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Abstract

The child brain is a small-world network, which is hypothesized to change toward more ordered configurations
with development. In graph theoretical studies, comparing network topologies under different conditions re-
mains a critical point. Constructing a minimum spanning tree (MST) might present a solution, since it does
not require setting a threshold and uses a fixed number of nodes and edges. In this study, the MST method is
introduced to examine developmental changes in functional brain network topology in young children. Resting-
state electroencephalography was recorded from 227 children twice at 5 and 7 years of age. Synchronization
likelihood (SL) weighted matrices were calculated in three different frequency bands from which MSTs were con-
structed, which represent constructs of the most important routes for information flow in a network. From these
trees, several parameters were calculated to characterize developmental change in network organization. The
MST diameter and eccentricity significantly increased, while the leaf number and hierarchy significantly de-
creased in the alpha band with development. Boys showed significant higher leaf number, betweenness, degree
and hierarchy and significant lower SL, diameter, and eccentricity than girls in the theta band. The developmental
changes indicate a shift toward more decentralized line-like trees, which supports the previously hypothesized
increase toward regularity of brain networks with development. Additionally, girls showed more line-like decen-
tralized configurations, which is consistent with the view that girls are ahead of boys in brain development. MST
provides an elegant method sensitive to capture subtle developmental changes in network organization without
the bias of network comparison.
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Introduction

The brain shows marked development over time on a
macro- and microscopic scale. On a cellular level, the

brain starts to grow an abundance of synaptic connections
from which superfluous connections are pruned early in post-
natal life (Flavell and Greenberg, 2008; Huttenlocher, 1984;
Volpe, 2000). Simultaneously, long-distance axons start to
be myelinated to improve signal transfer over longer dis-
tances, a process that continues well into the fourth decade
of life (Lebel et al., 2008; Tamnes et al., 2010; Yap et al.,
2011). It is hypothesized that such maturational processes
lead to network topologies that enable fast signal transduc-

tion, while maintaining relatively low costs for growth, sup-
port, and adjustment of these optimal topologies (Bullmore
and Sporns, 2012).

At a macroscale, the development of brain network topol-
ogy can be measured by using electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) and diffu-
sion tensor imaging. Such studies showed that the child brain
first develops strong local connectivity, which shifts gradu-
ally toward stronger long-distance connectivity with matura-
tion (Barry et al., 2004; Fair et al., 2009; Lebel et al., 2008;
Power et al., 2010; Supekar et al., 2009; Thatcher, 1992; van
Baal et al., 2001; Yap et al., 2011). From a graph theoretical
perspective, the child brain has a small-world organization
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that combines optimal properties as the high clustering of an
ordered network and the short path length of a random net-
work (Boersma et al., 2011; Fair et al., 2009; Micheloyannis
et al., 2009; Power et al., 2010; Supekar et al., 2009). In our pre-
vious EEG studies, we showed that with development from 5
to 7 years and to older ages, brain functional networks shift
from more random toward a more ordered configuration
(Boersma et al., 2011; Smit et al., 2010; Smit et al., 2012).

A critical point in graph theoretical studies remains the dif-
ficulty in comparing networks in different conditions and
across groups. Comparison of graphs derived from brain net-
works requires a step of normalization, for instance, by com-
paring the observed network to randomized networks, or by
setting a fixed average degree (K), or a fixed threshold, which
often results in differences in K across conditions or differ-
ences in the sparsity of networks between groups (van Wijk
et al., 2010). However, none of these approaches presents a
unique and consistent solution to the problem of network
comparison. A possible consistent solution to these problems
might be to construct a so-called minimum spanning tree
(MST). With this approach, a unique subgraph is constructed
from a weighted network (Steen, 2010; Wang et al., 2008). It
connects all the nodes of the network in such a way that the
connection cost (sum of all connection distances) is mini-
mized without forming cycles. In this way, networks are
obtained with similar numbers of nodes n and edges n-1 facil-
itating the direct comparison of graph topology across condi-
tions and groups. Extreme topologies of these MSTs are on
the one hand a star-like or centralized configuration with
one central node that has a short longest path (diameter) to
connect all other nodes in the tree and, on the other hand a
decentralized line-like tree with all nodes on a line resulting
in the longest diameter. The star-like and line-like configura-
tions might be translations of, respectively, random and
ordered networks previously described. With the MST
method, we might be able to capture the previously found de-
velopmental change from random to ordered without the
bias of a normalization or comparison step.

So far, the MST method has been applied in only a few
studies examining brain networks. A resting-state fMRI
study in Alzheimer’s disease (AD) used the MST method to
examine connectivity of the default mode network (DMN).
Although degree distributions of the MST did not differ be-
tween AD and controls, the AD patients did show higher seg-
regation of the DMN (Ciftci, 2011). Furthermore, the MST
method was applied to determine the critical nodes in an ep-
ileptic network reconstructed from corticographic recordings
(Ortega et al., 2008). Other studies applying MST in brain net-
works, did not describe MST topology, instead they used the
MST to construct connectivity matrices from which connec-
tivity complexity or entropy was calculated in different con-
ditions, such as for (childhood-onset) schizophrenia
(Alexander-Bloch et al., 2010; Schoen et al., 2011), in epilepsy
(Lee et al., 2006; Ortega et al., 2008), and for the effect of
anesthesia (Lee et al., 2010).

The aim of the present study is to test the hypothesis of a
transition from random to regular brain network topologies
during maturation while correcting for the bias of network
comparison. Resting-state EEG recordings in 5- and 7-year-
old children were used to construct functionally connected
networks. From these weighted networks, the MST was con-
structed and several parameters were calculated to extend

our knowledge about developmental longitudinal changes
and gender differences in functional brain networks

Material and Methods

Subjects

In this study, we explored a dataset that was previously
collected in a study of genetic and environmental influences
on neural development during childhood conducted in 209
twin pairs at 5 [mean age (SD) = 5.2 (0.2) years, IQ = 103.5
(0.9)] and 7 years of age [mean age (SD) = 6.8 (0.2),
IQ = 102.9 (1.0)] (van Baal et al., 1996, 2001). Boys and girls
did not differ in IQ at both 5 (t =�1.01, p = 0.29) and 7
(t =�0.67, p = 0.50) years. The twins were all registered at
the Netherlands Twin Register (Boomsma et al., 1992, 2006).
All participants were healthy, with normal IQ (Boomsma
and van Baal, 1998) and normal or corrected to normal vision.
Parents of the children gave written informed consent for
their offspring to participate in the study. The study was
approved by the Central Ethics Committee on Research
Involving Human Subjects of the VU University Medical
Center, Amsterdam (IRB number IRB-2991 under Federal
wide Assurance 3703) and was in agreement with the Decla-
ration of Helsinki.

As in our recent study on developmental changes in brain
networks (Boersma et al., 2011), we only included children
with both an EEG measurement at 5 years of age and a re-
peated measurement at 7 years of age. The resulting dataset
contained 184 twin pairs and 5 single twins (373 children).
From this selection, 146 children were excluded, since they
did not meet the criterion of having at least four artifact-
free epochs at both measurement occasions (exclusion criteria
are described in the next section). The final study group con-
sisted of 227 children (102 boys, 125 girls) from 143 families
having measurements on both occasions at 5 (M = 5.2 years,
SD = 0.2) and 7 years of age (M = 6.8 years, SD = 0.2), with
a normal IQ at 5 years (mean IQ = 103.1; SD = 13.5) and at
7 years (mean IQ = 102.9; SD = 14.7).

EEG recordings

A detailed procedure of EEG data collection is described
elsewhere (van Baal et al., 1996). In short, 3-min eyes-closed
resting-state was recorded with an electro-cap with electrodes
in the 10–20 system of Jasper (1958) on 14 scalp locations (Fp1,
Fp2, F7, F3, F4, F8, C3, C4, P3, P4, O1, O2, T5, T6). Linked
ears reference was used according to the method described
by Pivik and associates (1993). All electrode impedances
were kept below 10 KO. Time constants (t) were set to 5 sec
[equivalent to 1/(2 · pI · t) = 0.003-Hz single-pass 6-dB filter],
high-frequency cutoff was 35 Hz and sample frequency was
250 Hz. Signals were converted with a 12 bit AD converter.
For further processing, the recordings were converted to
ASCII files. For each subject, we (M.B.) selected four artifact-
free epochs of 4,096 samples (16,384 sec) after visual inspec-
tion. Drowsiness, actual sleep, (eye-) movements, muscle con-
tractions, bad channels, and clipping caused most typical
artifacts.

Functional connectivity

Each epoch was digitally filtered offline in frequency bands
of interest: theta 4–6 Hz, alpha 6–11 Hz, and beta 11–25 Hz.
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The choice of these frequency bands was based on the power
spectra described in our previous study (Boersma et al., 2011).
These spectra show that 5- and 7-year-old children have
power spectra with an alpha peak frequency around 8 Hz.
Using adult lower and upper alpha frequency bands would
split up the alpha frequency at its peak, which could bias
the results. Therefore, we chose to adjust the range of fre-
quency bands to correctly capture all alpha-like frequencies
in these children. The synchronization likelihood (SL) was
calculated with BRAINWAVE software 9.54(CS, http://
home.kpn.nl/stam7883/brainwave.html). SL is a general
measure of linear and nonlinear functional connectivity be-
tween different brain regions. An extended description can
be found in previous reports (Stam and van Dijk, 2002; Mon-
tez et al., 2006; Boersma et al., 2011). In short, within a time
series X, a series of patterns is defined, one for each time
point t1. Next, recurrences of these patterns are sought within
time series X at different time points t2st1. A similar proce-
dure for signal Y is produced. The likelihood that the patterns
in signal X and Y at points t1 recur simultaneously at time
points t2 is the SL between X and Y. For every frequency
band, all pairwise combinations of channels results in a
square 14 · 14 SL matrix, that is, 14 is the number of EEG elec-
trodes used in this study. Whole-brain synchronization was
computed by averaging all pairwise SL values, resulting in
a single SL value for each epoch. Finally, this overall SL
value is averaged over four epochs for each child.

Minimum spanning tree

The MST of an undirected weighted graph is a unique sub-
graph that connects all the nodes in such a way that the cost
(the sum of all the link distances) is minimized without form-
ing cycles. In our case, the distance per link was defined as the
inverse of the weight of the link (link distance = 1/SL). Con-
secutively, the tree that minimizes the sum of distances was
searched, which was done with BRAINWAVE software
9.54 (CS, http://home.kpn.nl/stam7883/brainwave.html).
From every connectivity matrix, the MST was obtained by
Kruskal’s algorithm (Kruskal, 1956). In short, this algorithm
first orders the distance of all links in an ascending way,
then it starts the construction of the MST with the link with
the shortest distance, and adds the following shortest dis-
tance link until all nodes (n) are connected in a loopless sub-
graph consisting of n�1 links. If adding a link results in
formation of a cycle, this link is skipped. In our study, trees
of 14 nodes and 13 links were constructed.

From these MST graphs, several measures—degree, leaf
number, betweenness centrality (BC), eccentricity, diameter,
hierarchy (Th), and degree correlation (R)—give information
about the topological properties of this tree (Fig. 1). As a mea-
sure for the degree of the total tree, we took the maximum de-
gree. The leaf number (L) is the number of nodes on the tree
with degree = 1. The leaf number has a lower bound of 2 and
an upper bound of m = n�1. The leaf number presents an
upper bound to the diameter of the tree, which is the largest
distance between any two nodes of the tree. The upper limit
of the diameter is defined as d = m�L + 2, implying that the
largest possible diameter will decrease with the increasing
leaf number. Eccentricity of a node is defined as the longest
distance between that node and any other node of the tree
and is low if this node is central in the tree. The BC of a

node u is the number of shortest paths between any pair of
nodes i and j that are running through u, divided by the
total number of paths between i and j. Since BC is a fraction,
its value ranges between 0 and 1. Leaf nodes have a BC of 0,
while the central node in a star graph has a BC of 1. BC is a
measure for the importance of a node within the network.
The node with the highest BC has the highest load, that is,
the highest number of shortest paths between any two
nodes run through this node. Degree, eccentricity, and BC
are different criteria for relative nodal importance and may
point out the critical nodes in a tree.

What kind of tree topology would result in optimal perfor-
mance of the network? The first criterion is efficient commu-
nication between all vertices that would require a small
diameter, and thus, a star-like topology. However, in a star-
like tree with a diameter 2, the central node might easily be
overloaded, since it has a BC of 1. Therefore, the second crite-
rion would be prevention from overloading hubs by setting a
maximal BCmax for any of the tree nodes. The optimal tree
should then reflect the best possible balance between both cri-
teria. To this aim, a tree hierarchy measure Th was developed
to show the balance between diameter reduction and over-
load prevention. It is defined as:

TH =
l

2mBCmax
[1]

To assure TH ranges between 0 and 1, the denominator is
multiplied by 2. If l = 2, that is, a line-like topology, and m ap-
proaches infinity, TH approaches 0. If l = m, that is, a star-like
topology, TH approaches 0.5. For leaf numbers between these
two extreme situations, TH can have higher values. For in-
stance, in a tree with a central node u1 that is connected to
two other nodes u2 and u3 and all remaining nodes directly
connected to either u2 or u3 that have similar degrees, in
such a tree, the leaf number is m�3 and BCmax is 0.5 and
the TH will be closer to 1 if m is increased.

Another measure is the degree correlation that is an index
of whether the degree of a node is influenced by the degree of
its neighboring vertices to which it is connected. Graphs with
a positive degree correlation are called assortative; in the case

FIG. 1. Example of a simple minimum spanning tree (MST)
and its characteristics. Leaf nodes have a degree of 1, there-
fore nodes v1, v4, and v6 are leaf nodes. The diameter is
the longest distance between any two nodes. In this tree,
node v1 and v6 are most distant and the diameter has value
4. Node v2 has the highest degree since it is connected to
three other nodes. Node v3 has the highest betweenness cen-
trality (BC), that is, the highest number of shortest paths be-
tween any node pair run through v3. This is also the node
with the lowest eccentricity, which is defined as the longest
possible distance between a node and any other node in the
tree.
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of a negative degree correlation, a graph is called disassorta-
tive. Degree correlations can be quantified by computing the
Pearson correlation coefficient of the degrees of pairs of verti-
ces connected by an edge. Interestingly, most social networks
tend to be assortative, while most technological and biologi-
cal networks tend to be disassortative (Newman, 2003).

Illustrative test networks

To illustrate the topological characterization of MST
graphs, we consider a number of simple example test trees.
These include the two extreme configurations, namely, a lin-
ear tree that has only two leaf nodes and a star-like tree that
has m leaf nodes and one central node, and a range of trees
with a leaf number between 2 and m, with m = 13 in our
study (Fig. 2).

Since we examined 14 channel EEG data, we chose test-
trees with n = 14 and m = 13. For each leaf number ranging
from 2 to 13, different configurations were generated 10
times and for every tree, tree properties were calculated.
Trees with intermediate leaf numbers were generated by
starting with the line-like tree on the left, deleting one leaf
node and its edge, and randomly attaching this edge to one
of the remaining vertices, excluding the leaf nodes. The result-
ing tree parameters were averaged over these 10 possible
trees for all leaf numbers. For leaf numbers close to 2 and 13 this leads to redundancies, since only one or few or a re-

stricted number of configurations were possible.
Figure 3 shows the properties of trees as a function of

increasing leaf number. With increasing leaf number, de-
greemax, betweennesmax, and hierarchy increase, while eccen-
tricity and diameter decrease. For measures BC and degree,
the maximum was taken and averaged for 10 trees, while
for all other measures, the average per tree was used and
averaged for 10 trees.

Statistics

Statistical analysis was done with SPSS version 15 for MS-
Windows. Natural log transformation [y = ln(x)] was applied
on SL and MST measures to obtain normal distributions of
these measures. Note that for statistical testing, SL and MST
measures were calculated per epoch and consecutively aver-
aged per person. To test for age and gender effects on SL, an
MST measures in three different frequency bands, a repeated
measures analysis of variance was performed on log-trans-
formed data with age as within the subject factor and gender
as between the subject factor.

To illustrate MST topologies, a group averaged connectiv-
ity matrix was constructed at 5 and 7 years in the alpha band,
and for boys and girls in the theta band. The MSTs of these
mean matrices were visualized in Figure 4 and 5.

To point out the critical nodes in the MST, we ranked the
nodes from highest BCmax to lowest BCmax, and for highest
degreemax to lowest degreemax. Per node, we then calculated
the percentage of children in which this node had the highest
rank, based on BCmax and degreemax.

Results

As previously reported (Boersma et al., 2011), for all fre-
quency bands, mean SL significantly decreased from 5 to
7 years (Table 1). Girls showed significantly higher SL than
boys in all frequency bands.

FIG. 2. Examples of trees for increasing leaf number. Circles
indicate vertices, lines edges. All trees have 14 vertices and 13
edges. On the left, the simplest possible tree with leaf num-
ber = 2 is shown. On the right, a star-like tree with the highest
possible leaf number (leaf number = number of edges) is
shown, and in the middle, an example of a tree configuration
with eight leaf nodes. Developmental change and differences
between boys and girls are shown in text.

FIG. 3. Properties of trees as a function of increasing leaf
number. The number of edges is 13, the number of vertices
14. Random trees for leaf number between 2 and 13 are gen-
erated according to the procedure described in Fig. 2. Results
are the average of 10 different networks for all leaf numbers
between 2 and 13. Eccentricity is the mean eccentricity of all
14 vertices. BC and degree are the highest BC and degree of
all 14 vertices. Hierarchy is the tree hierarchy computed
with formula [1].
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The effect of time was mainly found in the alpha band. In
this band, significant increases in diameter and eccentricity
with age were found, while leaf number, degree, and hierar-
chy significantly decreased and BC and degree correlation
were comparable at 5 and 7 years (Table 1). No significant
changes over time were found in MST parameters in theta
and beta bands. If we project the average MST values of the
child EEG data upon the test networks (Fig. 3), the children
seem to have intermediate configurations, that is, line-like
trees with a few branches (on average 4 or 5 leafs), except
for the maximum BC values, which suggest star-like trees
with 10 or 11 leafs.

We found an effect of gender in the theta band. Boys
showed a significantly higher degreemax, leaf number, BC
and hierarchy, and a significantly lower diameter, eccentric-
ity, and degree correlation than girls, suggesting that girls
have more line-like MSTs. In the alpha and beta band, no ef-
fect of gender was found.

Furthermore, no significant interaction effect between time
and gender in any of the frequency bands was found.

No significant difference in IQ was found between boys
and girls, neither did we find significant correlations between
IQ and network parameters.

Figure 4 illustrates averaged SL matrices at 5 and 7 years in
the alpha band along with the associated trees. Note that the

illustrated MST graph is constructed from averaged matrices
at 5 and 7 years and does not reflect the results from our sta-
tistical tests for longitudinal changes. The topology is surpris-
ingly consistent at 5 and 7 years. A few edges shift from local
interhemispheric posterior connectivity toward connectivity
along the anterior–posterior axis. Figure 5 shows averaged
SL matrices in the theta band for boys and girls. Girls have
the strongest connections in the left hemisphere and boys in
the right hemisphere.

To explore the MST and find the critical nodes in the net-
work, we first ranked the nodes from highest BC to lowest
BC, and highest degree to lowest degree. Then, per node,
the percentage of children in which this node had the highest
rank based on BC and degree was calculated. At both 5 and 7
years, the nodes with the highest information load based on
degree and BC, appear to be F3 and F4 and to a lesser extent
P3 and P4 in the alpha band (Fig. 6A). In the theta band, P3
and P4, and to a lesser extent F3 and F4, appear to be the crit-
ical nodes in both boys and girls (Fig. 6B).

Discussion

To test our hypothesis of increased regularity of brain net-
works with development, while correcting for network com-
parison bias, we applied the MST method to EEG-based

FIG. 4. This figure shows
the MSTs represented as a
tree (A) and projected on
head plots (B) for alpha band
connectivity at 5 (left) and at 7
years (right). From left to
right, the nodes of the tree
follow the order of
electroencephalography
(EEG) electrodes (frontal,
parietal, central, occipital,
temporal).
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functional brain networks. We showed that the organization
of MSTs in children shifts toward a more line-like or decen-
tralized organization (Fig. 2) with development from 5 to 7
years. Development significantly reduced the number of leaves,
the maximum degree and the hierarchy of the trees, and in-
creased the eccentricity and diameter. The maximum BC and
degree correlation did not significantly change over time.

In our previous studies, we reported that functional brain
networks in children shift from a more random toward a
more ordered configuration with maturation, based on the
findings that normalized clustering and path length increased
over time in the alpha band (Boersma et al., 2011; Smit et al.,
2012). The present study confirms that there is a consistent
pattern of change in brain network topology in developing
children in the alpha band. The MSTs at 7 years have a signif-
icantly lower leaf number, and thus, a longer diameter and in-
creased eccentricity than at 5 years, which refers to the longer
path length and the shift toward more ordered configurations
we have described in our previous study (Boersma et al.,
2011). The maximum BC did not change over time, which
might indicate that the central or critical nodes remain at a
central place in the tree over time. A constant BC and a
decreased leaf number over time resulted in a decrease in
the hierarchy of the trees over time.

The generally assumed pattern of typical development of
structural and functional connectivity is the strengthening
of distant and weakening of local connections (Barry et al.,
2004; Gong et al., 2009; Thatcher, 1992; Thatcher et al.,
2008). Thatcher and colleagues suggested that typical devel-

opment is programmed in cycles with periods of decreases
and increases in connectivity strength with different offsets
in different regions (Thatcher et al., 2009; Thatcher, 1992).
We speculate that the shift from star-like (centralized) toward
line-like (de-centralized) in the present study reflects the
weakening of both long-range and local posterior connectiv-
ity that is previously described in this dataset by Van Baal
and colleagues (2001). These decreases in short- and long-
range connections might have changed the order in which
links are captured by the MST graph at 5 and 7 years. Addi-
tional tests show that the diameter of the MST is positively
correlated with both clustering and path length, which were
calculated in our previous study (see Supplementary Material;
Supplementary Data are available online at www.liebertpub
.com/brain). More knowledge from empirical and modeling
studies is required to understand how network and tree topo-
logical changes are associated to changes in the underlying
biology.

Another interesting finding of this study is the significant
difference between boys and girls in the theta band. Girls
showed a significantly lower leaf number, maximum nodal
degree, BC and hierarchy, and a significantly longer diame-
ter, eccentricity, and degree correlation than boys, indicating
that girls are ahead of boys having more line-like decentral-
ized trees than boys do. Since recent neuroimaging stud-
ies have shown a significant relation between network
topological characteristics and intellectual performance (Li
et al., 2009; Van den Heuvel et al., 2009), we tested if such as-
sociations could explain topological differences between boys

FIG. 5. This figure shows
the MSTs represented as a
tree (A) and projected on
head plots (B) for theta band
connectivity in boys (left)
and girls (right). From left
to right, the nodes of the
tree follow the order of
electroencephalography
(EEG) electrodes (frontal,
parietal, central, occipital,
temporal).
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and girls in the present study. No significant difference in IQ
was found between boys and girls; neither did we find signif-
icant correlations between IQ and network parameters, sug-
gesting that gender truly has an independent effect on
network organization. In our previous study, we observed
gender differences in connectivity strength and network
parameters, with girls showing stronger connectivity and
higher clustering and boys in several frequency bands
(Boersma et al., 2011), suggesting that girls have stronger
whole-brain connectivity and more ordered network topol-
ogy than boys at this young age. Other EEG and magnetoen-
cephalography (MEG) studies mainly investigated regional
or interhemispheric connectivity with a restricted number
of brain regions, showing different effects of gender on
(local) functional connectivity in several frequency bands
(Barry et al., 2004; Gootjes et al., 2006; Thatcher, 1992). The
underlying biological mechanisms responsible for different
brain connectivity patterns in girls and boys, is not well un-
derstood yet. On the one hand, girls as young as 5 years
old might simply precede boys on the developmental trajec-
tory. On the other hand, girls might wire up differently
already very early in life due to different genetic and hor-
monal programming. The influence of sex steroids on
magnetic resonance (MR)-based brain connectivity was
reviewed by Peper and colleagues, suggesting a neuroprotec-
tive role of ovarian hormones that enhance cortico–cortico

and subcortico–cortico connections in girls, whereas boys
show increased connectivity between subcortical regions
(Peper et al., 2011; Peper and Koolschijn, 2012). Moreover, gen-
der differences in brain network topology were as well shown
in clinical studies examining patients with multiple sclerose
(Schoonheim et al., 2011) and migraine patients (Liu et al.,
2011). In conclusion, gender seems to be an important factor
influencing graph theoretical network measures and might im-
pact the results of developmental and clinical studies.

In this study, we also explored and illustrated the MST to-
pologies. In a real-world network like the developing child
brain, we expected an intermediate topology that optimizes
communication without overloading central nodes. Based
on the mean MST parameter values found in the EEG-based
networks in all frequency bands (Table 1), the trees show
an intermediate configuration with four or five leafs (Fig. 3).
We furthermore illustrated MST graphs of averaged connec-
tivity matrices at 5 and 7 years in the alpha band (Fig. 4) and
for boys and girls in the theta band (Fig. 5). Note that these are
MST graphs based on the averaged matrices at 5 and 7 years
for boys and girls, and do not represent the statistically signif-
icant longitudinal changes or effects of gender. Most edges
seem to be constant within the topology at 5 and 7 years. A
few edges shift from local posterior connectivity toward con-
nectivity along the anterior–posterior axis. This reorganiza-
tion probably reflects the weakening of long-range and

Table 1. Results Repeated Measures Anova of SL and MST Parameters

5 years 7 years Time
Time · Gender

Gender
Mean (SD) Mean (SD) DTime F[2,225] P F[2,225] p F[2,225] p Boys vs. Girls

Theta
SL 0.033 (0.007) 0.030 (0.006) Y 28.53 0.000 3.12 0.079 14.22 0.000 <
Degree 0.235 (0.023) 0.237 (0.023) 1.07 0.302 0.23 0.636 9.87 0.002 >
Leaf number 0.367 (0.042) 0.371 (0.042) 1.36 0.245 0.12 0.732 8.10 0.005 >
Eccentricity 0.464 (0.031) 0.462 (0.031) 0.39 0.532 0.20 0.655 13.30 0.000 <
Diameter 0.640 (0.048) 0.636 (0.047) 0.60 0.440 0.12 0.790 13.49 0.000 <
BC 0.738 (0.022) 0.738 (0.022) 0.00 0.982 2.65 0.105 13.21 0.000 >
Degree correlation 0.374 (0.103) 0.365 (0.096) 0.38 0.539 0.68 0.410 5.82 0.017 <
Hierarchy 0.250 (0.027) 0.252 (0.027) 1.44 0.232 0.00 0.977 3.97 0.047 >

Alpha
SL 0.029 (0.006) 0.028 (0.005) Y 7.62 0.006 1.63 0.203 9.79 0.002 <
Degree 0.221 (0.019) 0.218 (0.019) Y 4.06 0.045 0.04 0.835 1.10 0.296
Leaf number 0.340 (0.044) 0.328 (0.043) Y 9.05 0.003 0.05 0.827 1.97 0.162
Eccentricity 0.500 (0.034) 0.503 (0.034) [ 6.86 0.009 1.96 0.143 2.93 0.088
Diameter 0.688 (0.054) 0.701 (0.053) [ 8.33 0.004 2.17 0.143 2.72 0.101
BC 0.720 (0.021) 0.719 (0.022) 1.07 0.301 3.59 0.059 1.40 0.239
Degree correlation 0.392 (0.090) 0.399 (0.089) 0.72 0.398 0.74 0.392 0.57 0.450
Hierarchy 0.235 (0.029) 0.228 (0.028) Y 8.29 0.004 0.50 0.480 1.56 0.212

Beta
SL 0.023 (0.004) 0.021 (0.004) Y 26.86 0.000 4.95 0.027 16.91 0.000 <
Degree 0.212 (0.019) 0.211 (0.016) 0.01 0.936 0.40 0.530 0.26 0.611
Leaf number 0.323 (0.046) 0.320 (0.045) 0.54 0.461 0.02 0.899 3.16 0.077
Eccentricity 0.518 (0.038) 0.520 (0.036) 1.01 0.316 0.77 0.383 2.57 0.110
Diameter 0.724 (0.058) 0.728 (0.057) 0.74 0.391 0.57 0.451 2.54 0.113
BC 0.706 (0.020) 0.704 (0.021) 2.51 0.114 1.12 0.291 1.29 0.257
Degree correlation 0.392 (0.092) 0.387 (0.090) 0.57 0.452 0.13 0.721 0.18 0.675
Hierarchy 0.228 (0.030) 0.227 (0.029) 0.21 0.645 0.12 0.732 3.07 0.081

Normalized MST parameters were analyzed for separated frequency bands. Mean and standard deviations are shown per MST parameter.
F-values and significance are shown for within- and between-subject factors. Bold text represents significant results; italic text represents results at

trend level; [ indicates an increase over time; Y indicates a decrease over time; < indicates boys smaller than girls; > indicates boys larger than girls.
ANOVA, analysis of variance; MST, minimum spanning tree; SL, synchronization likelihood; BC, betweenness centrality.
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local posterior connectivity that is previously found by Van
Baal and associates in this dataset (van Baal et al., 2001).

In girls, the most important routes for information flow
showed up in the left hemisphere and for boys in the right
hemisphere (Fig. 5). Our findings agree with previous find-
ings reporting greater right-sided lateralization of local con-
nectivity in males and a left-sided lateralization of long-
range connections in women (Gootjes et al., 2006; Tomasi
and Volkow, 2011). Furthermore, an EEG study described
that cortical networks develop earlier in the right hemisphere
than in the left hemisphere and that this asymmetry in connec-
tivity declines with aging (Gootjes et al., 2006; Zhu et al., 2011).

The high maximum BC of the child brain trees indicates a
star-like centralized tree with 10 or 11 leafs and a configura-
tion in which most information is routed via a central node
with the highest betweenness. For both factors, for age or gen-
der, the brain region underlying electrode F3, F4 and P3, P4
had on average the highest BC and degree, which might indi-
cate that these are critical nodes through which most informa-
tion is routed. Some studies regard alpha band EEG resting-
state networks as the equivalent of fMRI DMN (Chen et al.,
2008; Knyazev et al., 2011) and the frontal–parietal attention
networks (Sadaghiani et al., 2012) involved in top–down
modulation and regulation of attention. In this context, a de-
velopmental change in the alpha band MST might represent
unfolding of the DMN and resting-state networks involved
in a higher order cognitive function (Bie de et al., 2012; Fair

et al., 2007; Supekar et al., 2010; Uddin et al., 2011).Interest-
ingly, in our study, centrality of these nodes remained un-
changed over time, which agrees with recent MR studies.
Hagmann and colleagues demonstrated that in a structural
network, the critical nodes (frontal and parietal areas
among others) are in place by the age of 2 years (Hagmann
et al., 2010). Additionally, they found that connectivity
strength further increased between these hub nodes during
development, which was confirmed by resting-state fMRI
studies, suggesting a developmental shift from diffuse con-
nectivity toward increased brain-wide integration and de-
creased local connectivity (Hwang et al., 2012; Uddin et al.,
2010). These findings might point to a crucial role for hub
nodes early in typical and atypical development, especially
in neurodevelopmental disorders in which frontal (and pari-
etal) areas are hypothesized to be affected, such as for in-
stance in autism (Courchesne and Pierce, 2005; Just et al.,
2012) and attention deficit/hyperactivity disorder (Tomasi
and Volkow, 2012). Future studies might further investigate
the role of these frontal and parietal areas and their relation
to cognition.

This study has few limitations. Since it has been shown that
graph measures are under genetic control (Smit et al., 2008),
our results might have been partially influenced by this ge-
netic dependence introduced by inclusion of complete twin
pairs in our dataset. Additional tests on an independent data-
set showed similar, though slightly less significant results (see

FIG. 6. This figure shows
the percentage of subjects in
which a particular node had
the highest BC and the
highest degree of all 14 nodes,
(A) at both 5 and 7 years in
the alpha band and, (B) for
boys and girls in theta band.
We first ranked the nodes
based on BCmax or degreemax

values, and consequently
counted the number of
highest ranks for each node
and divided this by the total
number of subjects. Based on
BC, F3 appears to be to most
central node. Based on
degree, F3 and F4 and, for a
smaller account, P3 and P4
appear to be critical nodes.
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supplementary information, Supplementary Table S2), indi-
cating that child brains do develop toward more decentral-
ized line-like configurations and that girls show more
decentralized line-like configurations than boys did. Among
others, the MST method is one of few that presents a theoret-
ical underpinned approach to solve network comparison
problems. However, the MST method has few limitations.
In this method, not all connections are taken into account to
prevent clustering, thereby obtaining a fixed network size
and density to fixed density to enable network comparison
( Joudaki et al., 2012; Van Wijk et al., 2010). As a consequence,
the MST might have underestimated other interesting effects,
such as the importance of low-weight connections and clus-
tering for information processing in brain networks. More-
over, the network size was limited by the number of 14
electrodes, which is rather a gross sampling of the brain
reflecting only the main lines of information flow in the
child brain. Future high-density EEG and MEG studies
should aim to obtain interpretable degree and betweenness
distributions to further specify which nodes and paths play
a critical role in network performance (Wang et al., 2008).
Despite these suboptimal conditions, this study shows signif-
icant changes in brain MST topology with age, suggesting
that healthy development leads to subtle topological changes
in the main routes of information flow in the brain.

Another limiting factor in connectivity studies is the choice
of the connectivity measure. SL was used to enable the com-
parison between recent and previous studies. Choosing SL as
connectivity measure might have biased the results, since SL
is sensitive to volume conduction effects, especially the stron-
gest SL connections are most sensitive. Since the number of
EEG channels was small in this study and inter-electrode dis-
tances were large ( > 7 cm), the chance of picking up highly
correlating signals from a common source might be reduced
in our study (Nunez et al., 1997). Future studies might aim
on measures as the phase lag index (PLI) or the directional
PLI (Stam and van Straaten 2012a) that are less sensitive to
volume conduction (Stam et al., 2007; Stam et al., 2009).

In conclusion, the MST offers an elegant solution for cur-
rent threshold and normalization problems in graph theoret-
ical EEG, MEG, and magnetic resonance imaging studies. It
provides a method to construct a unique structure that re-
flects the most important routes for information flow on the
network. Without setting a threshold in advance, it facilitates
the direct comparison of graph measures in different condi-
tions. In addition, our study demonstrates that the MST
method is sensitive to capture subtle developmental changes
and differences between boys and girls and supports our pre-
vious findings. A topological change from more star-like cen-
tralization toward more line-like decentralization was found
with development and girls showed more mature configura-
tions than boys of the same age. We speculate that the change
in brain network topology reflects maturational processes.
Application of the MST method in future studies, might fur-
ther facilitate capturing the complete space of complex brain
networks in a simplified heuristic model, as recently pro-
posed by Stam and Van Straaten (2012b).
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