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Specifically, we sampled 231 trios, 11 quartets with monozygotic twins 
and 8 quartets with dizygotic twins from 11 of the 12 Dutch provinces 
without ascertaining on the basis of phenotype or disease. By whole-
genome sequencing these 250 families at ~13× coverage, our aim was 
to build a resource of 1,000 haploid genomes as representative of a small 
(41,543-km2), densely populated (>17 million inhabitants) country in 
northwestern Europe (Supplementary Note).

Here we provide the first detailed analysis of the GoNL data 
after processing and quality control (Supplementary Fig. 1 and 
Supplementary Note). To maximize sensitivity, we analyzed all  
samples jointly18 and discovered 20.4 million biallelic SNVs, 1.2  
million biallelic indels (<20 bp in length) and 27,500 larger deletions  
(>20 bp in length). Of the SNVs, 6.2 million are common (minor 
allele frequency (MAF) > 5%), 4.0 million are low frequency  
(MAF = 0.5–5%), and 10.2 million are rare (MAF < 0.5%). On the 
basis of coverage and mapping metrics, we estimate that 94.1% of 
the genome could be called reliably (the ‘accessible’ genome), within 
which 99.2% of SNVs with a frequency of 1% could be detected 
(Supplementary Table 1 and Supplementary Note). The identification  
of indels and large deletions was based on conservative consensus 
calls from several complementary methods (Supplementary Note). 
We used MVNcall for trio-aware phasing and linkage disequilib-
rium–based imputation19, starting from the genotype likelihoods of  
SNVs and indels, yielding a phased panel of 998 unique haplotypes. 
The non-reference genotype concordance for SNVs was 99.4%  
(compared to genotypes from Complete Genomics sequencing 
data in 20 overlapping samples) and 99.5% (compared to Illumina 
Immunochip genotypes collected for all samples). The average  
coverage of 13.3× coupled with the family-based design allowed us to 
construct a high-quality whole-genome data set for further analysis, 
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Although the human genome reference sequence provides a com-
mon scaffold for the annotation of genes, regulatory elements and 
other functional units, it does not contain information about how 
individuals differ in their DNA sequences1. Initial efforts to map such 
variation across the human genome have successfully catalogued  
millions of common SNPs in various populations2–5. Fueled by the 
commercial development of microarrays for efficient SNP genotyping, 
genome-wide association studies (GWAS) have provided a systematic 
approach to test genetic variants for a role in disease. Thus far, GWAS 
have reproducibly identified thousands of loci, providing insight into 
underlying pathways of disease, in some cases with translational and 
clinical impact6,7. The importance of these discoveries notwithstanding,  
many questions remain about the allelic architecture of complex  
traits, especially with regard to the contributions of common versus 
rare variation7–9.

To elucidate the genetic basis of disease, comprehensive sequencing- 
based approaches are required to interrogate all types of genetic 
variation, including single-nucleotide variants (SNVs), structural 
variations and de novo events10–12. The characterization of rare  
variation poses a major challenge. Because rare alleles have emerged, 
on average, relatively recently13, they show greater geographic clus-
tering14 than common variants15. It is therefore imperative to study 
large samples across multiple populations, even within continental 
groups, to build a relatively complete catalog of rare variation in the 
human genome.

We initiated the Genome of the Netherlands (GoNL) Project to char-
acterize DNA sequence variation for SNVs, short insertions and dele-
tions (indels) and larger deletions in 769 individuals of Dutch ancestry 
selected from 5 biobanks under the auspices of the Dutch hub of the 
Biobanking and Biomolecular Research Infrastructure (BBMRI-NL)16,17. 

*A full list of authors and affiliations appear at the end of the paper.
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Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles 
demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which 
we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million 
single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (~13×) and trio design enabled 
extensive characterization of structural variation, including midsize events (30–500 bp) previously poorly catalogued and de novo 
mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for 
lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple 
ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-
population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of 
future population studies.
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including characterization of structural variation, detection of de novo 
events, imputation and demographic inference.

RESULTS
Novel variation in GoNL
To determine the number of novel variants, we investigated the over-
lap between GoNL and existing databases. We detected the majority 
of sites (98.2%) present in the European sample (CEU) of HapMap 
Phase 2 (ref. 4) and 71.1% of sites in the European subset of the 1000 
Genomes Project Phase 1 (EUR)20, consistent with the expectation 
that commonly segregating alleles across European populations 
should also be detected in GoNL (Fig. 1a). Conversely, only 39.0% of 
rare SNVs observed in GoNL (excluding singletons) were observed 
in the 1000 Genomes Project EUR panel, highlighting the value of 
studying individual populations in greater depth. The contribution 
of 7.6 million novel SNVs in GoNL represents a 14.6% increase in 
dbSNP (Build 137), although the majority of variants (75.6%) were 
singletons. Considering that 16.5% of the 2.0 million singletons in 
the 1000 Genomes Project EUR panel were also observed in GoNL, 
we expect that a substantial number of the novel GoNL singletons 
will be encountered again as we continue to sequence larger samples 
across Europe.

Structural variation could be called confidently across a broad 
size range, from large deletions to short insertions (Fig. 1b). The 
overall shape of the distribution for size frequency shows that larger 
structural events are less frequent than smaller indels, presumably 
reflecting the relatively deleterious nature of the larger variants. We 
observed specific peaks in the spectrum of size frequency that corres
ponded to microsatellite instability (MSI) at ±4 bp, short interspersed 
elements (SINEs) at 300 bp and long interspersed elements (LINEs) 
at 6 kb. In comparison to 1000 Genomes Project data, 54.4% of the 
indels (≤20 bp) and 93.3% of the larger deletions (>20 bp) were novel 
(Supplementary Note). Our analysis thus fills an important gap in 
the discovery of midsize deletions (30–500 bp), where 98.4% of the 
observed variants were novel. The novelty rate for larger deletions 
(>500 bp) was still substantial (66.3%). We note that most of the dele-
tions reported here were biased to be common because of stringent 
filtering (Supplementary Note), which allowed us to generate a call 
set with an overall validation rate of 96.5% (Supplementary Table 2). 
A more complete data set including duplications, inversions, mobile 
element insertions and translocations is currently being assembled.

Functional variation
Predicting the biological consequences of variants within a single 
genome is an ongoing challenge with important implications for 
using sequencing in a clinical setting. To characterize the burden of 
loss-of-function variants in detail, we classified all such variants in 
GoNL21 (Supplementary Note). Among rare variants, we observed 
an excess of nonsense variants and frameshift indels, consistent with 
a model in which such functional variants are subject to purifying 
selection (Supplementary Fig. 2)22,23. We counted 66 larger loss- 
of-function deletions (removing the first exon of a gene or more than 
half of its coding sequence)21, which showed a relative depletion in 
numbers when compared to all deletions (P = 0.005 for deletions of 
20–100 bp; P = 2.6 × 10−9 for deletions of >100 bp). This effect was 
amplified when considering only genes listed in the Online Mendelian 
Inheritance in Man (OMIM) compendium (P = 2.4 × 10−27), illustrat-
ing strong selection against large structural changes in key genes.

The overall patterns and per-individual distributions of loss-
of-function SNVs (variants introducing premature stop codons 
or variants interrupting splice sites) and missense variants were  

consistent with those found in the 1000 Genomes Project (Table 1 
and Supplementary Fig. 3). On average, an individual carried 60  
loss-of-function SNVs, 69 loss-of-function indels and 15 loss-of-function  
large deletions. The bulk of these mutations for each individual  
were common, suggesting that these variants are not subject to strong 
selective pressure and, although they are protein-truncating muta-
tions, are likely phenotypically benign. This observation emphasizes 
the need for caution in assigning pathogenicity to variants purely on 
the basis of their predicted impact on protein structure.

In contrast, when considering rare loss-of-function variants, which 
are more likely to be pathogenic, we found that the average individual in 
GoNL carried four nonsense variants, two variants interrupting a splice 
site and two frameshift indels. Comparing these numbers to those for 
synonymous variants (providing a baseline expectation under neutrality),  
we estimate that each individual carried an excess of 4–5 rare loss- 
of-function SNVs sufficiently deleterious that they would never reach 
high frequency in the population (Supplementary Note).

We also investigated the number of rare loss-of-function com-
pound heterozygous events for SNVs, short indels and large deletions. 
Across all samples, we observed 3 such events mapping to 3 genes in 
3 individuals (average of 0.01 events per individual). Given the rarity 
of such variants, the phenotypic impact of compound heterozygosity 
for rare loss-of-function mutations should be considered explicitly 
in disease studies.

Whereas compound heterozygosity for rare loss-of-function vari-
ants was sparse, we expected compound heterozygosity for common 
loss-of-function variants to be more prevalent, as these variants are less 
likely to be deleterious. Indeed, we found that the average number of 
common loss-of-function compound heterozygous variants per indi-
vidual was 2.89 (range of 0–7). Interestingly, although there were 1,917 
common loss-of-function compound heterozygous events across all 
samples, they were confined to only 11 genes (Supplementary Table 3).  
All but one of these genes have extreme residual variation intoler-
ance scores24 (RVIS; all but 1 gene above the 84th percentile across 
16,956 genes), which is unlikely to occur by chance (P = 1.41 × 10−5;  
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Figure 1  Discovery of SNVs and structural variation. (a) Venn diagram 
of all SNVs discovered in GoNL relative to dbSNP (Build 137) and the 
1000 Genomes Project (1000G) Phase 1 and HapMap CEU panels. The 
majority of the 7.6 million novel sites are rare (MAF < 0.5%), including 
5.8 million singletons. M, million. (b) Size frequency spectrum of all 
variation discovered in GoNL, where a negative size indicates a deletion. 
Our detection strategy employed multiple approaches and provided a 
substantial boost in the identification of novel structural variants in the 
midsize range (30–500 bp). Peaks corresponding to long interspersed 
elements (LINEs), short interspersed elements (SINEs) and microsatellite 
instability (MSI) are highlighted. The total number of variants called in 
GoNL is shown in orange, whereas SNVs found in dbSNP (Build 137) and 
short indels and large deletions found in 1000 Genomes Project Phase  
1 data are shown in blue. For large deletions (>20 bp), we required at least 
80% reciprocal overlap between variants for them to be considered similar.
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Supplementary Fig. 4) and suggests that these genes are more  
tolerant of disruptive mutations.

Because databases of disease-relevant mutation are often employed 
to identify potential variants of interest, we annotated variants in 
GoNL that were listed as disease causing (DM) in the Human Gene 
Mutation Database (HGMD)25. We observed that a sample carried, 
on average, 20 DM variants (range of 9–33) (Table 1). Because all 
samples were derived from population-based cohorts, the impact of 
these alleles is unclear. One possibility is that the presence of modi-
fier alleles induces incomplete penetrance or variable expressivity 
of DM variants, depending on the carrier’s genetic background26. 
An alternative explanation is that HGMD contains a considerable 
number of false positive disease-causing mutations27. Of the 1,093 
DM mutations occurring in GoNL, 32% had a frequency of >1%, 
higher than the prevalence of many of the diseases described in 
HGMD. Given the inheritance patterns of the diseases conferred by 
these variants, many individuals in GoNL should have been affected 
by diseases with profound physical or even lethal manifestations 
(Table 2 and Supplementary Table 4). In fact, one of these vari-
ants (chr. 14: 94,847,262; a variant for α1 antitrypsin deficiency) was 
recently implicated as a pathogenic incidental finding in a set of 1,000 
exomes28. The prevalence of α1 antitrypsin deficiency (MIM 613490), 
an autosomal recessive disease, is estimated to be 0.02–0.06%, yet two 
unrelated GoNL individuals were homozygous carriers of this vari-
ant (prevalence = 0.4%, ~10× higher than the disease prevalence). 
Further, the typical age of onset of α1 antitrypsin deficiency is 20–50 

years, whereas the two homozygous carriers in GoNL were ages 60 
and 63 years at ascertainment. These results highlight the poten-
tial pitfalls of employing such databases in disease studies and the  
challenge of interpreting personal genomes.

De novo mutations
A distinct advantage of the family-based study design is the ability 
to call de novo events in genomic regions with sufficient coverage in 
a trio. To this end, we developed the PhaseByTransmission (PBT) 
module in the Genome Analysis Toolkit (GATK)29. From an initial 
4.5 million mendelian violations in the original calls made in the 258 
independent offspring, we prioritized 29,162 autosomal de novo muta-
tion candidates at non-polymorphic sites with PhaseByTransmission 
(Supplementary Note). Given that the average number of de novo 
mutations per offspring was still higher than expected (~63.2 muta-
tions per offspring30), we evaluated to what extent sequencing  
features could help increase the accuracy of de novo mutation  
prediction and reduce the number of false positives. We validated 592 
candidate sites as true de novo mutations (Supplementary Note) and 
classified another 1,674 candidates as false positives (on the basis of 
validation experiments and Complete Genomics genotype data). We 
trained a random forests classifier on various sequencing features using 
70% of the validation results (Supplementary Note) and obtained a 
model with an estimated classification accuracy of 92.2% using the 
remaining 30% of the data (Fig. 2a). This analysis illustrates how joint 
assessment of raw trio data and sequencing context can greatly boost 
prediction accuracy. We applied the classifier to our initial candidates 
and identified 11,020 high-confidence de novo mutations (18–74 per 
offspring) for downstream analyses. Owing to fluctuations in regional 
coverage, we expect a substantial fraction of genuine de novo muta-
tions to have been missed. We also note that early embryonic somatic 
mutations would be indistinguishable from germline mutations.

We observed a significant positive correlation (r2 = 0.47, P < 2.2 ×  
10−16) between father’s age at conception and number of de novo 
mutations in the offspring (Fig. 2b), providing a third, independent  
estimate based on a larger sample size30,31. Assuming mutations 
are Poisson distributed among samples and adjusting for coverage, 
we estimated that each additional year of father’s age caused a 2.5% 
increase in the mean number of de novo mutations in the offspring. 
Although parents’ ages were highly correlated (r2 = 0.66), comparing 
models based on father’s and mother’s age at conception suggested 
that the age-related increase in the frequency of de novo mutations was 
a predominantly paternal effect (Supplementary Note). Interpolating 
from the paternal model, we expected, on average, 75.4% of the  
de novo mutations in the GoNL offspring to originate from the father 
(assuming a linear increase in the number of de novo mutations from 
puberty). Using read-pair information, we were able to assign parental 
origin to 2,613 de novo mutations, and we found that, indeed, 76.0% 
were paternal. When considering only mutations for which parental 
origin could be determined, the correlation with father’s age remained 
significant (r2 = 0.11, P = 2.0 × 10−6; Supplementary Fig. 5), but the 
correlation was not significant for mother’s age (P = 0.94), highlight-
ing the relative impact of paternal and maternal mutations.

Within a single family, we attempted to identify de novo indels 
and large deletions. Using strict filtering criteria for mendelian  
violations followed by PCR-based Sanger sequencing (Supplementary 
Note), we confirmed six intergenic de novo indels (1–2 bp) and a large  
113-kb de novo deletion located in an intron of the SUMF1 gene 
(which seems unlikely to have substantial impact on gene function). 
These results show that our predictions of indels and structural 
changes are a valuable source for both commonly segregating alleles 

Table 1  Individual variant load of coding mutations
Non-reference allele frequency

Rare (<0.5%)
Low frequency 

(0.5–5%) Common (>5%)

Variant type Mean (s.d.) Mean (s.d.) Mean (s.d.)

All SNVsa 28,142 (3009.2) 130,190 (2448.1) 2.90 M (10,080.9)

Novela,b 17,751 (1,176.3) 4,354 (346.8) 620 (31.7)

Total conserved 1,892 (187.7) 7,593 (154.5) 106,824 (443.9)

Functional variation
Synonymous 18 (4.9) 73 (8.9) 990 (19.0)

Nonsynonymous 101 (11.9) 238 (15.6) 2,089 (31.8)

Probably damaging 32 (5.8) 58 (7.9) 394 (12.2)

Stop gaina 4 (1.9) 5 (2.2) 38 (4.3)

Splice-site donora 1 (0.9) 1 (0.9) 4 (1.5)

Splice-site acceptora 1 (0.7) 0.5 (0.6) 7 (1.4)

Total loss of functiona 5 (2.2) 6 (2.4) 49 (4.7)

Disease-associated variation
OMIM 0 (0.6) 2 (1.6) 57 (4.9)

HGMDc 2 (1.2) 8 (2.7) 11 (2.3)

Indels (<20 bp)
Indel frameshifta 2 (1.4) 6 (2.6) 61 (4.8)

Indel non-frameshifta 1 (1.1) 6 (2.6) 99 (5.9)

Deletions (>20 bp)
Loss of function 0 (0.2) 1 (1.0) 14 (3.3)

Total bases deleted 6.7 million bases

Only SNV sites at which ancestral state can be assigned with high confidence and that 
are highly conserved (GERP > 2.0) are reported. Frequency stratifications are based on 
the unrelated samples only. OMIM, Online Mendelian Inheritance in Man; M, million.
aNo conservation filter applied. bNot observed in dbSNP Build 137 (which includes all SNVs 
reported in the 1000 Genomes Project Phase I data release). cFrequency stratification and 
variant counts based on the reported mutation allele.
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and de novo events. Further work is needed to assess the frequency 
of such de novo events in the general population.

Imputation
One of the goals of the GoNL Project was to provide a community 
resource for downstream imputation into GWAS samples. To evaluate 
the performance of the GoNL panel, we used independent Complete 
Genomics sequence data collected for 81 individuals of Dutch ancestry  
(the NTL data set). In these NTL samples, we masked all genotypes at 
SNVs not present on the Illumina Human-1M array, imputed these 
masked SNVs from the remaining SNVs and then compared the 

imputed and known genotypes (Supplementary Note). The aggregate 
mean r2 value was 0.99 for common SNVs, 0.86 for low-frequency 
SNVs and 0.63 for rare SNVs, indicating good overall imputation 
quality (Fig. 3). We repeated this evaluation on the basis of the SNV 
content of other microarrays and obtained similar imputation per-
formance for common SNVs, but we observed notable differences 
in imputation quality for lower frequency alleles (Supplementary 
Fig. 6). To directly measure the impact of trio-based phasing, we 
constructed a panel using data from the unrelated parents alone and 

Table 2  HGMD disease-causing mutations in GoNL samples

Chr. Position Gene

Muta-
tion 

allele
Reference 

allele Disease in HGMD
Disease  
prevalence

Inheritance 
pattern

Affected  
individualsc

Phenotypic  
manifestationsa OMIM ID

Mutation 
allele 

frequency 
in GoNLd

Mutation  
allele 

frequency 
1000G CEU

4 6,302,519 WFS1 A G Wolfram syndrome 0.0002%a AR 257 Hyperglycemia, 
vision and hearing 
loss

604928, 
222300

0.728 0.759

13 52,515,354 ATP7B G A Wilson disease 0.003%a AR 167 Liver disease, 
neuropsychiatric 
problems

277900 0.574 0.582

16 3,304,463 MEFV T C Familial  
Mediterranean  
fever

0.10% in 
Mediterranean 
populations;  
rarer elsewherea

AR 36 Recurrent fevers, 
inflammation of the 
abdomen, chest, 
joints

249100, 
134610

0.277 0.224

11 6,415,463 SMPD1 A G Niemann-Pick  
disease

0.0004%a AR 37 Nervous system 
deterioration,  
failure to thrive, 
fatal in infancy or 
early childhood 
(type A)

257200, 
607616, 
257220, 
607625

0.230 0.230

20 61,463,522 COL9A3 A C Pseudoachondroplasia 0.003%a AD 177 Short stature, joint 
pain

177170 0.197 0.200

10 13,340,236 PHYH A G Refsum disease Unknown,  
current  
estimate 
0.0001%a

AR 18 Anosmia,  
progressive  
blindness,  
deafness, hand/feet 
bone abnormali-
ties, arrhythmia

266500 0.188 0.153

15 52,643,564 MYO5A A G Griscelli syndrome <0.0001%b AR 10 Albinism  
(all types),  
intellectual  
disability (type 1), 
recurrent infection 
(type 2)

214450, 
607624, 
609227

0.159 0.141

19 36,339,247 NPHS1 T C Congenital  
nephrotic syndrome 
(Finnish type)

0.01% in 
Finland; rarer 
elsewhereb

AR 2 Proteinuria, rapid 
progression to  
renal failure

256300 0.082 0.082 
(0.110)e

14 94,847,262 SERPINA1 A T α1 antitrypsin  
deficiency

0.02–0.06%a AR 2 Lung disease,  
liver disease

613490 0.039 0.053

HGMD, Human Gene Mutation Database; AR, autosomal recessive; AD, autosomal dominant; OMIM, Online Mendelian Inheritance in Man; chr., chromosome.
aNational Institutes of Health, Genetics Home Reference (United States). bNational Institute of Health and Medical Research (France). cUnrelated individuals in GoNL carrying two copies of 
the mutation allele (for autosomal recessive diseases) or at least one copy of the mutation allele (for autosomal dominant diseases). dCalculated from unrelated individuals. eFrequency in 1000 
Genomes Project (1000G) Phase I samples from Finland.
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Figure 2  De novo mutation detection. (a) Receiver operating 
characteristics (ROC) curve to predict de novo mutations using 
PhaseByTransmission only (purple line; 2,199 sites) or using 
PhaseByTransmission followed by random forests classification trained on 
70% of the validation data (green dot; evaluation subset only, 657 sites).  
The random forests classifier had an estimated 84.5% sensitivity and 
94.6% specificity. (b) The number of de novo mutations in each of the 
258 independent offspring is plotted (in blue) as a function of paternal 
age at conception. Linear regression of mutational load on paternal age is 
significant (Pearson’s correlation = 0.47, P < 2.2 × 10−16), with the  
least-squares fit plotted in orange.
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reevaluated imputation quality in the NTL samples. The imputation 
accuracy dropped to a mean r2 value of 0.47 for rare variants (0.85 and 
0.98 for low-frequency and common SNVs, respectively), indicating 
that trio-based phasing contributed substantially to the imputation 
quality of rare variants.

In comparison to imputation using 1000 Genomes Project data as 
the reference panel, we observed better imputation accuracy with the 
GoNL panel for SNVs with a frequency of up to 10%, despite the larger 
sample size of the 1000 Genomes Project (Fig. 3). To investigate the 
basis for the improved imputation accuracy with the GoNL panel, we 
constructed 3 reference panels using the 1000 Genomes Project CEU 
(Northern and Western Europeans from Utah) and TSI (Tuscans from 
Italy) panels and the GoNL panel, all with 85 individuals. Using each 
of these reference panels, we imputed into independent CEU, TSI and 
NTL samples with Complete Genomics data (Supplementary Note). 
Of the three panels, GoNL gave the highest imputation accuracy  
(especially for rare variants), not only for the NTL samples but also 
for the CEU samples, indicating that the improved performance of 
the GoNL panel was not simply due to shared ancestry of the GoNL 
and NTL samples (Supplementary Fig. 7). Differentiation between 
northern and southern European populations might explain why 
the 1000 Genomes Project CEU panel and the GoNL panel showed 
roughly equivalent performance for the TSI panel (with performance 
certainly worse than when the 1000 Genomes Project TSI panel was 
used as the reference). Overall, these results suggest that the GoNL 
design enabled accurate reconstruction of long-range haplotypes with 
marked improvement in imputation of rare alleles.

To assess the potential value of larger reference panels, we com-
bined the 1000 Genomes Project and GoNL panels with IMPUTE2 
(ref. 32), and we evaluated imputation accuracy in the NTL samples. 
Here we obtained an additional gain in accuracy over the GoNL panel 
alone, achieving a mean r2 value of 0.70 for rare SNVs and 0.88 for 
low-frequency SNVs (Fig. 3). Increasing the sample size of the refer-
ence panel will likely continue to improve imputation performance 
(especially for lower frequency alleles), motivating a community-wide 
effort to create a unified reference panel across diverse populations.

Population structure and demographic inference
Although it is well understood that extensive migration and gene flow 
occurred among European populations33–35, we focused on creating 
a unified picture of Dutch demography in recent millennia. Because 
of unbiased ascertainment and the inclusion of rare variation, whole-
genome sequence data can potentially offer greater resolution for 
demographic inference than SNP array data.

First, we explored global relationships, analyzing both common 
and rare variants to elucidate ancient and recent population differ-
entiation. We calculated Hudson’s FST between the Dutch popula-
tion and the 14 populations present in the 1000 Genomes Project, 
finding that FST patterns were consistent with continental clustering 
in principal-component analysis (PCA) and with previous estimates 
(Supplementary Fig. 8 and Supplementary Table 5)36. To investi-
gate more recent population connections, we focused on so-called 
f2 variants, mutations appearing exactly twice (in two heterozygote 

carriers) in the joint data from GoNL and the 1000 Genomes Project 
(Supplementary Note). As was observed in the 1000 Genomes Project, 
within-population sharing accounted for the majority (50.8%) of all f2 
alleles (Supplementary Fig. 9), but f2 sharing identified cross-popula-
tion connections as well. For example, a Dutch sample sharing an f2 
variant with a non-Dutch individual was far more likely to share that 
variant with another individual from Europe (71.6%) or the Americas 
(21.0%; because of European admixture) than with an individual from 
Africa (6.2%) or East Asia (1.3%). These results underscore the high 
degree of geographic clustering of recent mutations. In analysis of 
mitochondrial DNA, the frequencies of the major haplogroups (H, 
39.4%; U, 25.2%; J, 10.4%; T, 10.8%) and minor haplogroups were in 
agreement with previous observations in other European populations 
(Supplementary Note)37.

Within the Netherlands (Fig. 4a), PCA showed subtle substructure 
along a north-south gradient (Fig. 4b and Supplementary Note), 
consistent with previous findings38,39. Because PCA cannot elucidate 
demography (particularly migration patterns)40, we also performed 
an independent analysis of identity-by-descent (IBD) sharing that 
identified subtle signals of migration (Supplementary Note)41. From 
the length distributions of the IBD segments42, we inferred demo-
graphic models and estimated the effective population sizes of the 
Dutch provinces at different time scales, reflecting historical changes 
in demography (Supplementary Note).

Analysis of IBD segments of 1–2 cM in length, corresponding to 
an estimated time to the most recent common ancestor of ~4,200 
years, showed homogeneous effective population sizes across the 11 
provinces, consistent with common genetic origins (Supplementary 
Fig. 10). Additionally, we observed a smooth south-to-north gradient 
of decreasing ancestral population size and increased homozygosity 
in the northern provinces (average within-province IBD sharing and 
latitude correlation, r = 0.923, P = 5 × 10−5; Supplementary Figs. 10 
and 11, and Supplementary Note). Traditionally, such observations 
have been explained by a serial founder effect characterized by migra-
tion from the south to the north38.

Interestingly, GoNL samples, regardless of place of birth, tended to 
share more IBD segments with other individuals from the north than 
with individuals from the same region. Although within-province 
IBD sharing was strong, excess sharing with individuals from the 
the northern provinces was evident (average between-province 
IBD sharing and average province latitude correlation, r = 0.934,  
P < 1 × 10−5; Fig. 4c and Supplementary Table 6). This pattern indi-
cates that a simple south-to-north serial founder model might not 
be sufficient to explain the observed IBD sharing (Supplementary 
Fig. 12 and Supplementary Note). Instead, different demographic 
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Figure 3  Imputation accuracy. The aggregate r2 value between imputed 
and gold-standard genotype dosage is plotted as a function of allele 
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scenarios remain plausible, but all support a model of substantial 
regional migration. Assuming that ancient serial migrations toward 
the north of the country caused the observed gradient of increasing 
homozygosity, a possible explanation for these results is that additional 
migratory events out of the north took place after initial settlements. 
These subsequent migratory events are consistent with the dynamic 
nature of the Netherlands, particularly in the northern coastal regions, 
between 5000 BCE and 50 CE (Supplementary Fig. 13). A series of 
abandonments and resettlements were likely prompted by shifts in 
ocean level and flooding that changed once-habitable land into dunes 
and marshes or buried regions entirely underwater. We emphasize 
that other, more complex demographic models might yield similar 
patterns of IBD sharing; additional analyses are required to assess 
alternative scenarios.

In recent centuries, the advent of water-defense technologies 
(beginning in the thirteenth century) increased land stability, allow-
ing for other forces to influence demography. An analysis of f2 vari-
ants identified non-random sharing within and across provinces. 
Although the proportion of within-province f2 sharing comprised 
only 12% of all f2 alleles, consistent with homogenous ancestry, this 
is significantly greater than expected under the null hypothesis of 
uniform allele sharing (P < 1 × 10−200; Fig. 4d). This geographic 
localization of rare variants is suggestive of limited migration in 
recent centuries, consistent with current demographic studies. 
Notably, the Noord-Brabant and Overijssel provinces showed signifi-
cantly stronger within-province f2 sharing than the other provinces  
(P = 1.2 × 10−151 and P < 1 × 10−200, respectively), consistent with 
smaller effective population sizes in these two provinces inferred from 
sharing of long IBD segments (Fig. 4c, Supplementary Fig. 9 and 
Supplementary Table 6). Further, we found that within-region shar-
ing in the northern and southern regions was substantially stronger 
when compared to such sharing in the central region (P < 1 × 10−200, 
both comparisons). Taken together, these results suggest increased 
migration in the central region (in comparison to the northern and 
southern regions), consistent with recent urbanization in the wealthier  
central provinces.

DISCUSSION
The results presented here reflect the enormous wealth of knowledge 
that can be gleaned from whole-genome sequencing data and illustrate  
how intermediate-coverage sequencing within a single country 
complements cosmopolitan, low-coverage efforts20. The observed 
proportion of novel variation (in particular, for structural variation) 
underlines the added value of in-depth population studies such as 
GoNL. Combining sequencing data sets within and across populations  
will not only maximize sensitivity and resolution for the discovery of 
all types of DNA variation but will also enable population genetic ana
lyses that can shed more light on local and global shared ancestry.

In spite of the intermediate coverage in GoNL, we were able to 
reliably call de novo point mutations and confirm the relationship 
between paternal age at conception and mutation load in offspring. 
We showed that we could also identify larger de novo events; these 
calls will have to be validated empirically and their properties 
studied across the entire cohort. The methods we developed for 
the discovery of de novo mutations should be broadly applicable 
for studies of diseases in which de novo mutations are suspected 
to have a role12. De novo mutation represents an important class 
of DNA sequence variation that can further elucidate fundamen-
tal processes of mutagenesis43. Our results indicate that trio-based 
sequencing of large samples at intermediate coverage may be a cost-
effective way to ascertain genome-wide variation in mutation rates 
and establish a ‘null expectation’ for the general population against 
which mutations in cases can be compared. Similarly, population-
based sequencing efforts are instrumental in defining guidelines for 
investigating the causality of variants that may have functional and 
phenotypic impact44.

As long as the cost of genotyping continues to be competitive 
with whole-genome sequencing, imputation will remain important. 
The consolidation of available whole-genome data sets into a single 
cosmopolitan panel, including low-frequency, structural and other 
complex types of variation45,46, should therefore be considered a top 
priority. Through more complete interrogation of genetic variation, 
studies of large, well-phenotyped samples will continue to increase 
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Figure 4  Population genetic analyses in the Dutch population. (a) Map of the Netherlands with its 12 provinces. We selected 769 individuals  
from 5 BBMRI-NL biobanks across all provinces except Flevoland. FR, Friesland; GR, Groningen; DR, Drenthe; OV, Overijssel; FL, Flevoland;  
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onto the two dominant principal components, showing subtle substructure along a north-south axis within the Netherlands. (c) Heat map of IBD 
segment sharing within and across provinces. The upper half represents ancient IBD sharing (1–2 cM), and the bottom half represents recent IBD 
sharing (7–15 cM). Strikingly, all GoNL individuals, regardless of current residence, share more short IBD segments with individuals from the northern 
provinces than with other individuals from their own province. Patterns for long IBD segments are consistent with restricted geographic movement 
in recent times. ETRCA, estimated time to recent common ancestor. (d) Sharing of rare doubleton (f2) variants within and across provinces. The level 
of within-province sharing of f2 variants exceeds that of across-province sharing, reflecting strong geographically localized clustering of these recent 
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(P < 1 × 10−200). Avg., average.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



824	 VOLUME 46 | NUMBER 8 | AUGUST 2014  Nature Genetics

A rt i c l e s

the number of opportunities for the development of diagnostic tools, 
prevention measures and therapeutics for human disease.

URLs. The Genome of the Netherlands Project, http://www.nlgenome.
nl/; European Genome-phenome Archive (EGA), http://www.ebi.
ac.uk/ega/; The Groningen Center for Information Technology, http://
www.rug.nl/cit/; Target, http://www.rug.nl/target/; BiG Grid, http://
www.biggrid.nl/; SURFsara, http://www.surfsara.nl/; MOLGENIS, 
http://www.molgenis.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence data, variant calls, inferred genotypes and 
phased haplotypes have been deposited at the European Genome- 
phenome Archive (EGA), which is hosted by the European 
Bioinformatics Institute (EBI), under accession EGAS00001000644.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sample collection. Five Dutch biobanks (LifeLines Cohort Study, Leiden 
Longevity Study, Netherlands Twin Registry, Rotterdam Study, Rucphen Study) 
contributed samples of Dutch ancestry (with parents born in the Netherlands). 
A total of 250 parent-offspring families (231 trios and 19 quartets, of which 11 
had monozygotic twins and 8 had dizygotic twins) comprising 769 individuals 
were selected without phenotype ascertainment across 11 of the 12 provinces of 
the Netherlands (Supplementary Fig. 4 and Supplementary Table 7). Limited 
phenotype data were available: age, sex, height, body mass index (BMI) and lev-
els of total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density 
lipoprotein (LDL)-cholesterol and triglycerides (Supplementary Fig. 14).  
All participants provided written informed consent, and each biobank was 
approved by their respective institutional review board (IRB).

Data generation and processing. Samples were sequenced on an Illumina 
HiSeq 2000 instrument (91-bp paired-end reads, 500-bp insert size), and reads 
were aligned on the UCSC human reference genome build 37 using Burrows-
Wheeler Aligner (BWA) 0.5.9-r16 (refs. 47,48). Samples were also genotyped 
on the Illumina Immunochip as well as on at least one other genotyping chip 
(Supplementary Table 8).

Single-nucleotide variant calling. SNV calling was performed on all sam-
ples jointly using GATK UnifiedGenotyper v1.6. Calls were filtered using 
GATK VariantQualityScoreRecalibration (Supplementary Fig. 15 and 
Supplementary Note), and quality metrics were evaluated (Supplementary 
Fig. 16, Supplementary Table 9 and Supplementary Note). We defined the 
accessible genome using the same methodology as the 1000 Genomes Project20 
(Supplementary Fig. 17 and Supplementary Note). We assessed the robustness  
of our pipeline with respect to its stochastic components, its parameters and 
the version of the tools by reprocessing one trio under different conditions 
(Supplementary Tables 10 and 11, and Supplementary Note).

Indels and structural variants. To create reliable indel and structural variant 
call sets, we used a combination of ten algorithms (GATK UnifiedGenotyper, 
Pindel49, 1-2-3SV (see URLs), Breakdancer50, DWAC (see URLs), CNVnator51, 
FACADE52, MATE-CLEVER53, GenomeSTRiP54 and SOAPdenovo55). These 
algorithms are based on six approaches: (i) gapped reads, (ii) split reads,  
(iii) read pairs, (iv) read depth, (v) combined approaches and (vi) de novo 
assembly (Supplementary Table 12). Each of the ten tools was run, and calls 
for each were filtered separately (Supplementary Note). Variants were divided 
into three groups according to their size (1–20 bp, 20–100 bp and >100 bp), 
and different merging and filtering criteria were applied to obtain the final 
set (Supplementary Note).

Mitochondrial DNA. Unmapped reads were remapped to an appended ver-
sion of the revised Cambridge Reference Sequence (rCRS)56,57. Consensus 
sequences were called using GATK and used for phylogenetic analyses. All 
sequences were assigned to haplogroups according to the human mitochon-
drial DNA phylogeny58. Analysis of molecular variance (AMOVA) based on 
provincial haplogroup frequencies was performed using Arlequin59 v3.5.1.2 
(Supplementary Fig. 18 and Supplementary Note).

Validation of de novo variants. A total of 1,133 de novo mutations in 54 
families were assayed using 3 sequencing technologies (Supplementary 
Note). Variants called using Sanger sequencing were analyzed manually using 
Phred60,61. MiSeq and IonTorrent data were aligned to the reference genome 
using the BWA and TMAP62 aligners, respectively, and genotyped with the 
GATK UnifiedGenotyper. Putative de novo indels and structural variants in 
one trio were selected for validation. De novo indel candidates were sequenced 
using a MiSeq instrument, reads were aligned to the reference genome using 
BWA, and candidates were genotyped with the GATK HaplotypeCaller.  
De novo structural variant candidates were sequenced with Sanger sequencing, 
and traces were analyzed by NCBI BLAST63.

Validation of polymorphisms. We randomly selected 433 deletions and 407 
insertions for validation in one family, considering novelty (compared to the 
1000 Genomes Project), allele frequency (rare, <0.5%; low frequency, 0.5–5%;  

common, >5%) and size (short, ≤10 bp; long, >10 bp). Candidates were 
sequenced using a MiSeq instrument, and reads were aligned to the reference 
genome, with additional non-reference allele contigs for all candidates larger 
than (1-kb padding). Indels of <6 bp in length were genotyped using the GATK 
HaplotypeCaller, and larger indels were genotyped using read counts mapping 
to the reference and non-reference allele contigs (Supplementary Note).

A random set of 96 medium-length (20- to 100-bp) and 48 large (>100-bp) 
deletions was assayed in one sample by Sanger sequencing (Supplementary 
Table 2 and Supplementary Note). Sanger sequencing data were called using 
Phred60,61 and aligned to the reference genome with NCBI BLAST63. Medium-
length deletions were also sequenced on a MiSeq instrument, and reads were 
aligned to the reference genome with additional non-reference allele con-
tigs. Genotyping was based on read counts mapping to the reference and  
non-reference allele contigs.

Variant annotation. We functionally annotated SNVs with the Variant 
Annotation Tool64 (VAT) and SnpEff65 (Supplementary Note), keeping 
only concordant annotations in coding regions and VAT annotations in 
noncoding regions (SnpEff provides annotations only for coding regions). 
Nonsynonymous SNVs were annotated with Polymorphism Phenotyping 
v2 (PolyPhen-2)66. SNVs in OMIM and ‘disease-causing’ SNVs in HGMD 
were annotated. SNVs were also annotated with Genomic Evolutionary Rate 
Profiling67 (GERP) scores and ancestral and derived allele status. Indels 
were annotated using indelMapper in VAT with GENCODE v16 annotations 
(Supplementary Note). Structural variants were annotated on the basis of 
RefSeq68 annotations, and loss-of-function annotations were defined using 
MacArthur et al.21 (Supplementary Note). Overall and per-sample variant 
counts stratified by novelty and functional impact were computed for all  
variants (Table 1, Supplementary Table 13 and Supplementary Note).

Loss-of-function analyses. We computed excess loss-of-function mutations 
per genome on the basis of the expected loss-of-function/synonymous muta-
tion ratio for common SNPs (Supplementary Note)20. To identify purifying 
selection of loss-of-function variation, we tabulated counts of loss-of-func-
tion versus non-loss-of-function variation, stratified by frequency. We consid-
ered loss-of-function SNVs versus synonymous SNVs, loss-of-function indels 
versus non-frameshift indels and loss-of-function structural variants versus 
structural variants only removing intronic regions (Supplementary Fig. 2). 
Compound heterozygote loss-of-function events were extracted and stratified 
by frequency (Supplementary Table 3). Residual variation intolerance scores 
(RVIS)24 were extracted for genes with loss-of-function variants in GoNL 
(Supplementary Table 3).

De novo mutation analyses. De novo mutations were called using GATK 
PhaseByTransmission and filtered using a random forest machine learning 
algorithm (Supplementary Note). We fit both a linear model and a log-linear 
model (assuming a Poisson distribution of the residuals) to the number of  
de novo mutations in the offspring given the father’s age at conception, condi-
tioning on the depth of coverage of each trio. We also tested the effect of the 
father’s age on the number of de novo mutations in the offspring, conditioning 
on mother’s age at conception. Using read-phase information, parent of origin 
was determined using GATK ReadBackedPhasing, and analyses were repeated 
on the paternal and maternal de novo mutations separately (Supplementary 
Fig. 5 and Supplementary Note).

Integrated phased panel construction. SNV genotype likelihoods (PLs) from 
the GATK UnifiedGenotyper were used as input for BEAGLE69, treating all 
samples as unrelated to produce a first set of haplotypes. A subset of SNPs 
(based on the Omni2.5M array) was extracted from the BEAGLE output to 
construct a phased scaffold using SHAPEIT2 (ref. 70) with trio information.  
This scaffold was used by MVNcall19 to phase the remaining SNVs. For  
chromosome X, we truncated the male PLs in non-pseudoautosomal regions,  
yielding a negligible heterozygous genotype likelihood.

SNP discovery power and genotype concordance. SNP discovery power was 
estimated by comparing called sites with SNPs genotyped on the Immunochip 
(Supplementary Fig. 19 and Supplementary Note). Genotype concordance  
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was assessed by comparing called genotypes against (i) Immunochip  
genotypes in all samples and (ii) genotypes called by Complete Genomics71 
in 20 overlapping samples.

Imputation in Dutch samples. To evaluate imputation accuracy in Dutch 
samples, we used a set of 81 Dutch samples sequenced at ~40× coverage using 
Complete Genomics data from the population-based amyotrophic lateral  
sclerosis (ALS) study in the Netherlands (PAN)72. We used Complete 
Genomics genotypes at sites overlapping with Illumina Human-1M, 1000 
Genomes Project and GoNL (702,253 SNPs) in these samples to impute the 
other Complete Genomics genotypes using IMPUTE2 (refs. 32,73) with 5 
imputation panels: (i) GoNL, (ii) GoNL and 1000 Genomes Project, (iii) GoNL 
and 1000 Genomes Project EUR, (iv) 1000 Genomes Project and (v) 1000 
Genomes Project EUR. Imputation accuracy was measured using the aggregate 
Pearson’s r2 correlation between the Complete Genomics genotypes and the 
imputed dosages (Fig. 3 and Supplementary Note).

Imputation with country-specific reference panels. We created 3 country-
specific imputation panels of equal size (n = 85) using the TSI and CEU sam-
ples from the 1000 Genomes Project and GoNL samples. Using the different 
panels, we imputed into non-overlapping samples sequenced with Complete 
Genomics (n = 1 for TSI; n = 3 for CEU; n = 5 for NTL) (Supplementary Fig. 7  
and Supplementary Note).

Comparison of imputation accuracy using different chips. Using NTL 
samples, we evaluated GoNL imputation accuracy for five different chips 
(Illumina-Human1M, HumanExomeCore, HumanOmniExpress, Affymetrix 
500k and Affymetrix 6.0) by masking and imputing all variants not on the chip 
(Supplementary Fig. 6 and Supplementary Note).

Principal-components analysis. We performed 3 sets of PCA using 
EIGENSTRAT74 (i) across GoNL and all 14 populations of the 1000 Genomes 
Project, (ii) GoNL and the 1000 Genomes Project EUR panel, and (iii) GoNL 
only (Supplementary Fig. 8). We computed PCA in scenario (i) for SNPs 
included on the Omni2.5M chip and with frequency of >5% in each indi-
vidual population. We removed SNPs with missingness of >0.1% and pruned 
by linkage disequilibrium the remaining SNPs (r2 < 0.3). We computed PCA 
in scenario (ii) following the same procedure except that we extracted sites 
included on the Omni1M chip. PCA in scenario (iii) (Fig. 4b) was computed 
using SNPs in phased haplotypes with a frequency of >10%, no missingness 
and pruned for linkage disequilibrium (r2 < 0.3). Principal components were 
calculated in unrelated individuals only, and offspring were projected onto 
these principal components. We checked for principal-component signifi-
cance (Tracy-Widom) and for spousal correlation along the top ten prin-
cipal components (Supplementary Fig. 20, Supplementary Table 14 and  
Supplementary Note).

IBD-based demographic inference. We used phased SNPs (MAF >1%, phasing 
posterior = 1.0) and kept regions >45 cM in length (Supplementary Table 15)  
with IBD sharing within 5 s.d. of the mean. IBD sharing was inferred using 
GERMLINE and FastIBD41,75. Ancestral population sizes were inferred using 
the average fraction f of the genome spanned by segments of 1–2 cM in length 
for a pair of individuals. Recent effective size was inferred using segments  
>7 cM in length through the estimator ˆ /( )N f f uf= − + −( )50 1 1 , where  
µ represents the minimum length in cM76. The average time to a common 
ancestor was estimated using DoRIS76. Populations were grouped into northern,  
central and southern using hierarchical clustering77 on the basis of sharing 
of IBD segments >1 cM in length. Demographic models involving a single or 
multiple populations with migration were analyzed using DoRIS76,78.

Runs of homozygosity. We used PLINK79 to find runs of homozygous geno-
types (SNPs with MAF of >5% and run length of >500 kb with at most one 
heterozygote genotype) using sliding windows of 5 Mb in unrelated GoNL 
and 1000 Genomes Project samples (Supplementary Fig. 21). We performed 
analysis of variance (ANOVA) to compare means between Dutch regions 
(northern, central and southern) on the basis of 1,000 bootstrap samples 
(Supplementary Note).

Population differentiation (FST). We computed Hudson’s FST and Weir and 
Cockerham’s (WC) FST between GoNL and each 1000 Genomes Project popu-
lation. For the WC estimate, we calculated FST from allele frequency data using 
correction for small sample size80. We calculated Hudson’s FST estimate on 
two different sets of SNPs, using (i) the 1000 Genomes Project YRI (Yoruba 
in Ibadan, Nigeria) population as an ‘outgroup’ population and (ii) sites poly-
morphic in the YRI population and in both populations for which the FST 
was calculated (Supplementary Table 5 and Supplementary Note). We also 
computed Hudson’s FST between (i) the 11 Dutch provinces in GoNL and  
(ii) between the 3 regions (northern, central and southern) used in the IBD 
and f2 analyses (Supplementary Table 16 and Supplementary Note).

Rare variant f2 sharing analysis. We performed an interpopulation f2 analysis 
by merging 1000 Genomes Project data and 88 random samples from GoNL 
(matching 1000 Genomes Project European population size) evenly distributed 
among the 11 provinces (Supplementary Fig. 9 and Supplementary Note).  
We performed f2 analysis using 330 GoNL samples selected evenly across the 11 
provinces (Fig. 4). Provinces were then grouped into three regions (northern,  
central and southern), and proportions of f2 sharing between provinces and 
regions were tested using a chi-squared test (Supplementary Note).

Singleton analysis. A filtered set of singletons was extracted from the SNPs. To 
account for sequencing biases, we computed the residuals of the following gen-
eralized linear regression (GLM) model: singletons per individual ~sequencing 
batch + biobank + depth of coverage + transmitted singletons. To investi-
gate for possible geographic differences in genic singletons, we computed the 
Pearson’s correlation between the principal components and (i) the singleton 
counts and (ii) the residuals of the GLM (Supplementary Fig. 22).

Impact of indels and structural variants. We used 1,000 permutations to 
compute differences in the distribution of indels and structural variants  
with respect to intergenic, intronic, exonic, OMIM and loss-of-function  
annotations (Supplementary Table 17).
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