youngest cohort smoked more ci-
garettes per day than the oldest cohort (although in model 0 this did not
survive correction for multiple testing). In model 1–3 there was an in-
dication that the intermediate cohort drank less alcohol than the oldest
cohort, but no such effects were observed for the youngest cohort.
Variance explained by age, cohort, and sex ranged from 2.4 % for ci-
garettes per day to 13.6 % for lifetime cannabis use.

The influence of the neighborhood factors on substance use out-
comes differed per substance outcome and neighborhood predictor
(model 1, Supplementary Table S4). Living in a metropolitan area was
associated with higher chances of smoking initiation and higher levels
of alcohol consumption, but not with cigarettes per day or cannabis use.
Higher SES was related to smoking more cigarettes per day and higher
chances of lifetime cannabis use. SES also showed a positive association
with smoking initiation, but only in the models that included the ge-
netic predictors (2–3, see Tables 3a and 3b). Variance explained by the
neighborhood variables ranged from 0.3 % for smoking initiation to 3.4
% for lifetime cannabis use.

In model 2, the effects of the PGS and genetic covariates were added
to the model (Tables 3a and 3b and Supplementary Table S4). The PGS
for smoking initiation, cigarettes per day, alcohol per week, and life-
time cannabis use significantly predicted their respective phenotypes,
explaining 0.2 % (TAG smoking initiation and GSCAN alcohol per
week) to 1.1 % (lifetime cannabis use) of the variance (Tables 3a and
3b).

Table 3a
Results of covariates, neighborhood predictors, genetic predictors, and gene-environment interaction terms (model 3) for the smoking phenotypes using the PGSs
based on the GWAS from Tobacco and Genetics Consortium (TAG, 2010), and Liu et al. (GSCAN, 2019). The full results including model 0 (effects of covariates sex,
age, and cohort), model 1 (covariates plus neighborhood predictors), and model 2-3 including the parameters for the genetic covariates (batch and 10 PCs) are given
in Supplementary Table S4a.

Smoking initiation TAG (N=6471) Smoking initiation GSCAN
(N=6471)

Cigarettes/ day TAG (N=3096) Cigarettes/ day GSCAN (N=3096)

Model OR (SE) p OR (SE) p B (SE) p B (SE) p

2 Sexa 1.39 (0.32) < .001** 1.44 (0.33) < .001** 2.41 (0.33) < .001** 2.49 (0.33) < .001**
Age 0.99 (0.01) .385 1.00 (0.02) .391 0.02 (0.02) .407 0.01 (0.02) .558
Cohort 1960-< 1980a 0.34 (0.15) < .001** 0.33 (0.15) < .001** −0.74 (0.62) .234 −0.97 (0.61) .111
Cohort ≥1980a 0.16 (0.12) < .001** 0.16 (0.12) < .001** −2.59 (1.02) .011* −2.82 (1.00) .005**
Metropolitan factor 0.90 (0.10) .001** 0.91 (0.10) .001** 0.28 (0.19) .142 0.32 (0.19) .089
SES factor 1.06 (0.12) .050* 1.06 (0.12) .030* 0.67 (0.17) < .001** 0.71 (0.17) < .001**
PGS 1.14 (0.13) < .001** 1.42 (0.17) < .001** 0.43 (0.17) .008** 1.37 (0.17) < .001**
Model R2 .125, Δ= .008b (ΔPGS= .004)b .152, Δ= .038b (ΔPGS= .004)b .040, Δ= .007 (ΔPGS= .002) .060, Δ= .027 (ΔPGS= .003)

3 Sexa 1.39 (0.32) < .001** 1.44 (0.33) < .001** 2.40 (0.33) < .001** 2.49 (0.33) < .001**
Age 0.99 (0.01) .388 1.00 (0.01) .389 0.02 (0.02) .399 0.01 (0.02) .591
Cohort 1960-< 1980a 0.34 (0.15) < .001** 0.33 (0.15) < .001** −0.73 (0.62) .238 −0.99 (0.61) .103
Cohort ≥1980a 0.16 (0.12) < .001** 0.16 (0.12) < .001** −2.57 (1.02) .011** −2.84 (0.99) .004**
Metropolitan factor 0.90 (0.10) < .001** 0.91 (0.10) .001** 0.28 (0.19) .148 0.32 (0.19) .082
SES factor 1.06 (0.12) .049* 1.07 (0.12) .030* 0.67 (0.17) < .001** 0.72 (0.17) < .001**
PGS 1.14 (0.13) < .001** 1.42 (0.17) < .001** 0.43 (0.16) .009** 1.38 (0.17) < .001**
PGS* metropolitan 0.98 (0.11) .567 1.00 (0.12) .984 0.04 (0.15) .802 0.31 (0.17) .068
PGS*SES 0.98 (0.10) .582 0.98 (0.11) .475 0.19 (0.16) .214 0.23 (0.17) .172
Model R2 .125 (Δ< .001)b .153 (Δ= .001)b .040 (Δ< .001) .061 (Δ= .001)

Δ=increase in variance explained compared to the previous model; ΔPGS=additional variance explained (with respect to model 1) by the PGS alone; PC= genetic
principal components; PGS= polygenic score for the respective substance use outcome.

a Reference category for sex was female and for both cohort variables the reference category was< 1960.
b For dichotomous outcomes (smoking and cannabis initiation) the Nagelkerke’s Pseudo R2 is reported.
* < .05; **< .0125 (significant after Bonferroni correction).
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3.2. Gene-environment interaction and correlation

One significant GxE effect was observed (model 3, Tables 3a and
3b), between the alcohol PGS based on Clarke et al. (2017) and the SES
factor on alcohol per week. SES did not have a main effect on alcohol
use. The slope for low SES (-1 SD) was not significantly different from
zero (B=-0.20, p= .179), but the slope for high SES (+1 SD) was
(B=0.27, p= .007), indicating that the PGS only had an effect on al-
cohol use for individuals with a high SES factor.

There was no significant rGE with the neighborhood variables
(Table 4). There was unexpected rGE of sex, age, and cohort with dif-
ferent PGS. The positive rGE between cohort and the GSCAN PGS for
alcohol per week survived correction for multiple testing.

4. Discussion

We found a negative association between the metropolitan factor
and smoking initiation, indicating that chances of smoking initiation
were lower in metropolitan areas. This finding follows patterns of
higher smoking prevalence in rural areas as reported in some studies (Li
et al., 2009) but contradicts those in others (Idris et al., 2007). Possibly,
the urban-rural distinction means something different in different stu-
dies. For example, what constitutes a rural area in the Netherlands is
quite different from that in countries with a lower population density.
For cigarettes per day, in turn, there was a positive association with the
metropolitan factor, suggesting that smokers in metropolitan areas
smoke on average more cigarettes. Possibly, only individuals with a
high vulnerability to becoming addicted start smoking in these areas, so
that the average amount of smoked cigarettes becomes higher. Urban
stress might contribute to these higher smoking levels (Idris et al.,
2007). The SES factor showed small positive associations with both
smoking variables, which is opposite to the pattern that is commonly
reported (e.g., Chuang et al., 2005). This finding might be spurious or
might be due to some unique feature of the research population, such as
its relatively high age.

Alcohol use was higher in metropolitan areas, which may be due to
a higher alcohol outlet density (Kuntsche et al., 2008). In contrast to
studies showing positive (Galea et al., 2007) or negative (Karriker-Jaffe
et al., 2013) association with neighborhood SES, we did not find an
effect of our SES factor on alcohol use. This might be due to our use of
an aggregate measure of alcohol consumption. One recent study
showed that alcohol use frequency (how often someone drinks alcohol)
was positively genetically correlated with SES measures, whereas al-
cohol use quantity (how much alcohol is consumed per occasion) was
genetically negatively correlated with SES, suggesting these phenotypes
represent distinct underlying vulnerabilities (Marees et al., 2019). In a
similar vein, we only considered alcohol consumption levels ≤70
glasses per week, with most participants showing moderate alcohol use
(M=6.0 glasses per week). Association patterns for measures of more
extreme forms of alcohol use might be quite different (Karriker-Jaffe
et al., 2018).

For lifetime cannabis use, there was a significant positive effect of
the SES factor, which is in line with some previous findings (Galea
et al., 2007) but in contrast with a study in cannabis use disorder (Buu
et al., 2009). It appears that different cannabis use phenotypes show
different associations with SES measures. Indeed, experimentation with
cannabis is higher among people with higher education levels (at least
in the Netherlands, Centraal Bureau voor de Statistiek (CBS, 2010).

We confirmed that substance use can be predicted by PGS created
based on an independent sample, but the PGS explained only 0.2–1.1 %
of the variance in their respective phenotype. Variance explained by
PGS is often small, because PGS contain the sum of both true effects and
error components. Also, their effect depends on the (SNP-based) her-
itability of the trait, which is somewhat modest in the case of substance
use. The PGS in this study were based on discovery GWAS with varying
sample sizes. In general, it is expected that PGS based on larger GWAS
would be more powerful (Dudbridge, 2013). Therefore, it is remarkable
that the use of a larger discovery GWAS (GSCAN) hardly increased the
predictive power of the PGS. It must be noted that the PGS were based
on partly overlapping discovery samples; results of PGS based on other

Table 3b
Results of covariates, neighborhood predictors, genetic predictors, and gene-environment interaction terms (model 3) for the alcohol phenotypes using the PGSs
based on the GWAS from Tobacco and Genetics Consortium (TAG, 2010), and Liu et al. (GSCAN, 2019) and the cannabis phenotype from the International Cannabis
Consortium (ICC). The full results including model 0 (effects of covariates sex, age, and cohort, model 1 (covariates plus neighborhood predictors), and model 2-3
including the parameters for the genetic covariates (batch and 10 PCs) are given in Supplementary Table S4b.

Alcohol/ week Clarke (N=6174) Alcohol/ week GSCAN (N=6174) Cannabis initiation ICC (N=5676)

Model B (SE) p B (SE) p OR (SE) p

2 Sexa 4.17 (0.21) < .001** 4.19 (0.20) < .001** 1.65 (0.51) < .001**
Age 0.06 (0.01) < .001** 0.05 (0.01) < .001** 0.96 (0.02) < .001**
Cohort 1960-< 1980a −0.90 (0.37) .017* −0.96 (0.37) .010** 1.66 (1.09) .002**
Cohort ≥1980a 0.36 (0.55) .516 0.22 (0.55) .691 1.55 (1.47) .062
Metropolitan factor 0.46 (0.11) < .001** 0.47 (0.11) < .001** 1.07 (0.16) .070
SES factor 0.13 (0.09) .167 0.12 (0.09) .177 1.49 (0.23) < .001**
PGS 0.52 (0.09) < .001** 0.78 (0.09) < .001** 1.26 (0.20) < .001**
Model R2 .130, Δ= .008 (ΔPGS= .006) .137, Δ= .015) (ΔPGS= .002) .189, Δ= .019b (ΔPGS= .011)b

3 Sexa 4.18 (0.21) < .001** 4.20 (0.20) < .001** 1.65 (0.51) < .001**
Age 0.06 (0.01) < .001** 0.05 (0.01) < .001** 0.96 (0.02) < .001**
Cohort 1960-< 1980a −0.90 (0.37) .016* −0.97 (0.37) .010* 1.67 (1.10) .002**
Cohort ≥1980a 0.35 (0.55) .517 0.22 (0.55) .684 1.57 (1.49) .057
Metropolitan factor 0.46 (0.11) < .001** 0.47 (0.11) < .001** 1.06 (0.17) .113
SES factor 0.12 (0.09) .180 0.12 (0.09) .182 1.49 (0.23) < .001**
PGS 0.52 (0.09) < .001** 0.77 (0.09) < .001** 1.26 (0.20) < .001**
PGS* metropolitan −0.03 (0.10) .798 −0.03 (0.09) .714 1.05 (0.16) .182
PGS*SES 0.23 (0.08) .005** 0.14 (0.08) .079 1.01 (0.15) .836
Model R2 .137 (Δ< .001) .137 (Δ< .001) .190 (Δ= .001)b

Δ=increase in variance explained compared to the previous model; ΔPGS=additional variance explained (with respect to model 1) by the PGS alone; PC= genetic
principal components; PGS= polygenic score for the respective substance use outcome.

a Reference category for sex was female and for both cohort variables the reference category was< 1960.
b For dichotomous outcomes (smoking and cannabis initiation) the Nagelkerke’s Pseudo R2 is reported.
* < .05; **< .0125 (significant after Bonferroni correction).
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independent samples might be different. This suggests that future
GWAS should not focus solely on increasing sample sizes, but should for
example also focus on using homogeneous, reliable phenotype mea-
sures (Dudbridge, 2013; Manolio et al., 2009; Wainschtein et al., 2019).

There was an interaction between the PGS based on Clarke et al.
(2017) and SES on alcohol use, such that genetic risk only came to
expression when neighborhood SES was high. As there was no main
effect of SES it is difficult to interpret this finding. Assuming that high
SES generally acts as a risk factor for alcohol use (Galea et al., 2007),
our GxE finding is in line with diathesis-stress or differential suscept-
ibility frameworks, stating that individuals that are already at risk ge-
netically will react more strongly to environmental risk (Belsky and
Pluess, 2009). The only previous study that used PGS to test GxE with
neighborhood factors in substance use found indications for GxE in the
same direction (Meyers et al., 2013).

However, it needs to be pointed out that this was only one of the 14
tested interactions, and it explained a very small amount of variance in
alcohol use (less than 0.1 %). The same interaction did not reach sig-
nificance when using the GSCAN PGS. This difficulty detecting GxE
might be due to the fact that only SNPs that had a main effect on
substance use in the GWAS ended up in the PGS, whereas potentially
more relevant SNPs for GxE may be those that have an effect on dif-
ferential susceptibility rather than on substance use per se (Fox and
Beevers, 2016). It is also a possibility that GxE effects are different in
other (earlier) developmental periods than during one’s late forties,
which was the average age of our sample (Kendler et al., 2011; Samek
et al., 2017). Although we controlled for age and cohort effects, we
deemed sample size insufficient to test such three-way interactions. For
main and two-way GxE effects power seemed reasonable: assuming an
effect size of f2 = 0.005, power was estimated to range between 66–98
% (see Supplementary Table S6), but it is possible that true effects are
even smaller. If that is so, GxE might not be as important in the etiology
of substance use as has traditionally been predicted. Indeed, a recent
review of studies that used polygenic measures of genetic risk showed
that the evidence for GxE in substance use is still weak (Pasman et al.,
2019). More studies will be needed to establish the robustness of GxE
effects in this context.

There was no strong evidence for gene-environment correlation
(rGE), although there were some interesting patterns. First, there was
small non-significant rGE between SES and the PGS for alcohol use
based on Clarke et al. (2017; p= .069), which is potentially relevant as
there was also gene-environment interaction (GxE) between these
variables in the alcohol use analysis. Secondly, there were some un-
expected rGE relationships between the covariates and PGS. Although
they did not survive correction for multiple testing, there was a pattern
of rGE between age/ cohort and the different smoking PGS. These ef-
fects might be due to genetic overlap between smoking phenotypes and
educational attainment, as education level was higher in the later co-
horts (χ2[16]=2,409, p < .001) and for lower ages (b=-0.60,
SD=.07, p < .001). It might also be the case that the PGS constituted a
better measure for risk for smoking behavior in the older cohorts, as
they were largely based on GWAS with earlier born participants (To-
bacco and Genetics Consortium, 2010; Liu et al., 2019). The negative
rGE between sex and the smoking PGS might be spurious or represent
an actual gender difference in the genetic architecture of this trait
(Gilks et al., 2014). The only rGE that survived correction for multiple
testing was between the GSCAN PGS for alcohol per week and cohort,
such that being born in 1980 or later was associated with a higher PGS
as compared to being born before 1960. Speculatively, this might be
due to decreasing alcohol use in western countries in recent years
(World Health Organization, 2018). It might be the case that among
younger cohorts only vulnerable individuals consume alcohol, which
increases the genetic contribution to this phenotype and would result in
higher PGS in this group. Regardless of the interpretation, these find-
ings show that rGE might exist, and that these effects have to be taken
into account when studying GxE.Ta
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4.1. Conclusions

The current study confirmed that substance use was associated with
genetic risk and characteristics of the neighborhood. We found some
indication for GxE, such that the effect of genetic risk for substance use
could be augmented by environmental risk. Furthermore, there were
weak indications of rGE effects. More research into the relationships
between neighborhood characteristics and substance use outcomes
might help to select stronger neighborhood predictors, increasing the
chance to detect GxE effects. Furthermore, more attention should be
given to possible rGE effects. Knowledge of gene-environment interplay
could help prevent genetic vulnerability from coming to expression,
providing clues on which people in which neighborhoods will need
intervention the most.
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