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Abstract

Sex differences on the Dutch WISC-R were examined in Dutch children (350 boys, 387 girls, age 11–13 years) and Belgian
children (370 boys, 391 girls, age 9.5–13 years). Multi-group covariance and means structure analysis was used to establish
whether the WISC-R was measurement invariant across sex, and whether sex differences on the level of the subtests were
indicative of sex differences in general intelligence (g). In both samples, girls outperformed boys on the subtest Coding, while boys
outperformed girls on the subtests Information and Arithmetic. The sex differences in the means of these three subtests could not be
accounted for by the first-order factors Verbal, Performance, and Memory. Measurement invariance with respect to sex was
however established for the remaining 9 subtest. Based on these subtests, no significant sex differences were observed in the means
of the first-order factors, or the second-order g-factor. In conclusion, the cognitive differences between boys and girls concern
subtest-specific abilities, and these sizeable differences are not attributable to differences in first-order factors, or the second-order
factor g.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Sex differences on the WISC-R have been studied in
the WISC-R standardization samples of the USA,
Scotland, The Netherlands, and China, and in data
from Mauritius, New Zealand, and Belgium (e.g., Born
& Lynn, 1994; Dai & Lynn, 1994; Grégoire, 2000;
Jensen & Reynolds, 1983; Lynn & Mulhern, 1991;
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Lynn, Riane, Venables, Mednick, & Irwing, 2005). The
results are largely comparable across countries. Consis-
tently, large differences favoring girls are reported
regarding the subtest Coding (effect sizes about .5),
and large differences favoring boys are reported
regarding the subtest Information (effect sizes about
.35). In addition, girls sometimes outperform boys on
the subtest Digit Span, but these differences are usually
small and statistically insignificant. Boys score slightly
higher than girls on all other subtests, and even though
these differences are sometimes statistically significant,
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the differences are often small, with effect sizes ranging
between .00 and .20.

In all these studies, WISC-R subtest scores and factor
scores have been compared directly between boys and
girls. Yet it has never been established whether the factor
structure of the WISC-R is actually comparable or
‘measurement invariant’ across sex (see below). The
interpretation of group differences in subtest- or factors
scores may be complicated greatly if the underlying
factor structure differs between the groups. That is, if a
test battery does not measure the same construct(s) in
different groups, then group differences in test scores
representing first or higher order factors are difficult to
interpret. The aim of the present study is to find out
whether the WISC-R is measurement invariant across
sex in children before comparing subtest and factor
scores between boys and girls.

The factor structure underlying the WISC-R has been
studied in clinical and non-clinical samples (e.g.,
Anderson & Dixon, 1995; Burton et al., 2001; Donders,
1993; Huberty, 1987; Kush et al., 2001; Meesters, van
Gastel, Ghys, & Merckelbach, 1998; Wright & Dappen,
1982). Principal component analyses (PCA, e.g., Born
& Lynn, 1994; Lynn & Mulhern, 1991; Rushton &
Jensen, 2003), exploratory factor analyses (EFA, e.g.,
Dolan, 2000; Dolan & Hamaker, 2001; Kush et al.,
2001), and confirmatory factor analyses (CFA, e.g.,
Burton et al., 2001; Dolan, 2000; Dolan & Hamaker,
2001; Keith, 1997; Kush et al., 2001; Oh, Glutting,
Watkins, Youngstrom, & McDermott, 2004) have
yielded either a two factor (‘Verbal’ and ‘Performance’),
or a three factor solution (‘Verbal’, ‘Performance’, and
‘Memory’, also known as ‘Freedom from distractibili-
ty’). In these models, general intelligence (‘g’) was
either operationalized as the first principal component
(PCA), or as a second-order factor (CFA).

Given the assumption that these latent factors underlie
the performance on the level of the subtests, one question
of interest is whether the observed sex differences at the
level of the subtests are a function of differences in g, or
of differences on the level of the broad primary factors of
intelligence (e.g., Verbal intelligence, Performance
intelligence and Memory). However, it may also be the
case that the subtest differences are not attributable to
common factor differences, but rather are amanifestation
of differences in the specific ability that the subtest taps.

If boys and girls differ with respect to the mean on a
given subtest, and this difference cannot be explained by
the mean differences on the latent factor, which is
supposed to underlie performance on the subtest, then
the subtest may be viewed as biased with respect to sex.
The term bias does not imply that the observed mean
difference is not real, rather the term, as used here,
implies that the mean difference on the subtest is greater
or smaller than that expected on the basis of the latent
factor mean difference. According to this definition, the
term bias refers to the subtest as an indicator of the
common factor, which the subtest is supposed to
measure. For example, it has been established that the
Information subtest of theWAIS is biased with respect to
sex. Specifically, the male advantage on this subtest,
which is supposed to measure general knowledge, is too
large to be accounted for by the common factor Verbal
Comprehension (e.g., Dolan et al., 2006; Van der Sluis et
al., 2006). The difference is not indicative of a difference
with respect to Verbal Comprehension. However, it may
well be indicative of a true male advantage in general
knowledge.

Establishing the exact nature of an observed (subtest)
mean difference is important in the light of theories, in
which sex differences are attributed to latent mean
differences (e.g., a difference in Verbal Comprehension,
or a difference in g). In previous studies aimed at
identifying the source(s) of the sex differences, PCAwas
mostly used to investigate sex differences on the factors
underlying intelligence. Sex differences were evaluated
by calculating weighted linear combination of the sub-
tests means, where the subtests’ factor loadings served as
weights (e.g., Born & Lynn, 1994; Jensen & Reynolds,
1983; Lynn, Fergusson, & Horwood, 2005; Lynn &
Mulhern, 1991; Lynn, Riane, et al., 2005). The general
finding of these studies is that boys score higher on the
Verbal and Performance factors, while girls score higher
on the Memory factor. With respect to general
intelligence, operationalized as the first principal com-
ponent, boys usually score higher than girls, but effect
sizes are often small (about .10), and the difference is not
always statistically significant. When expressed on the
conventional IQ-scale with a mean of 100 and standard
deviation of 15, these sex differences range from 1 to 6
IQ points (e.g., Lynn, Fergusson, et al., 2005; Lynn,
Riane, et al., 2005). All these results are however based
on samples with a broad age-range (6–16 years), and it
remains to be seen whether the factor structure of the
WISC-R, and the effects reported for the (factor) means,
are stable across age.

One obvious problem concerning this PCA-based
method of studying sex differences is that sex differences
on the level of the weighted means of the observed
subtest scores may be due to one or just a few of many
subtests. For example, boys may outperform girls on the
Verbal factor only because they outperformed girls on
the subtest Information, while their performance on the
other verbal subtests may even be inferior. In that case, it
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is more accurate to conclude that boys outperform girls
with respect to a specific cognitive ability, i.e., general
knowledge, rather than suggesting that boys have higher
Verbal intelligence. Stated succinctly, this method does
not explicitly address the structure of the observed mean
differences. The use of PCA to study group differences is
however characterized by several other disadvantages.
Because PCA, in contrast to EFA or CFA, is based on a
data transformation rather than an explicit statistical
model, it does not generally include statistical testing or
explicit model fitting. As a consequence, goodness of fit
is not evaluated, i.e., the question of whether the model
provides a reasonable description of the structure of the
data is not addressed. In addition, an explicit statistical
procedure to test whether the factor structure underlying
the given test battery is comparable across groups is not
conducted. The comparability of the factor structure
across groups is however of utmost importance if one
wishes to make meaningful comparisons between the
subtest scores or factor scores of different groups.
Furthermore, within the context of PCA, competing
hypotheses are not compared statistically (e.g., are sex
differences present on the level of the primary factors of
intelligence or rather on the level of the observed subtests
only?). Finally, PCA is not suited for modeling
measurement error in the subtest scores, which is sure
to exist.

An alternative method for testing group differences
within the context of factor models is multi-group
covariance and means structure analysis (MG-CMSA;
Sörbom, 1974; Little, 1997; Widaman & Reise, 1997).
This method provides a comprehensive, model-based
means to investigate the main sources of group
difference. MG-CMSA allows one to evaluate and
compare the fit of alternative models, which correspond
with competing hypotheses. The advantages of MG-
CMSA have been studied and discussed in detail, and
MG-CMSA has repeatedly been shown to be superior to
other methods used to study group difference (e.g.,
method of correlated vectors, the Schmidt–Leiman
procedure, PCA) with regard to, among things, its
flexibility and the facility to test (competing) hypotheses
explicitly (see e.g., e.g., Dolan, 2000; Dolan &
Hamaker, 2001; Dolan, Roorda, & Wicherts, 2004;
Lubke, Dolan, & Kelderman, 2001; Lubke, Dolan,
Kelderman, & Mellenbergh, 2003; Millsap, 1997).
Previously, MG-CMSA was used to study ethnic
group difference in intelligence (e.g., Dolan, 2000;
Dolan & Hamaker, 2001; Dolan et al., 2004; Gustafs-
son, 1992), the Flynn-effect (Wicherts et al., 2004), and
sex differences on the WAIS (Dolan et al., 2006; Van der
Sluis et al., 2006).
In the present study, we used MG-CMSA to
investigate sex differences on the Dutch WISC-R in
Dutch and Belgian children of limited age-range (9–
13 years old). Below, we outline the MG-CMSA
modeling procedure that we used to investigate the
sources of sex differences on the WISC-R. Both first-
and second-order factor models are fitted, with the
second-order factor representing g. The results are
presented for Dutch and Belgian subjects separately, and
are discussed in the light of previous studies.

2. Method

2.1. Subjects

2.1.1. Dutch sample
The Dutch data constitute a combination of two

datasets: data that were previously used in a study of the
genetic and environmental contributions to the devel-
opment of individual differences in intelligence (Bartels,
Rietveld, van Baal, & Boomsma, 2002), and data that
were used to establish the extent to which the
phenotypic correlation between working memory
speed and capacity is of genetic origin (Polderman
et al., 2006). All Dutch subjects were recruited from the
young Netherlands Twin Register (NTR, Boomsma,
1998; Boomsma et al., 2002; Bartels, Beijsterveldt,
Stroet, Hudziak, & Boomsma, in press). Since 1986, the
majority of parents with multiple births in The Nether-
lands receive a brochure and a registration form from the
NTR. Registration is voluntary, and about 40% of the
parents register their twins with the NTR. Information
from questionnaires, blood group, and DNA poly-
morphisms (genetic markers) was used to assign
zygosity to same-sex twins (Rietveld et al., 2000).

For this study, data were available from 368 twin
pairs (77 monozygotic male pairs, 100 monozygotic
female pairs, 67 dizygotic male pairs, 62 dizygotic
female pairs, and 62 opposite sex twins), and, due to
missingness, one single twin. As in most of the twin
studies, the percentage of MZ twins in this sample
(48%) is somewhat higher than in the overall population
(∼ 33%) due to self-selection bias.

The sample included 350 boys and 387 girls (737
subjects in total). For all twins in this study, level of
parental occupation was assessed at age 10 of the twins.
Occupational level was rated on a 5-point scale, ranging
from manual labor to academic employment. Paternal
occupational level was used, or maternal occupational
level in case paternal information was not available. In
comparison to the Dutch population (Centraal Bureau
voor de Statistiek, 2002), the level of occupation of the



51S. van der Sluis et al. / Intelligence 36 (2008) 48–67
parents of the twins participating in this study was
somewhat higher: the percentages observed in the
present study and the Dutch population are: 1% and
6% (manual), 15% and 26% (lower), 42% and 40%
(middle), 30% and 19% (higher), and 11% and 9%
(academic). Paternal and maternal educational level did
not differ between the boys and girls in this sample (z=
− .19, ns, and z=− .20, ns, respectively).

With the exception of one twin pair aged 10.9 years
old, the age of all subjects ranged between 11.9 and
12.9 years at the time of testing. The youngest twin pair at
10.9 years old was not removed from the sample as it did
not constitute an outlier in any aspect. Sex differences
with respect to age were absent (t(735)b1, ns).

2.1.2. Belgian sample
The Belgian subjects were recruited from the East

Flanders Prospective Twins Survey (EFPTS), a popu-
lation-based register of twins in the province of East
Flanders, Belgium (Derom et al., 2002; Loos, Derom,
Vlietinck, & Derom, 1998). Since 1964, EFPTS collects
information on the mother, the placenta and the child of
98% of all multiples born in the province. Zygosity of all
twins was determined through sequential analysis based
on sex, foetal membranes, umbilical cord blood groups
(ABO, Rh, CcDEe, Mnss, Duffy, Kell), placental
alkaline phosphatase and, since 1982, DNA fingerprints.
Unlike-sex twins and same-sex twins with at least one
different genetic marker were classified as DZ; mono-
chorionic twins were classified as MZ. For all same-sex
dichorionic twins with the same genetic markers a
probability of monozygosity was calculated.

All subjects, whose data are used in the present study,
participated in an ongoing study on cognitive ability in
twins aged 7.5 to 15 years old. This sample was shown
to be representative for gender, birth weight, and
gestational age. As in most of the twin studies, the
MZ twins were slightly over represented (42%) due to
self-selection biases. Comparison of the 663 twins with
known IQ scores with the twins who refused to
participate in the study (n=204) revealed that, in the
non-participating group, parents with a lower educa-
tional level and twins who attend special schools tend to
be over represented. Part of the data (only complete
same-sexed twin pairs with known IQ scores) was
previously used to study the effect of chorion-type on
the estimation of the heritability of intelligence (Jacobs
et al., 2001).

The present dataset comprises a subsample (age-
range between 9.5 and 13 years at time of measurement)
of the above-mentioned study. The sample consisted of
370 boys and 391 girls (761 subjects in total). Data were
available from 374 complete twin pairs (83 monozygotic
male pairs, 76 monozygotic female pairs, 44 dizygotic
male pairs, 63 dizygotic female pairs, and 108 opposite
sex twin pairs), and 13 single twins. Sex differences with
respect to age were absent (t(759)=1.73, ns).

2.2. Tests

In both Dutch and Belgian samples, psychometric IQ
was measured with the following 12 subtests of the
Dutch WISC-R (Van Haasen et al., 1986): Information
(INF), Similarities (SIM), Arithmetic (AR), Vocabulary
(VOC), Comprehension (COMP), Picture Completion
(PC), Picture Arrangement (PA), Block Design (BD),
Object Assembly (OA), Mazes (MA), Coding (CO), and
Digit span (DS). In the Belgian data missingness was
absent. The Dutch data, in contrast, included systematic
missing data. Specifically, for reasons of efficiency, only
6 out of 12 subtests (namely SIM, AR, VOC, BD, OA,
and DS) were administered to the 354 Dutch subjects
(165 boys, 189 girls) who previously participated in the
study by Polderman et al. (2006). Some additional
missingness occurred due to procedural errors, but this
percentage was very small (.2%).

Due to this systematic omission of subtests in part of
the Dutch sample, missingness can not be considered
completely at random (MCAR, e.g., Schafer & Graham,
2002) in the total Dutch sample (pb .01 for Little's
MCAR test performed across families and for boys and
girls separately). In the following exploratory and
confirmatory factor analyses, raw data Maximum
Likelihood estimation was employed to accommodate
the missingness, and use all available data. Raw data
ML estimation has been found to provide better
parameter estimates than conventional methods, such
as listwise or pairwise deletion and mean imputation,
even if data are not missing (completely) at random
(e.g., Tomarken & Waller, 2005).

2.3. Statistical analyses

2.3.1. Measurement invariance and model fitting
strategies

To study sex differences in the means and covariances
within the common factor model, multi-group confirma-
tory covariance and means structure analysis (MG-
CMSA) was used. Before sex differences with respect to
the latent common factors can be examined, we first need
to establish whether the WISC-R is measurement
invariant with respect to sex. Measurement invariance
with regard to sex implies that the distribution of the
observed scores on a subtest (yi) given a fixed level of the
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latent factor (η), depends on the score on the latent factor
η, and not sex, i.e., f [ yi|η,sex]= f [ yi|η] (Mellenbergh,
1989). Given normally distributed data, measurement
invariance can be defined in terms of the means and the
variances of the yi given η. With respect to the means,
measurement invariance implies that the expected value
of subjects i on subtest y depends only on the latent factor
score η, and not on sex, i.e., E[yi|η,sex]=E[yi|η]. Within
the common factor model, to establish measurement
invariance one needs to establish whether the relation
between the observed subtest scores and the underlying
latent factors is the same in boys and girls (Meredith,
1993). Measurement invariance can be established
through the imposition of a series of specific constraints
on the model parameters over groups, i.e., across sex in
this case (Meredith, 1993). First of all, the subtests should
load on the same factors in both boys and girls, i.e., the
measurement model should be the same in both sexes
(also called configural invariance). Subsequently, the
function relating the observed subtest scores to the latent
factors can be considered identical for boys and girls if
the following parameters can, to reasonable approxima-
tion, be considered equal across sex: a) the factor
loadings of the observed subtests on the latent factors, b)
the intercepts (note that the factor means are allowed to
differ across groups), and c) the residual variances, i.e.,
the variance in the observed subtest scores that is not
explained by the latent common factors. If these
constraints prove tenable, the WISC-R may be consid-
ered to be measurement invariant with respect to sex, and
in that case, individual differences and group differences
on the level of the observed subtests can be interpreted in
terms of differences on the common factors.

The model fitting strategy that follows from the
above described equality constraints is described in
detail in Van der Sluis et al. (2006). Below we give an
overview of this model fitting procedure, and we refer to
Appendix A of Van der Sluis et al. (2006) for a
description of this procedure in matrix notation.

2.3.2. First-order factor models
First, we fitted the least constrained model, model F1,

that tests for configural invariance (Horn & McArdle,
1992; Widaman & Reise, 1997). Configural invariance
implies that the configuration of factor loadings (and
correlated residuals, if any) is the same across sex, but
the exact values of these parameters are allowed to differ
across groups. In this model, the observed means of the
12 subtests are estimated freely in boys and girls, i.e., we
do not yet introduce a constrained model for the mean
structure. Note that in model F1, we fixed the variances
of the latent factors to 1 in both boys and girls. This is a
standard identifying constraint in factor analysis (e.g.,
see Bollen, 1989).

Subsequently, we tested for metric invariance (Horn&
McArdle, 1992; Widaman & Reise, 1997) by constrain-
ing the factor loadings to be identical across sex. We
denote this model F2. Identical factor loadings are a
prerequisite for a meaningful comparison between boys
and girls with respect to the latent common factors, i.e., if
the factor loadings of the subtests on the latent factors are
not identical across sex, we cannot be sure that the latent
factors are identical, and thus comparable, across sex. If
the constraints introduced in model F2 do not result in a
significant deterioration of the model fit compared to
model F1, metric invariance is considered tenable. Note
that these equality constraints on the factor loadings
render fixation of the factorial variance in both group
superfluous, so in model F2, the factor variances remain
fixed to 1 in the boys, but are estimated freely in the girls.

Next, we test for strong factorial invariance (Horn &
McArdle, 1992; Meredith, 1993; Widaman & Reise,
1997) by introducing a restrictive structure for the means.
We denote this model F3. In model F3, the intercepts in the
regression of the observed variables on the common
factors are constrained to be equal in boys and girls, while
themeans of the factors are estimated.We thus introduce a
constrained model for the means structure. Note that for
reasons of identification, it is not possible to estimate the
factor means in both groups (Sörbom, 1974). We chose to
fix the factor means to zero in the boys, and estimated
freely in the girls. Modeled as such, the boys function as a
reference group, and the factor means in the female group
are calculated as deviations from the factor means of the
boys. If the fit of model F3 is not significantly worse than
the fit ofmodel F2, the assumption that the expected values
of the observed subtest scores depend not on sex but only
on the latent factor scores, is considered tenable, i.e.,E [yi|
η,sex]=E[yi|η]. Model F3 thus embodies the test whether
the latent common factors can account for the observed
mean differences between boys and girls on the level of
the subtests. Boys and girls can be comparedmeaningfully
with respect to their first-order factorsmeans only ifmodel
F3 holds. If model F3 is not tenable, one or more of the
mean differences between boys and girls on the level of
the observed subtest scores cannot be accounted for by the
first-order factors. As explained above, subtests are
considered biased with respect to sex if observed dif-
ference on these tests cannot be attributed to differences on
the level of the primary factors of intelligence.

We next test for strict factorial invariance (Horn &
McArdle, 1992;Meredith, 1993; Widaman & Reise,
1997) by constraining the residual variances to be equal
across sex. We denote this model F4. If model F4 is
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tenable, in comparison to model F3, we conclude that all
differences between boys and girls with respect to the
means and the covariance structure can be accounted for
by sex differences in the first-order factors. Note that the
tenability of model F4 is not a prerequisite for the
comparability of boys and girls with respect to the
observed means, or with respect to the means of the first-
and second-order latent factors. To this end, F3 suffices.

2.3.3. Second-order factors
A second-order factor (model S1), i.e., the model

including general intelligence g as a second-order
factor, was introduced in either model F3 or F4,
depending on the tenability of the constraints introduced
in model F4. Depending on the number of first-order
factors, this hierarchical factor model is either equiva-
lent to the first-order factor model (in the case of 3 first-
order factors), or it tests whether all relations between
the first-order factors can be explained by 1 second-
order factor (in the case of 4 or more first-order factors).
At this point, the second-order factor loadings, i.e., the
loadings of the first-order factors on the second-order
factor, are allowed to differ across sex, and the means of
the second-order factors are fixed to zero in both groups,
while the first-order factor means are fixed to zero in
boys, and freely estimated in girls (as in models F3 and
F4). For reasons of identification, the variance of the
second-order factor is fixed to 1 in both groups.

In model S2, the second-order factor loadings are
constrained to be equal across sex. Like in model F2,
these equality constraints on the factor loadings allow
one to freely estimate the variance of the second-order
factor in one of the groups (in our case the girls). With
model S2 we thus test whether the factor loadings of the
first-order factors on the second-order factor are equal in
boys and girls.

In model S3, the first-order factor means are con-
strained to be equal across sex. Given our present para-
meterization, this involves fixing the first-order factor
means differences to zero in the girls. The second-order
factor mean is then fixed to zero in the boys, and
estimated freely in the girls (analogous to model F3). In
this model, the mean difference between boys and girls
are described entirely in terms of mean differences on the
second-order factor, i.e., in g. If model S3 is tenable (in
comparison to model S2), we conclude that the mean
differences between boys and girls on the level of the
observed subtests can be accounted for completely by
differences in g. If model S3 does not fit the data, we
conclude that the differences between boys and girls at the
level of the first-order factors are not (or not completely)
attributable to difference between boys and girls in g.
In the final model, model S4, we constrain the
second-order factor means to be equal across sex (i.e.,
we fix the second-order factor mean difference to zero).
If model S4 fits as well as model S3, we conclude that
boys and female do not differ with respect to g. A
significant deterioration of the fit as a result of this
constraint indicates the presence of sex differences in g.

2.3.4. Estimation and model fit
Both the Dutch and Belgian data were gathered within

families. The focus of this paper, however, is on gender
differences, and not on the correlations among family
members, which are undoubtedly present as cognitive
abilities are known to be quite heritable (e.g., Bartels
et al., 2002; Daniels, Devlin, & Roeder, 1997; Posthuma
et al., 2002). Treating within-family data as if they are
independently distributed observations results in incor-
rect standard errors and incorrect χ2 goodness of fit
values, while the point estimations of parameter
estimates remain unbiased (e.g., Rebollo, de Moor,
Dolan & Boomsma, 2006). All factor analytic analyses
were therefore performed inMplus, version 4 (Muthén&
Muthén, 2005), which computes corrected standard
errors and Satorra–Bentler scaled χ2-tests, taking into
account the dependence of observations. Competing
hypotheses, represented by different nested models
(where the nested model is the more restricted model),
can be compared through a weighted χ2-difference test
developed especially for the comparison of the Satorra–
Bentler scaled χ2s (Satorra, 2000). The more restricted
model is accepted as the preferred model, if its fit is not
significantly worse than the fit of the less restrictive
model, i.e., if the χ2-difference test (henceforth the χdiff

2 )
is not significant. Below, we will not report scaled χ2-
values for each model separately, as these are not
informative, rather we report weighted χdiff

2 tests for the
comparison between competing models. Given the large
sample sizes, and the number of tests that were required
to compare all ensuing models, we chose an α of .01.

To evaluate the fit of the ensuing models to the data,
the root mean square error of approximation (RMSEA),
and the comparative fit index (CFI) were used (e.g.,
Bentler, 1990; Bollen & Long, 1993; Jöreskog, 1993;
Schermelleh-Engel, Moosbrugger, & Müller, 2003).
The RMSEA is a measure of the error of approximation
of the covariance and mean structures as implied by the
specified model to the covariance and mean structures in
the population. As a measure of approximation-
discrepancy per degree of freedom, this fit index favors
more parsimonious models. Generally, good fitting
models are thought to have RMSEAb .05, although
simulation studies by Hu and Bentler (1999) showed
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that a cut-off criterion of .06 can be used as well. Here
we adopt the following rule of thumb: a RSMEA of .05
or less indicates good approximation, RMSEA between
.05 and .08 indicates reasonable approximation, and
RMSEA greater than .08 indicates poor approximation
(Browne & Cudeck, 1993; Schermelleh-Engel et al.,
2003). The CFI is based on the comparison of the fit of
the target model (i.e., the user-specified model) with the
fit of the independence model (i.e., a model in which all
variables are modeled as unrelated). Like the RMSEA,
the CFI favors more parsimonious models. CFI ranges
from zero to 1.00, and values N .90 or .95 are usually
taken as indicative of adequate model fit (e.g., Hu &
Bentler, 1999; Schermelleh-Engel et al., 2003). When
testing for measurement invariance, the scaled χ2

statistic was used to compare the fit of the competing
models, while the RMSEA and the CFI were used only
to check that the general fit of the ensuing models was
still acceptable. In addition, modification indices were
used to detect local misspecifications in the models. The
modification index of a constrained parameter (i.e.,
fixed to a given value or subject to an equality
constraint) expresses the expected drop in overall χ2,
if the constraint on the parameter is relaxed.

3. Results

All analyses were performed on the standardized
subtest scores, which have a mean of 10 and SD of 3 in
the population.
Table 1
Means (M) and standard deviations (SD) for the Dutch and Belgian boys an

Netherlands

Boys Girls

M SD N M SD N d

INF 10.33 2.47 185 8.98 2.75 198 .52
SIM 9.71 3.03 349 9.56 2.96 385 .05
AR 11.03 2.91 348 10.14 2.83 387 .31
VOC 9.27 2.31 349 8.66 2.29 387 .27
COMP 9.76 2.25 185 9.36 2.34 198 .17
PC 11.41 2.72 185 11.01 2.51 198 .15
PA 10.05 2.94 185 9.52 2.87 198 .18
BD 10.35 3.02 350 10.15 2.84 387 .07
OA 8.68 2.84 350 8.67 2.88 384 .00
CO 10.93 2.61 183 12.35 2.75 196 − .53
MA 11.34 2.82 185 10.93 2.68 198 .15
DS 10.25 2.70 348 10.34 2.46 386 − .03

Scores are standardized scores (in norm sample, M=10, SD=3).
Note. d is Cohen's measure of effect size d, defined as (Mboys−Mgirls /σpoole

INF=Information, SIM=Similarities, AR=Arithmetic, VOC=Vocabular
Arrangement, BD=Block Design, OA=Object Assembly, MA=Mazes, CO
3.1. Preliminary analyses

Table 1 contains means and standard deviations of all
12 standardized subtest scores, reported separately for
Dutch and Belgian boys and girls. As a measure of effect
size, Cohen's d is also reported, which is calculated as
the difference between the mean of the boys and the girls
(μboys−μgirls) divided by the pooled standard deviation,
so that positive (negative) d's denote male (female)
advantage. Most effect sizes were small (b |.3|), and
medium effect sizes (between |.3| and |.6|) were only
observed with respect to INF and AR (favoring boys)
and CO (favoring girls).

It is possible that the differences between boys and
girls are indicative of differences between families in,
for example, socioeconomic status (SES), rather than of
genuine sex differences. It is impossible to measure all
variables on which families might differ, but comparing
boys and girls who grew up in the same family
environment provides a powerful check of the possible
influence of family background. Opposite sex twin pairs
are therefore of special interest. If the sex differences
that are observed across families remain significant
within families, then these differences are more likely to
represent real differences between boys and girls.
However, if these between family differences diminish,
or even disappear, within families, the between family
differences are more likely to relate to environmental
differences. (Note that the opposite twin design does
not imply perfect matching of boys and girls; e.g.,
d girls on the 12 WISC-R subtests

Belgium

Boys Girls

M SD N M SD N d

9.45 2.81 370 8.46 2.56 391 .37
10.92 2.91 370 10.90 3.15 391 .01
10.17 2.90 370 9.63 2.92 391 .19
11.11 2.74 370 10.91 2.66 391 .07
11.34 2.79 370 11.49 2.97 391 − .05
9.91 2.86 370 9.80 2.81 391 .04

10.15 2.90 370 9.54 3.10 391 .20
10.31 2.94 370 9.91 3.10 391 .13
9.53 3.17 370 9.03 3.19 391 .16
9.67 2.73 370 11.21 3.12 391 − .53

10.53 2.96 370 10.03 2.99 391 .17
10.22 2.90 370 10.58 2.91 391 − .12

d).
y, COMP=Comprehension, PC=Picture Completion, PA=Picture
=Coding, DS=Digit span.



Table 3
Results exploratory factor analyses, separately for Dutch and Belgian
boys and girls

Netherlands

Boys Girls

(N=350) (N=387)

V P M V P M

INF 0.656 0.083 0.055 0.761 −0.021 0.120
SIM 0.533 0.044 0.174 0.700 0.012 0.008
AR 0.305 −0.045 0.611 0.254 −0.095 0.670
VOC 0.945 −0.156 −0.010 0.797 0.021 −0.001
COM 0.517 0.119 0.075 0.749 −0.064 −0.021
PC 0.192 0.274 −0.049 0.155 0.401 0.003
PA 0.257 0.318 −0.088 0.301 0.351 0.073
BP −0.169 0.617 0.544 0.026 0.593 0.213
OA −0.098 0.783 0.079 −0.100 0.876 −0.069
CO −0.083 0.041 0.592 −0.096 0.102 0.562
MA −0.052 0.046 0.502 0.044 0.098 0.257
DS 0.239 −0.036 0.405 −0.083 −0.044 0.653

Belgium

Boys Girls

(N=370) (N=391)

V P M V P M

INF 0.506 0.080 0.289 0.701 0.017 0.113
SIM 0.694 0.034 −0.010 0.556 0.046 0.110
AR 0.273 0.010 0.510 0.254 −0.041 0.558
VOC 0.672 −0.012 0.196 0.891 −0.009 −0.008
COMP 0.690 −0.002 −0.001 0.585 0.072 0.079
PC 0.105 0.471 −0.072 0.040 0.489 0.100
PA 0.213 0.366 0.054 0.229 0.425 0.027
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systematic differences may exist in the way that boys
and girls are treated). To more closely examine the mean
differences, paired t-tests were performed on the data of
the Dutch and Belgian opposite sex twin pairs (Table 2).

In both the Dutch and Belgian samples, boys scored
significantly higher on INF than their female sibling,
while girls scored significantly higher on CO than their
male sibling. These results are consistent with the effect
sizes in Table 1, and likely to represent genuine dif-
ferences between boys and girls. In addition, Dutch boys
scored higher on AR, VOC and COMP than their female
siblings. These latter results are consistent with the
intermediate effect sizes for the Dutch sample as
presented in Table 1. In sum, the results of the paired
t-tests correspond to the differences observed between
boys and girls in the total sample, and the sex
differences are therefore not likely to be the result of
between family differences in factors like SES.

The mean differences between boys and girls on the
level of the observed subtest scores, and the relation
with the underlying primary factors of intelligence are
further examined using MG-CMSA.

3.2. Exploratory factor analyses

Because the reported patterns of factor loadings vary
across studies, exploratory factor analyses (EFA) were
carried out first to establish the pattern of factor loadings
in Dutch and Belgian boys and girls separately. The
Table 2
Paired t-tests for Dutch and Belgian opposite sex twins

Netherlands Belgium

(Npairs=62) (Npairs=108)

t df p t df p

INF 6.53 34 .00 3.70 107 .00
SIM 1.18 61 .24 − .55 107 .59
AR 2.47 61 .02 1.24 107 .22
VOC 2.29 61 .03 .29 107 .77
COMP 2.19 34 .04 − .10 107 .92
PC − .77 34 .44 .33 107 .74
PA 1.70 34 .10 .52 107 .60
BD .00 61 1.00 .69 107 .49
OA .51 60 .61 .72 107 .47
CO −2.99 33 .01 −4.23 107 .00
MA .13 34 .90 1.04 107 .30
DS .45 60 .65 − .15 107 .88

Note. Positive t-values indicate male advantage; negative t-values
indicate female advantage.
INF = Information, SIM = Similarities, AR = Arithmetic, VOC =
Vocabulary, COMP = Comprehension, PC = Picture Completion, PA =
Picture Arrangement, BD = Block Design, OA = Object Assembly,
MA = Mazes, CO = Coding, DS = Digit span.

BD −0.151 0.458 0.589 −0.026 0.581 0.313
OA −0.019 0.721 0.097 0.009 0.901 −0.101
CO 0.016 0.012 0.501 −0.014 0.112 0.424
MA −0.009 0.227 0.259 −0.122 0.211 0.333
DIG 0.219 −0.113 0.478 0.023 −0.119 0.738

INF=Information, SIM=Similarities, AR=Arithmetic, VOC=Voca-
bulary, COMP=Comprehension, PC=Picture Completion, PA=Pic-
ture Arrangement, BD=Block Design, OA=Object Assembly,
MA=Mazes, CO=Coding, DS=Digit span, V=Verbal factor, P=Per-
formance factor, M=Memory factor.
exploratory factor solution was followed by an oblique
rotation (Promax; see Lawley & Maxwell, 1971), using
normal theory maximum likelihood estimation (ML).

In both Dutch and Belgian samples, solutions with
one factor or with two correlated factors were
inadequate, while the solution with three correlated
factors proved reasonable in terms of goodness of fit and
interpretability. Table 3 contains the loadings of the 12
subtests on the three correlated common factors reported
separately for Dutch and Belgian boys and girls. Factor
loadings in bold print were considered substantial in all
subsamples. This empirically established pattern of
factor loadings is largely similar to factor solutions



Table 4
Fit statistics for the Dutch models

CFI RMSEA χ2diff

F1 Configural invariance .96 .04
F1a Configural invariance+residuals OA and BD correlated .98 .03 F1a vs. F1: χ

2
diff(2)=26.84, pb .001

F2 Metric invariance .98 .03 F2 vs. F1a: χ
2
diff(11)=9.43, ns

F3 Strong factorial invariance .95 .05 F3 vs. F2: χ
2
diff(9)=65.66, pb .001

F3a Strong factorial invariance, bar INF, AR and CO .98 .03 F3a vs. F2: χ
2
diff(6)=10.75, ns

F4 Strict factorial invariance .98 .03 F4 vs. F3a: χ
2
diff(13)=12.80, ns

S1 Introduction 2nd order factor .98 .03 S1 is identical to F4
S2 Metric invariance 2nd order factor .98 .03 S2 vs. S1: χ

2
diff(2)=5.34, ns

S3 Strong factorial invariance 2nd order factor .98 .03 S3 vs. S2: χ
2
diff(2)=1.79, ns

S4 Strict factorial invariance 2nd order factor .97 .03 S4 vs. S3: χ
2
diff(1)=4.20, ns (p=.04)

56 S. van der Sluis et al. / Intelligence 36 (2008) 48–67
reported in previous papers (e.g., Burton et al., 2001;
Dolan, 2000; Dolan & Hamaker, 2001; Keith, 1997;
Kush et al., 2001; Meesters et al., 1998; Oh et al., 2004),
with the first factor representing the Verbal factor, the
second factor the Performance factor, and the third
factor the Memory factor (also known as Freedom from
Distractibility: a mix of memory and speed). This
configuration of factor loadings was subsequently used
in the confirmatory MG-CMSA, with the bold factor
loadings estimated freely, and all other factor loadings
fixed to zero.

3.3. Confirmatory factor analyses

3.3.1. Dutch sample
The results and fit statistics of the MG-CMSA on the

Dutch data are presented in Table 4.
Fig. 1. First-order factor model for Dutch sample, where the λ's denote the
correlations between the factors, and the ε's denote those parts of the varianc
variances. VERB=Verbal factor, MEM=Memory factor, PERF=Performanc
VOC=Vocabulary, COMP=Comprehension, PC=Picture Completion, PA
MA=Mazes, CO=Coding, DS=Digit span.
3.3.1.1. First-order factor models. In model F1 we
tested for configural invariance: a factor model with
three correlated factors was fitted in boys and girls
separately, with INF, SIM, AR, VOC and COMP
loading on the Verbal factor, OA, BD, PC and PA
loading on the Performance factor, and AR, BD, CO,
MA and DS on the Memory factor. All these factor
loadings, which were estimated separately in the two
sexes, were significant in both boys and girls. The
modification indices (MIs) showed however that the fit
of this baseline model could be improved substantially
by allowing the residuals of OA and BD to correlate
(MI=20 in boys, and MI=18 in girls). Note that such
minor modifications of the Wechsler-model are not
uncommon, and this specific link between OA and BD
has been established before (e.g., Arnau & Thompson,
2000; Dolan et al., 2006; Ward, Axelrod, & Ryan,
regressions of the 12 subtests on the three factors, the Ψ 's denote the
es in the subtests that are not predicted by the factors, i.e., the residual
e intelligence, INF=Information, SIM=Similarities, AR=Arithmetic,
=Picture Arrangement, BD=Block Design, OA=Object Assembly,



Table 5
Correlations between the first-order factors Verbal, Performance, and
Memory for Dutch boys (below diagonal) and girls (above diagonal),
and the means and standard deviations for boys and girls on the first-
order factors

Verbal Performance Memory

Verbal .72 .49
Performance .59 – .60
Memory .57 .39 –
Boys (N=350)

Mean 0 0 0
SD 1 1 1

Girls (N=387)
Mean − .27 − .19 − .01
SD 1.04 1.01 .89

Effect size − .26 − .19 − .01

Note. The means of the girls should be interpreted as deviations from
the means of the boys, and were not significantly different from those
of the boys (as tested in model S3).
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2000). Addition of these parameters to model F1a in
female and male samples resulted in a significant
improvement of the fit (χdiff

2 (2)=26.84, pb .001).
Model F1a, which is depicted in Fig. 1, will serve as
the baseline model for all subsequent analyses. As the
configuration of factor loadings and correlated residuals
was identical in boys and girls, configural invariance
across sex was established in the Dutch sample.

In model F2 we tested for metric invariance by
constraining the 14 factor loadings to be equal across
sex, while the variances of the three common factors
were freely estimated in the girls, and fixed to 1 in the
boys for reasons of identification. These constraints did
not result in a significant deterioration of the fit,
compared to model F1a (χdiff

2 (11)=9.43, ns), so the
factor loadings can be considered identical across sex.

Strong factorial invariance was tested in model F3 by
constraining the intercepts to be equal across sex, while
the factorial means were fixed to zero in the boys, and
estimated as latent mean differences in the girls. The fit
of this model was however significantly worse than the
fit of model F2 (χdiff

2 (9)=65.66, pb .001), implying that
not all mean sex differences on the level of the subtests
can be accounted for by differences on the level of the
first-order factors. In view of the MIs, in model F3a,
it was decided to constrain all intercepts to be equal
across sex, except the intercepts of INF, AR, and CO.
Model F3a did not fit significantly worse than model F2
(χdiff

2 (6)=10.75, ns). This means that strong factorial
invariance was established for 9 of the 12 subtests. The
sex differences on the subtests INF, AR and CO were
too large to be accounted for by the first-order factors.
So, in the sense discussed above, these three subtests
may be viewed as biased within the common factor
model. In all subsequent models, the subtest means of
INF, AR, and COwere therefore estimated freely in each
group, thereby effectively eliminating these subtests
from the means model, while all other subtest means
remained constrained to be equal across groups. Note
that subtests that are biased with respect to their means
can be retained in the model without consequence
because, once these subtests' means have been relaxed
(i.e., allowed to vary over sex), these indicators no
longer contribute to the model for the means.

Strict factorial invariance was tested in model F4 by
constraining the residual variances plus the correlated
residuals to be equal across sex. The fit of model F4 was
not significantly worse than the fit of model F3a
(χdiff

2 (13)=12.80, ns), so the (correlated) residuals
could be considered identical in boys and girls. The
factor correlations and the factor means of this model are
presented in Table 5. We find practically no sex
difference with respect to Memory (− .01, s.e.), and
small differences with respect to Verbal (− .26, s.e.) and
Performance (− .19, s.e.). Fixing the first-order factor
mean differences to be equal across sex did not result in
a significant deterioration of model fit (χdiff

2 (3)=6.49,
p=.09), i.e., boys and girls did not differ significantly
with respect to their means on the first-order factors. We
note however, that the missingness present in the Dutch
data may have reduced the statistical power to detect
small factor mean differences between the sexes.

In sum, full measurement invariance was not tenable
as the sex differences on INF, AR and CO were too large
to be accounted for by the first-order factors. Partial
measurement invariance was however tenable for the
remaining 9 subtests, and all small (and non-significant)
sex differences as observed on the level of these subtests
could be described as (non-significant) differences on
the level of the first-order factors. Although no
significant mean differences were observed between
boys and girls on the level of the first-order factors, a
more parsimonious model for the means may identify a
significant effect for sex. We therefore proceed in
studying sex differences with respect to the second-
order factor g.

3.3.1.2. Second-order factors models. In model S1,
‘g’, was introduced as a second-order factor for general
intelligence. However, as there were only three first-
order factors, this model with three first-order factors
loading on 1 second-order factor was statistically
equivalent to the model without a second-order factor,
in which the first-order factors were simply correlated.
The fit of model S1 was thus identical to the fit of model
F4. Model S1 is illustrated in Fig. 2.



Fig. 2. The hierarchical factor model, where the λ's denote the regressions of the 12 subtests on the three first-order factors, the γ's denote the
regressions of the first-order factor on the second-order factor g, and the ζ's and ε's denote those parts of the variances in the subtests and first-order
factors that are not predicted by the first-order factors and the second-order factor, respectively. Note that the model is identical for the Dutch and
Belgian sample, except that in the Belgian sample age-effects were regressed out on the level of the subtests (not drawn here for convenience).
g= factor for general intelligence, VERB=Verbal factor, MEM=Memory factor, PERF=Performance intelligence, INF= Information,
SIM=Similarities, AR=Arithmetic, VOC=Vocabulary, COMP=Comprehension, PC=Picture Completion, PA=Picture Arrangement, BD=Block
Design, OA=Object Assembly, MA=Mazes, CO=Coding, DS=Digit span.
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In model S2, the second-order factor loadings were
constrained to be equal across sex, and the variance of
the second-order factor was fixed to 1 in the boys (for
reasons of identification) and estimated freely in the
girls. The fit of model S2 was not significantly worse
than the fit of model S1 (χdiff

2 (2)=5.34, ns), i.e., the
factor loadings of the three first-order factors on g are
identical across sex.

In model S3, all first-order factor means were
constrained to be zero in both boys and girls, while the
mean of the second-order factor g was constrained to
Table 6
Fit statistics Belgian sample

F1 Configural invariance
F1a Configural invariance+residuals OA and BD correlated
F2 Metric invariance
F3 Strong factorial invariance
F3a Strong factorial invariance, bar INF, AR and CO
F4 Strict factorial invariance
F4a Strict factorial invariance, bar INF
S1 Introduction 2nd order factor
S2 Metric invariance 2nd order factor
S3 Strong factorial invariance 2nd order factor
S4 Strict factorial invariance 2nd order factor
zero in boys for reasons of identification, and estimated
freely in girls. The fit of the model did not deteriorate
significantly as a result of these constraints (χdiff

2 (2)= .79,
ns), meaning that the sex differences with respect to the
means of the first-order factors could be accounted for by
the second-order factor.

Finally, model S4, in which the second-order factor
means were constrained to be identical for boys and girls
(i.e., fixed to zero in both groups), did not fit the data
significantly worse than model S3 (χdiff

2 (1)=4.20,
p=.04). So we conclude that boys and girls do not
CFI RMSEA χ2diff

.97 .05

.98 .04 F1a vs. F1: χ
2
diff(2)=48.01, pb .001

.99 .03 F2 vs. F1a: χ
2
diff(11)=4.89, ns

.95 .06 F3 vs. F2:χ
2
diff(9)=112.90, pb .001

.98 .04 F3a vs. F2: χ
2
diff(6)=17.05, ns

.97 .04 F4 vs. F3a: χ
2
diff(13)=29.81, pb .01

.98 .04 F4a vs. F3a: χ
2
diff(12)=23.31, ns

.98 .04 S1 is identical to F4a

.97 .04 S2 vs. S1: χ
2
diff(2)=7.86, ns

.97 .04 S3 vs. S2: χ
2
diff(2)=4.21, ns

.97 .04 S4 vs. S3: χ
2
diff(1)b1, ns
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differ significantly with respect to g, i.e., with respect to
general intelligence. We note again that the present
missingness may have reduced the power to detect latent
mean differences. For the record, we therefore note that
the effect size for the difference in means between boys
and girls on the second-order factor g was .25, which
corresponds to a mean difference in favor of boys of
3.83 IQ points on a conventional IQ-scale.

3.3.2. Belgian sample
Because the age-range of the Belgian data was rather

large (9.5–13 yrs) age was included in all models with
age-effects regressed out on the level of the observed
subtests. Note that all relations between age and the 12
subtests were estimated, i.e., the part of the model
regarding the age-correction was saturated (fitted
perfectly), and thus did not contribute to any misfit in
the following models. The results and fit statistics of the
MG-CMSA on the Belgian data are presented in Table 6.

3.3.2.1. First-order factor models. Configural invari-
ance was tested in model F1, i.e., a factor model with
three correlated factors was fitted in boys and girls
separately, with INF, SIM, AR, VOC and COMP
loading on the Verbal factor, OA, BD, PC and PA
Fig. 3. First-order factor model for Belgian sample, where the λ's denote the
correlations between the factors, and the ε's denote those parts of the varianc
variances. Note that the Belgian model is identical to the Dutch model, except
the subtests. VERB=Verbal factor, MEM=Memory factor, PERF=Perform
metic, VOC=Vocabulary, COMP=Comprehension, PC=Picture Comple
Assembly, MA=Mazes, CO=Coding, DS=Digit span.
loading on the Performance factor, and AR, BD, CO,
MA and DS on the Memory factor. All these factor
loadings proved significant in both groups. As in the
Dutch sample, the fit of model F1 could be improved
by the introduction of an additional relation between
the residuals of OA and BD (MI=21 in boys, MI=17
in girls). The fit of model F1a, including these
relations, was significantly better than the fit of model
F1 (χdiff

2 (2)=48.01, pb .001). This baseline model F1a is
illustrated in Fig. 3. Note that with respect to the
cognitive part of the model, model F1a as fitted in the
Belgian sample is identical to model F1a as fitted in the
Dutch sample.

Metric invariance was tested in model F2, by
constraining the 14 first-order factor loadings to be
equal across sex, while the variances of the three first-
order factors were estimated freely in the girls, and fixed
to 1 in the boys for reasons of identification. As in the
Dutch sample, the fit of model F2 was not significantly
worse than the fit of model F1a (χdiff

2 (11)=4.89, ns),
suggesting that the loadings of the observed subtests on
the primary factors of intelligence are identical in
Belgian boys and girls.

Strong factorial invariance was tested in model F3 by
constraining the intercepts to be equal across sex, while
regressions of the 12 subtests on the three factors, the Ψ 's denote the
es in the subtests that are not predicted by the factors, i.e., the residual
that in the Belgian sample age-effects were regressed out on the level of
ance intelligence, INF=Information, SIM=Similarities, AR=Arith-
tion, PA=Picture Arrangement, BD=Block Design, OA=Object



Table 7
Correlations between the first-order factors Verbal, Performance, and
Memory for Belgian boys (below diagonal) and girls (above diagonal),
and the means and standard deviations for boys and girls on the first-
order factors

Verbal Performance Memory

Verbal – .70 .72
Performance .71 – .75
Memory .62 .52 –
Boys (N=370)
Mean 0 0 0
SD 1 1 1

Girls (N=391)
Mean − .09 − .04 − .46
SD 5.94 2.59 4.73

Effect size − .02 − .02 − .13

Note. The means of the girls should be interpreted as deviations from
the means of the boys, and were not significantly different from those
of the boys (as tested in model S3).

60 S. van der Sluis et al. / Intelligence 36 (2008) 48–67
fixing the factorial means to zero in boys, and estimating
them freely in girls. Like in the Dutch sample, these
constraints led to a significant deterioration of the fit
(χdiff

2 (9)=112.90, pb .001), suggesting that not all sex
differences on the level of the subtests can be accounted
for by the first-order factors. As in the Dutch data, the
modification indices suggested that INF, AR, and CO
were causing this misfit. In model F3a, all intercepts were
constrained to be equal across sex, except the intercepts of
INF, AR, and CO. The fit of model F3a was just signif-
icantly worse than the fit of model F2 (χdiff

2 (6)=17.05,
p=.01). The fit of this model would improve significantly
(χdiff

2 (1)=9.53, pb .01) if the mean of the subtest DS was
freely estimated as well. However, free estimation of the
means of subtests implies that these subtests are no longer
part of the means model on the level of the first- or
second-order factors. As the main aim of this study was to
test whether the mean differences observed on the level of
the subtests were indicative of mean differences on the
level of the latent factors, we did not think it expedient to
remove any more equality constraints on the subtest
intercepts, as this would result in an undesirably stripped
model. Since both the CFI and the RMSEA of model F3a
were good, and these results were comparable to those
obtained in the Dutch sample, model F3a was deemed
reasonable. In all subsequentmodels, the subtest means of
INF, AR and CO were therefore estimated freely in each
group, thereby effectively eliminating these subtests from
the model for the means. All other subtest means were
constrained to be equal across groups.

In model F4, strict factorial invariance was tested
by constraining all (correlated) residual variances to be
equal across sex. Unlike in the Dutch sample, the fit
of model F4 was significantly worse than the fit of model
F3a (χdiff

2 (13)=29.81, pb .01). Modification indices
showed that the misfit of model F4 was mainly due to
the residual of the subtest INF, which was not equal
across sex. In model F4a, all residual variances, bar the
residual variance of INF, were constrained to be equal
across gender. The resulting model did not fit signifi-
cantly worse than model F3a (χdiff

2 (12)=23.31, p.=025).
The inequality of the residual variance of INF implies that
the reliability of this subtest is not equal in boys and girls.
The factor correlations and the factor means of model F4a
are presented in Table 7. Note that fixing the first-order
factor means to be equal across sex would not result in a
significant deterioration of model fit (χdiff

2 (3)=4.52, ns),
i.e., boys and girls did not differ significantly with respect
to their means on the first-order factors. As the Belgium
samples are complete, and quite large, lack of power is
unlikely to explain this absence of first-order factor mean
differences.
In sum, full measurement invariance was rejected as
the sex differences on INF, AR, and CO could not be
described by the first-order factors. Partial measurement
invariance was however tenable for the remaining 9
subtests, for which the differences between boys and
girls could, to reasonable approximation, be described
as differences on the level of the first-order factors.
Although sex differences were absent with respect to the
first-order factor means, we proceeded in studying sex
differences with respect to the second-order factor g. As
mentioned before, absence of mean differences in a first-
order factor model, does not guarantee the absence of
mean differences in a more parsimonious model for the
means.

3.3.2.2. Second-order factor models. A second-order
factor for general intelligence, ‘g’, was introduced in
model S1, but as there were only three first-order factors,
model S1 was equivalent to model F4. The Belgian
model S1 is equivalent to the Dutch model S1 (Fig. 2),
except that in addition, age-effects were regressed out on
the level of the subtests (see Fig. 3).

In model S2, the second-order factor loadings were
constrained to be equal across sex, while the variance
of the second-order factor was freely estimated in the
girls, and fixed to 1 in the boys for reasons of iden-
tification. Like in the Dutch data, the fit of model
S2 was not significantly different from the fit of model
S1 (χdiff

2 (2)=7.86, p=.02), so the second-order factor
loadings could be considered identical in boys and girls.

In model S3, the means of the first-order factors were
constrained to be zero in both boys and girls, while the
mean of the second-order factor was fixed to zero in
boys for reasons of identification, and estimated freely
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in girls. Analogous to the Dutch results, the fit of the
model did not deteriorate significantly, compared to
model S2 (χdiff

2 (2)=4.21, ns), so the mean differences
between boys and girls on the level of the first-order
factors could be accounted for by the second-order
factor.

Finally, the means of the second-order factor were
constrained to be equal for boys and girls (i.e., fixed to
zero in both groups) in model S4. As the fit of model S4
was, like in the Dutch data, not significantly worse than
the fit of model S3 (χdiff

2 (1)b1, ns), we conclude that
boys and girls do not differ with respect to g. This non-
significance is reflected in the small effect size, which
equaled .11, which corresponds to a mean difference in
favor of boys of 1.58 IQ points on a conventional IQ-
scale.

It is worth noting that additional confirmatory factor
analyses on the Belgian data in which age was not
regressed out, gave rise to almost identical results and
thus to the same conclusions (tables of these results are
available upon request).

4. Discussion

In this study, multi-group covariance and means
structure analysis (MG-CMSA) was used to investigate
sex differences on the WISC-R in Dutch and Belgian
samples. In both samples, boys outperformed girls on
the subtests Information (INF) and Arithmetic (AR), and
girls outperformed boys on the subtest Coding (CO).
The sex differences on these three subtests were too
large to be accounted for by the first-order factors
Verbal, Performance and Memory, i.e., were larger than
was to be expected based on the first-order latent mean
differences. In this sense, these three tests were ‘biased’
in the context of this measurement model, i.e., the sex
differences on these subtests are genuine, but indicate
differences in specific abilities rather than differences in
the primary factors of intelligence that are distinguished
in this model. INF, AR and CO were thus not
measurement invariant with respect to sex, yet in both
samples, measurement invariance with respect to sex
could be established for all other subtests. That is, in
both Dutch and Belgian boys and girls, scores on the
remaining 9 subtests could be described as a function of
scores on the latent factors, and the relations between the
latent factors and the observed subtests were identical
across sex.

When full measurement invariance is rejected and
measurement invariance holds only partially (Byrne,
Shavelson, & Muthén, 1989), one needs to decide
whether it is meaningful to proceed with the group
comparisons. As the means of the three biased subtests
INF, AR and CO are effectively eliminated from the
model, the meaning of the means of the first- and
second-order factors will change. If one holds the
opinion that the means of g, and the first-order factors,
are not measured accurately without these three subtests
in the model, further comparisons between boys and
girls with respect to the first and second-order factors are
useless. In that case, one should conclude that the
present data cannot be used to establish sex differences
in g as the test battery is not fully measurement invariant
across sex. From a more pragmatic point of view, one
could argue that, as partial measurement invariance is
tenable, and all factors are still indicated by more than 2
measures, meaningful comparisons remain possible
within the context of the revised model. In the present
paper, we chose to continue with the group comparisons
despite the partial measurement invariance.

At this point, we should note that we consider
measurement invariance as an issue that concerns the
relationships between observed variables (subtests) and
latent variables, such as described in a measurement
model. Thus, for instance, we view Information,
Similarities, Vocabulary, Comprehension and Arithme-
tic as (at least hypothetical) indicators of the latent
variable Verbal Comprehension. If any of these five
subtests are not measurement invariant with respect to
sex, this is problematic as it implies that boys and girls
cannot be compared with respect to their scores on the
latent factor Verbal Comprehension. Here one can resort
to a partial measurement invariance model.

In contrast, we consider such strict psychometric
criteria to be inappropriate when it comes to the relations
of latent variables with other latent variables, such as the
relations of first-order cognitive factors with the second-
order factor ‘g’. First, the second-order factor model is
not accorded the status of a measurement model but of a
structural model, describing relations among latent
variables or factors. Measurement invariance is not a
criterion which latent factors are required to meet as they
are usually not interpreted as “indicators of” or
“measures of” other latent variables. Therefore, latent
factors are usually not considered “biased” if their
means cannot fully be accounted for by other latent
factors. Second, the fact that the second-order model
does not have the same psychometric status is evident
for example in the evaluation of the first-order factor
residuals. These first-order residuals are invariably
accorded an important role in the hierarchical model,
in contrast to the role of the residual terms of observed
variables in the measurement model. For instance, g is
hypothesized to be an important source of US black–
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white differences in IQ test scores (Jensen, 1998).
However, nobody subscribes to the idea that g is the
only source of such differences, and mean differences in
first-order factor residuals are invariably invoked to
provide a full account of the observed mean differences
between groups. For instance, Dolan (2000), having
established measurement invariance, investigated a
variety of latent variable models to account for observed
mean differences in terms of latent mean differences. We
do not interpret established mean differences in first-
order factor residuals in terms of bias, because we do not
view the structural model as a measurement model.

In sum, the study of measurement invariance is
confined to the measurement model. Once measurement
invariance of the observed subtest is fully or partially
(but sufficiently) established, the interpretability of the
latent factors is assured on the basis of the subtests
which are measurement invariant. Subsequently, differ-
ent structural models can be fitted, which describe the
relations among the latent factors more or less
parsimoniously.

In the present study, once the three biased subtests
INF, AR and CO were effectively eliminated from the
model for the means (by allowing the intercepts to differ
over sex), sex differences on the level of the first-order
factors Verbal, Performance and Memory were absent in
both Dutch and Belgian data. Subsequently, sex
differences on g, the second-order factor explaining all
relations between the first-order factors, proved also
statistically insignificant in both countries. Converted to
the conventional IQ-scale (i.e., mean of 100, and
standard deviation of 15), Dutch boys scored on average
3.83 IQ-point higher than Dutch girls, and Belgian boys
scored on average 1.58 IQ points higher than Belgian
girls. Note that the results for the Belgian sample were
robust for the effect of age, i.e., inclusion of the effect of
age in our models did not change any of the above
conclusions with respect to sex differences.

The mean difference of 3.83 IQ-points between the
Dutch boys and girls (with a p-value of .04) may be
interpreted to indicate a trend towards male advantage
with respect to general intelligence. Yet, given the
absence of sex differences for the first-order factor
means in both the Dutch and the Belgian sample, and
given the clear absence of sex differences on the second-
order factors in the Belgian sample, we prefer the
conclusion that, in the age-range between 9 and 13, sex
differences are present with respect to certain specific
cognitive abilities (i.e., general knowledge, arithmetic
and memory/speed), but absent with respect to the latent
factors underlying intellectual performance. However,
due to the missingness on 6 of 12 subtests for a subset of
the Dutch sample, the power to detect sex differences in
g for an observed effect size as small as .25 was not very
high in the Dutch sample; about .60, given the present
sample sizes and an α of .01 (see Dolan, van der Sluis &
Grasman, 2005, for discussion of the influence of
missingness on power in the context of structural
equation modeling). Replication of the present results
in a sample of children within the same age-range is
therefore desirable.

This study illustrates the advantage of MG-CMSA.
First, we were able to establish measurement invariance
with respect to 9 out of 12 subtests, which ensures the
comparability of factors and factor means across sex.
Second, MG-CMSA allowed us to select those subtests
for which sex differences were larger than was to be
expected given the factor model. The sizable sex
differences on the subtests INF and CO, and sometimes
AR, are at present well documented (e.g., Born & Lynn,
1994; Jensen & Reynolds, 1983; Lynn, Fergusson, et al.,
2005; Lynn & Mulhern, 1991; Lynn, Riane, et al.,
2005). Our finding that, in both Dutch and Belgian data,
these subtests were biased in the context of the assumed
measurement model, suggests sex differences with
respect to specific cognitive abilities. After elimination
of these subtests from the means model, sex differences
on the first- and second-order factors were small and
statistically insignificant in both the Dutch and the
Belgian sample. Finally, using MG-CMSA, one has the
clear benefit of knowing that alternative hypotheses are
tested within the context of a model that is known to
provide an accurate description of the data.

One question of interest is whether the results with
respect to sex differences would have turned out
differently if we had chosen another measurement
model. For example, what would the conclusion have
been if we had used a bi-factor model (i.e., a model in
which g is modeled as a first-order factor with loadings
on all subtests, and Verbal, Memory and Performance
are modeled as residual factors for specific abilities that
are uncorrelated to g) rather then a hierarchical factor
model? For the Dutch sample, the conclusions would
have been exactly the same: measurement invariance
holds for all subtests bar INF, AR and CO, and boys and
girls do not differ with respect to any of the latent
factors. For the Belgian sample, the assumption of equal
factor loadings was untenable in the context of the bi-
factor model (χ2(22)=50.00, pb .01). If we, for the sake
of argument, ignore the statistical significance of this
difference (arguing for example that the actual differ-
ence between the factor loadings in boys and girls is
small, and only statistically significant due to the large
sample size), all other conclusions are similar to those
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obtained in the context of the hierarchical factor model:
INF, AR and CO are biased, and boys and girls do not
differ significantly with respect to any of the factor
means. The results obtained in the context of the
hierarchical factor model thus seem robust. We preferred
to test for sex differences in the context of the
hierarchical factor model not only because it is more
parsimonious than the bi-factor model, but also because
it is consistent with the standard conception of g as a
higher order factor. That is, we consider general
intelligence or g to be the factor underlying all cognitive
abilities, and do not adhere to the conceptualization of
Verbal, Memory and Performance as specific cognitive
abilities that are independent of general intelligence.

Another question of interest is whether twin-samples
can be considered to be representative of the population.
In general, twins are born in all strata of society, and are
somewhat more willing than average to participate in
research projects (Martin, Boomsma, & Machin, 1997).
The issue whether the IQ of twins is on average
somewhat lower than that of children born as singletons
remains to be settled (e.g., Derom et al., 2005; Kallman,
Feingold, & Bondy, 1951; Posthuma, de gues, Blei-
chrodt, & Boomsma, 2000; Ronalds, de Stravola, &
Leon, 2005). However, there is as yet no reason to
believe that the differences between the sexes should be
different among boys and girls born as a twin.
Furthermore, the present results concerning the sex
differences on the subtests INF, CO and AR are
consistent with previous studies (e.g., Born & Lynn,
1994; Jensen & Reynolds, 1983; Lynn, Fergusson, et al.,
2005; Lynn & Mulhern, 1991; Lynn, Riane, et al.,
2005). Also, the sex differences observed in the full
Belgian and Dutch twin-samples correspond largely to
the differences observed in the subsamples of opposite-
sex twins, where familial confounders like SES are
perfectly controlled for.

The difference between boys and girls with respect to
g, while statistically insignificant, was somewhat
smaller in the present study compared to previous
studies, especially in the Belgian sample. This is
probably due to elimination of the biased subtests
from the model of the means; rather than concluding that
sex differences are present on the level of latent factors,
we conclude that boys and girls differ with respect to the
specific cognitive abilities measured by the subtests
INF, AR and CO. It is however also possible that our
results differ from those reported in previous studies
because of the more limited age-range of our samples.
As most previous studies were performed on the full
WISC-R standardization samples, with age ranging
from 6 to 16 years, but without statistically correcting
for possible age-effects, the reported sex-effects may not
generalize to any sample of more limited age-range. As
stated above, it even remains to be seen whether the
factor structure of the WISC-R is stable between age 6
and 16, and whether the sex-effects reported for the
(factor) means are stable across age. Lynn (1994, 1999)
argued that researchers studying sex differences in
cognitive ability in children, adolescents and young
adults, have failed to take into account the fact that
females on average mature somewhat earlier than males,
thereby systematically underestimating the differences
between the sexes. According to Lynn, the male
advantage over females becomes visible once males
and females reach adulthood, and maturational advan-
tages of females cease to exist. Some support for this
differential maturation hypothesis was recently offered
by Colom and Lynn (2004), who, unfortunately, failed
to test for measurement invariance across age and sex
before comparing the scores of boys and girls. The
present null-findings with respect to sex differences in g
in children aged 9 to 13 years old do not contradict the
expectations following from this developmental view-
point. Yet, the fact that our results regarding sex
differences were robust against age-effects, suggests
that the present data showed little evidence for
differential developmental trajectories for males and
females. Whether samples with wider age-ranges show
these hypothesized differential developmental trajecto-
ries in appropriate statistical analysis certainly merits
further study.

In a meta-analysis of 57 studies on sex differences on
the Raven Standard and Advanced Progressive Matrices
in the general population, Lynn and Irwing (2004)
reported the absence of sex differences before age 15,
but a male advantage of about 5 IQ points from 15 years
onwards. A meta-analysis performed on 22 studies in
university students, confirmed the finding of this 5 IQ
point difference in favor of males in young adults
(Irwing & Lynn, 2005). Unfortunately, however, in all
these studies, the Raven was analyzed as a unidimen-
sional instrument, and item and subtests scores were
simply added, and directly compared across groups.
Recent studies on the dimensionality of the Raven have
shown repeatedly the presence of more than one factor
(e.g., Mackintosh & Bennett, 2005; Vigneau & Bors,
2005, Van der Ven & Ellis, 2000), and these different
factors underlying performance on the Raven should be
considered in studies on group/age differences. Al-
though Lynn, Allik and Irwing (2004) and Mackintosh
and Bennett (2005), did address the multi-dimensional-
ity of the Raven, they did not test for measurement
invariance in their respective studies on sex differences.
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Two studies in adult samples, in which MG-CMSA
was employed to investigate sex differences on the
WAIS, showed that, after elimination of the biased
subtests, males outperformed females on the WAIS first-
order factors Working Memory and Perceptual Organi-
zation, while females outperformed males on Perceptual
Speed, and no sex differences were found for the factor
Verbal Comprehension (Dolan et al., 2006; Van der
Sluis et al., 2006). According to these authors, the
observation of positive as well as negative sex
differences on four positively correlated factors does
not fit well with the idea of one factor (i.e., the second-
order factor g) being the only source or cause of the
observed sex differences. So although these data did not
provide evidence for sex differences in g, in adults sex
differences were clearly present on the level of the first-
order factors. The finding that sex differences on the
first-order factors are absent in children (present study),
while such differences have been observed in adults
(Dolan et al., 2006, Van der Sluis et al., 2006), is in line
with the idea proposed by Lynn (1994, 1999) that sex
differences become more apparent with age.

In sum, although the Raven on the one hand, and the
WISC-R and the WAIS on the other are not directly
comparable with regard to number and nature of
subtests, or number and nature of factors assumed to
underlie performance on the subtests, the difference
between the present results (i.e., no sex differences on
the level of the latent factors) and the results in adult
samples (i.e., sex differences are present on the level of
the latent factors) could be indicative of an effect of age
on the factor structure, or of an effect of age on the
nature of sex differences in cognitive ability, such as
hypothesized by Lynn (1994, 1999). Re-analysis of the
WISC-R standardization data as analyzed previously
(e.g., Born & Lynn, 1994; Jensen & Reynolds, 1983;
Lynn, Fergusson et al., 2005; Lynn & Mulhern, 1991;
Lynn, Riane, et al., 2005) using MG-CMSA, while
accounting for age-effects, would therefore be a fruitful
addition to the literature on sex differences in intelli-
gence. As yet, the extent to which findings with respect
to group differences in g on one measure of intelligence
are generalizable to other intelligence tests is unknown.
For example, correlations between the composite scores
of the Raven and the WAIS range between .40 and .75
(e.g., Mackintosh, 1998). Although clearly substantial,
these correlations cannot be taken to mean that Full
Scale IQ scores on the WAIS and scores on the Raven
represent identical constructs. Simultaneous analysis of
g in the Raven and g in the WISC or the WAIS, using
the appropriate statistical techniques (i.e., techniques
that consider the underlying factor structure and the
model's fit, and that test for measurement invariance)
seems the only sensible way to study the comparability
of g, and the comparability of mean differences in this
g, in disparate intelligence test batteries. For example,
see the study by Johnson, Bouchard, Krueger, McGue
and Gottesman (2004), who report very high correla-
tions between the second-order factors g calculated for
the WAIS, the CAB, and a Hawaiian Battery, which
includes the Raven. These results were obtained in a
sample of adult males and females. However, sex
differentiation was not addressed.

The present study is the first to examine measurement
invariance and sex differences on the WISC-R using
multi-group covariance andmean structure analysis. This
resulted in a refined description of the nature of the sex
differences in cognition in children aged 9 to 13. It was
shown that measurement invariance was only partially
tenable: in both the Dutch and the Belgian sample, the
differences between boys and girls with respect to the
specific abilities measured by the subtests INF, AR and
CO were too large to be accounted for by the underlying
latent factors. Once these biased subtests were removed
from themodel by estimating the intercepts free over sex,
no differences were foundwith respect to the primary and
secondary common factor means. The general conclu-
sion is therefore twofold: 1) the WISC-R is only partially
measurement invariant across sex in children aged 9–13;
and 2) the main cognitive differences between boys and
girls appear to concern specific abilities, and these
sizeable differences do not seem to be attributable to
differences in the second-order factor g. However, full
measurement invariance across sex could not be
established for the WISC-R. This psychometric defi-
ciency of the WISC-R may detract from the power to
detect the exact role of g, if any, in sex differences.
However, the finding that Information, Coding and
Arithmetic are biased is in itself an important empirical
finding, which requires further study. Such studies could
include the investigation of measurement invariance at
the level of the items which comprise these subtests,
using a suitable IRTmodel. In addition, as pointed out by
a reviewer, techniques like functional imagingmay prove
useful in this context.

Still, on the basis of the present results, we conclude
that explanations of sex differences in scores on IQ tests
in the present age-range of 9 to 13 should be sought in
specific abilities rather than in g.
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