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Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms 
are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding 
variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions 
harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed 
puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major 
association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any 
complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (~6% increase 	
in risk per year; P = 3 × 10−14), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

association with ANM. Considering these SNPs, we identified 54 
independent signals located in 44 genomic regions using approxi-
mate conditional analysis implemented in GCTA (Fig. 1, Table 1  
and Supplementary Tables 2 and 3). Eight loci contained secondary 
signals: six loci each contained two signals, and two loci each contained 
three signals. Across the 54 identified signals, minor allele frequency 
(MAF) ranged from 7 to 49%, and effect size ranged from 0.07 to 0.88 
years per allele with no significant heterogeneity between studies. All 
of the 18 previously reported independent signals for ANM4,5 retained 
directionally concordant genome-wide significance (maximum  
P = 3.7 × 10−11). These 18 signals were also directionally concordant 
in a subsidiary meta-analysis of the studies that were not included in 
the previous publication (P-value range of 1 × 10−30 to 1 × 10−3). The 
top 29,958 independent SNPs with association P < 0.05 explained 21% 
(standard error = 9.7%; P = 0.01) of the variance in ANM, with this 
proportion decreasing to 6% (standard error = 1.6%; P = 6.3 × 10−12)  
for the top 54 SNPs with P < 5 × 10−8 (Supplementary Table 4). 
This finding contrasts with an estimate of 2.6% for the 18 previously 
identified index SNPs.

We assessed functional enrichment for all SNP associations  
with ANM in regions containing active histone marks across ten 
physiological cell type groups using stratified LD score regression6 
(Online Methods and Supplementary Table 5). Only the ‘kidney-
related cell types’ group showed significant enrichment (P = 0.003), 
which could reflect the mesonephric embryonic origin of ovarian 
parenchymal cells7. Analysis by functional annotation showed the 
strongest enrichment for variants located in coding regions as defined 
by the UCSC Genome Browser (Supplementary Table 5), with ~1.5% 
of SNPs explaining 24.8% of the trait heritability (P = 4.6 × 10−3).  
The heritable component increased to 55% (standard error =11%;  
P = 2.9 × 10−7) when a flanking 500-bp window was added to the 
coding regions, capturing ~6.5% of SNPs.

Large-scale genomic analyses link reproductive aging to 
hypothalamic signaling, breast cancer susceptibility and 
BRCA1-mediated DNA repair
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Younger age at natural (non-surgical) menopause (ANM) is  
associated with lower risk of breast cancer but higher risks of  
osteoporosis, cardiovascular disease and type 2 diabetes1. Early  
menopause also has a substantial impact on fertility. It is estimated 
that natural fertility ceases on average 10 years before menopause2, 
which is becoming increasingly relevant as women in many popula-
tions are delaying childbearing. For example, the birth rate in UK 
women aged 30–34 years is now higher than for women whose age 
falls in any other half-decade range. ANM is on average 51 years  
in European-ancestry populations, with natural menopause before the 
age of 40 years, or primary ovarian insufficiency (POI), occurring in 1%  
of the population3.

Previous genome-wide association studies (GWAS) identified 
18 common genetic loci associated with ANM, implicating several 
plausible gene candidates across a number of molecular pathways4,5. 
Together, these reported variants explained <5% of the variation in 
ANM, as compared to the 21% explained by all common variants 
on GWAS arrays4. We therefore undertook a more comprehensive 
genetic analysis in a substantially larger sample of nearly 70,000 
women, incorporating both common and, for the first time to our 
knowledge, low-frequency coding variants. We were able to triple 
the number of independent signals associated with ANM, including 
two low-frequency coding variants in previously unreported loci. Our 
findings provide new insights into the causal relationship between 
ANM and breast cancer and identify molecular overlaps between 
ANM and puberty timing.

RESULTS
GWAS HapMap 2 meta-analysis
In a combined analysis of up to 69,360 women of European ances-
try (Supplementary Table 1), 1,208 SNPs, of a total of ~2.6 million, 
reached the genome-wide significance threshold (P < 5 × 10−8) for 
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Exome array meta-analysis
To estimate the contribution of low-frequency 
coding variation to ANM, we performed a 
meta-analysis of up to 39,026 women geno-
typed on exome arrays (Supplementary 
Table 6). Only one signal, from two highly 
correlated (r2 = 0.73, D′ = 1) low-frequency 
missense variants in HELB, reached genome-
wide significance in this discovery phase 
(Fig. 1, Table 2 and Supplementary Table 7).  
Ten low-frequency (MAF <5%) nonsynony-
mous SNPs with association P < 5 × 10−4 were selected for follow-up 
in an independent sample of 10,157 women from the deCODE study 
that imputed rare variant genotypes. Directionally concordant effect 
estimates were observed for six of the eight variants considered (two 
of the ten variants failed quality control). The combined analysis 
identified missense alleles in HELB (rs75770066, MAF = 3.6%, effect  
(β) = 0.85 year/allele, P = 1.2 × 10−31) and SLCO4A1 (rs140267842, 
MAF = 0.8%, β = 0.79, P = 1.6 × 10−8) as associated with ANM  
(Table 2, Supplementary Fig. 1 and Supplementary Table 7).

DNA helicase B (encoded by HELB) is a DNA helicase that unwinds 
DNA during replication, transcription, repair and recombination. 
SLCO4A1 (solute carrier organic anion transporter family, member  
4A1) transports organic anions such as thyroid hormones and 
estrone-3-sulfate. The exome array signals in HELB and SLCO4A1 
were located in ANM-associated loci newly identified by our parallel  
HapMap 2–based GWAS meta-analysis. At HELB, the association of 
the common index SNP, rs12371165, was fully explained by the asso-
ciations at the two rare exome chip SNPs, which are in high linkage 
disequilibrium (LD) with each other (r2 = 0.73, D′= 1) (Fig. 2). In 
contrast, the three independent signal SNPs identified through GCTA 
were not explained by the rare variant(s) (Supplementary Table 8).  
It thus appears that there are at least two non-redundant signals at  
this locus, and future fine-mapping experiments will be required to 
fully elucidate the number of independent causal variants. Functional 
studies have shown that substitution of aspartate by a nonpolar  
residue at amino acid 506 of DNA helicase B affects binding of  
the helicase to replication protein A (RPA)8. At SLCO4A1, all three 
variants (the common index SNP, the second signal from GCTA and 
the exome chip variant) appeared to reflect non-redundant signals, 
such that the association of each with ANM was unaffected by the 
presence of either of the other two (Supplementary Table 8).

ANM SNPs strongly enriched in DNA damage response pathways
Pathway analyses using MAGENTA and GRAIL indicated sub-
stantial enrichment of GWAS SNP associations in DDR pathways 
(Supplementary Tables 9 and 10). Seven of the ten ANM-associated 
pathways identified by MAGENTA at study-wise significance were 
involved in DDR, with the highest enrichment in the PANTHER-defined  

‘DNA repair pathway’ (P = 1 × 10−6). After annotating likely causal 
genes at each locus, we found that 29 of the 44 GWAS-highlighted  
regions contained one or more DDR genes within 500 kb (Table 1). 
At 18 of these 29 regions, either the DDR candidate gene was the 
nearest gene or the signal was associated with the expression of a 
DDR gene at the locus.

The top SNP at GWAS signal 37 (Table 1) is highly correlated 
(r2 > 0.95) with four common nonsynonymous variants in BRCA1 
(rs1799966, rs16942, rs16941 and rs799917), none of which is listed  
in the Human Gene Mutation Database (HGMD) as a known breast 
cancer susceptibility variant and all of which are listed as “not clinically  
important” by the Breast Cancer Information Core. In our exome 
array data, no low-frequency coding variants in BRCA1 were associ-
ated with ANM (P > 0.05). Signal 37 is an expression quantitative trait 
locus (eQTL) for BRCA1 in multiple tissues, including blood, skin, 
adipose and brain (Supplementary Table 11). There were 15 ANM 
signal genes that STRING analysis identified as having at least one 
direct link to BRCA1 (Supplementary Fig. 2 and Supplementary 
Table 12). Of these genes, there is experimental evidence that seven 
encode direct binding partners of BRCA1: BRE (signal 5), MSH6  
(signal 6), POLR2H (signal 8), FAM175A (signal 9), UIMC1 (signal 13),  
RAD51 (signal 30) and CHEK2 (signal 43).

Although many of the DDR genes highlighted are involved in 
homologous recombination for the repair of double-strand breaks, 
such as in the BRCA1 pathway, other mechanisms of repair are also 
represented, for example, mismatch repair (MSH5 and MSH6) and 
base-excision repair (APEX1 and PARP2) (Fig. 3). Two genes act 
as DNA damage checkpoints (CHEK2 and BRSK1), and others are 
involved in the cellular response to damage, having roles in activities 
such as cell cycle arrest, DNA replication, transcription control and 
apoptosis (Fig. 3). CHEK2 is a well-known breast cancer–associated 
gene9, but the ANM-associated signal is not in LD with the c.1100delC 
variant associated with breast cancer (r2 < 0.01).

ANM SNPs enriched in known POI genes
In addition to DDR pathways, MAGENTA analyses also identi-
fied a fourfold enrichment of ANM GWAS SNP associations in or 
near a set of 31 genes reportedly associated with monogenic POI 
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Figure 1  Miami plot of HapMap and exome 
SNP associations. Log-transformed P values are 
shown for association with ANM for SNPs from 
HapMap 2 (top; pink) and SNPs from the meta-
analysis of exome chip data (bottom; blue). 
Previously known signals are shown in gray,  
and newly discovered signals are shown in  
red (HapMap 2) or purple (exome chip and 
HapMap 2). The yellow lines correspond 
to genome-wide significant levels in each 
direction; the gray lines indicate where the  
y axis has been truncated.
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Table 1  Association of 54 common HapMap 2 variants at 44 genomic loci with ANM

Region Best SNPa Signal SNPb Chr. Position (bp)c Allelesd EAFe n

Univariate modelf Joint modelg

Highlighted genehEffect P Effect P

  1* rs4246511 rs4246511 1 39,152,972 C/T 0.71 69,116 –0.22 (0.02) 5.1 × 10−21 – – RHBDL2(B,N), MYCBP(B)

  2 rs12142240 rs12142240 1 46,519,888 T/C 0.68 69,356 –0.13 (0.02) 6.6 × 10−9 – – RAD54L(B,E)

  3 rs1411478 rs1411478 1 179,228,905 A/G 0.41 68,680 –0.13 (0.02) 1.4 × 10−10 – – STX6(N,E)

  4* rs2236918 rs2236918 1 240,084,449 C/G 0.45 69,332 –0.15 (0.02) 8.3 × 10−14 – – EXO1(N,B,C)

  5* rs704795 rs704795 2 27,569,998 A/G 0.4 69,341 –0.16 (0.02) 2.1 × 10−15 – – BRE(B), GTF3C2(B,E),  
  EIFB4(B)

  6* rs1800932 rs1800932 2 47,871,585 A/G 0.81 69,309 –0.17 (0.03) 3.2 × 10−11 – – MSH6(N,B,E)

   7* rs930036 rs930036 2 171,649,264 A/G 0.38 69,357 –0.19 (0.02) 3.1 × 10−19 – – TLK1(N,E,B), GAD1(B)

  8 rs16858210 rs16858210 3 185,106,704 G/A 0.75 69,193 –0.14 (0.02) 3.1 × 10−9 – – PARL(B), POLR2H(B)

  9* rs4693089 rs4693089 4 84,592,646 A/G 0.51 69,060 –0.20 (0.02) 9.2 × 10−23 – – HELQ(N,B), FAM175A(B)

10 rs6856693 rs6856693 4 185,985,800 A/G 0.58 67,635 –0.16 (0.02) 9.8 × 10−15 – – ASCL1(N), MLF1IP(B)

11 rs427394 rs427394 5 6,798,875 G/A 0.41 69,284 –0.13 (0.02) 3.8 × 10−9 – – PAPD7(N,B)

12 rs11738223 rs11738223 5 171,867,097 A/G 0.68 69,250 –0.12 (0.02) 2.0 × 10−8 – – SH3PXD2B(N)

13a* rs365132 rs2241584 5 175,888,783 A/G 0.38 69,341 –0.14 (0.02) 1.5 × 10−11 −0.14 (0.02) 3.2 × 10−11 UIMC1(B,E)

13b* rs365132 rs365132 5 176,311,180 G/T 0.51 69,349 –0.24 (0.02) 1.4 × 10−33 −0.24 (0.02) 7.9 × 10−33 UIMC1(N,B,E)

14a* rs6899676 rs6899676 6 11,003,246 A/G 0.8 69,303 –0.23 (0.03) 2.2 × 10−19 −0.21 (0.03) 6.2 × 10−16 SYCP2L(N,B), MAK(B)

14b* rs6899676 rs9393800 6 11,059,723 G/A 0.27 69,124 –0.17 (0.02) 3.5 × 10−13 −0.14 (0.02) 1.1 × 10−9 SYCP2L(N,B), MAK(B)

15a* rs1046089 rs2230365 6 31,633,427 C/T 0.84 67,095 –0.17 (0.03) 7.6 × 10−10 −0.16 (0.03) 2.7 × 10−8 MSH5(B), HLA(B)

15b* rs1046089 rs707938 6 31,837,338 G/A 0.32 68,582 –0.17 (0.02) 7.2 × 10−15 −0.16 (0.02) 2.3 × 10−13 MSH5(B,N,E), HLA(B)

16 rs12196873 rs12196873 6 111,704,751 A/C 0.85 69,313 –0.16 (0.03) 2.8 × 10−8 – – REV3L(B,C)

17* rs2720044 rs2720044 8 38,099,744 A/C 0.84 63,917 –0.29 (0.03) 7.3 × 10−22 – – STAR(B)

18 rs10957156 rs10957156 8 61,791,955 A/G 0.76 69,341 –0.14 (0.02) 4.5 × 10−9 – – CHD7(N,B,E)

19 rs4879656 rs4879656 9 33,002,382 A/C 0.37 68,919 –0.12 (0.02) 2.0 × 10−8 – – APTX(N,B,E)

20 rs10905065 rs10905065 10 5,809,833 A/G 0.61 69,334 –0.11 (0.02) 3.9 × 10−8 – – FBXO18(B)

21a* rs11031006 rs11031006 11 30,183,104 G/A 0.85 69,309 –0.22 (0.03) 8.5 × 10−14 −0.25 (0.03) 4.0 × 10−17 FSHB(N,B)

21b* rs11031006 rs6484478 11 30,263,016 G/A 0.74 69,099 –0.10 (0.02) 4.0 × 10−5 −0.14 (0.02) 1.0 × 10−8 FSHB(B)

22 rs10734411 rs10734411 11 32,498,360 A/G 0.47 69,142 –0.12 (0.02) 2.6 × 10−9 – – EIF3M(N)

23* rs2277339 rs2277339 12 55,432,336 G/T 0.1 67,603 –0.31 (0.03) 1.8 × 10−19 – – PRIM1(B,N,C,E), TAC3(B)

24a rs12371165 rs3741604 12 64,982,677 T/C 0.52 69,100 –0.09 (0.02) 1.9 × 10−5 −0.29 (0.03) 1.8 × 10−21 HELB(N,B,E,C)

24b rs12371165 rs1183272 12 65,021,688 C/T 0.45 68,727 –0.07 (0.02) 7.3 × 10−4 −0.31 (0.03) 3.0 × 10−24 HELB(B,N,C)

24c rs12371165 rs7397861 12 65,100,733 G/C 0.64 69,095 –0.10 (0.02) 6.7 × 10−6 −0.13 (0.02) 4.6 × 10−9 HELB(B,E,C)

25 rs551087 rs551087 12 119,693,576 G/A 0.29 69,001 –0.13 (0.02) 3.9 × 10−8 – – SPPL3(N), SRSF9(B)

26 rs1727326 rs1727326 12 122,166,039 C/G 0.15 68,870 –0.19 (0.03) 1.7 × 10−9 – – KNTC1(B), PITPNM2(N)

27 rs12824058 rs12824058 12 129,370,287 G/A 0.43 69,047 –0.14 (0.02) 6.1 × 10−11 – – PIWIL1(N)

28* rs4886238 rs4886238 13 60,011,740 G/A 0.66 69,314 –0.18 (0.02) 2.5 × 10−16 – – TDRD3(B,N)

29 rs1713460 rs1713460 14 20,003,455 G/A 0.3 68,528 –0.14 (0.02) 2.4 × 10−10 – – APEX1(B), PARP2(B),  
  PNP(N,E)

30 rs9796 rs9796 15 39,058,739 T/A 0.46 69,317 –0.13 (0.02) 1.3 × 10−10 – – INO80(B,N,E), RAD51(B)

31* rs1054875 rs1054875 15 87,680,130 T/A 0.4 69,288 –0.19 (0.02) 1.7 × 10−19 – – POLG(B,N), FANCI(B,C)

32 rs9039 rs9039 16 9,112,864 C/T 0.28 69,341 –0.12 (0.02) 3.3 × 10−8 – – C16orf72(N), ABAT(B)

33* rs10852344 rs10852344 16 11,924,420 T/C 0.59 69,346 –0.16 (0.02) 1.3 × 10−15 – – GSPT1(N,C,E), BCAR4(B)

34 rs12599106 rs12599106 16 34,355,526 A/T 0.51 69,320 –0.12 (0.02) 3.1 × 10−8 – – UBE2MP1(N)

35 rs8070740 rs8070740 17 5,272,620 A/G 0.76 68,515 –0.15 (0.02) 1.5 × 10−9 – – RPAIN(N,E)

36 rs2941505 rs2941505 17 35,086,230 A/G 0.32 69,302 –0.13 (0.02) 1.9 × 10−9 – – STARD3(B), PGAP3(N,E),  
  CDK12(B)

37 rs1799949 rs1799949 17 38,498,992 G/A 0.68 69,329 –0.14 (0.02) 8.4 × 10−11 – – BRCA1(N,E,B,C)

38 rs349306 rs349306 19 901,694 G/A 0.13 58,278 –0.23 (0.04) 1.7 × 10−10 – – POLR2E(B), KISS1R(B)

39 rs7259376 rs7259376 19 22,299,545 A/G 0.46 69,328 –0.11 (0.02) 4.2 × 10−8 – – ZNF729(N)

40a* rs11668344 rs11668344 19 60,525,476 G/A 0.36 69,329 –0.41 (0.02) 5.5 × 10−85 −0.41 (0.02) 4.2 × 10−84 BRSK1(B,E), NLRP11(N),  
  U2AF2(B)

40b* rs11668344 rs2547274 19 61,002,040 G/C 0.91 66,580 –0.28 (0.04) 3.4 × 10−13 −0.22 (0.04) 2.7 × 10−8 BRSK1(B), NLRP11(N), 
  U2AF2(B)

40c* rs11668344 rs12461110 19 61,012,475 A/G 0.35 68,518 –0.17 (0.02) 7.6 × 10−16 −0.15 (0.02) 5.0 × 10−12 BRSK1(B), NLRP11(N,C),  
  U2AF2(B)

41a* rs16991615 rs451417 20 5,889,999 A/C 0.12 65,420 –0.20 (0.03) 4.6 × 10−9 −0.2 (0.03) 4.5 × 10−9 MCM8(N,C,B)

41b* rs16991615 rs16991615 20 5,896,227 G/A 0.93 66,210 –0.88 (0.04) 1.6 × 10−89 −0.88 (0.04) 4.4 × 10−89 MCM8(N,C,B)

42a rs13040088 rs2236553 20 60,760,188 C/T 0.24 62,648 –0.16 (0.03) 6.1 × 10−10 −0.16 (0.03) 4.4 × 10−10 SLCO4A1(N,C), DIDO1(B,E)

42b rs13040088 rs13040088 20 61,019,647 G/A 0.21 69,317 –0.16 (0.02) 2.4 × 10−10 −0.16 (0.02) 1.9 × 10−10 SLCO4A1(C), DIDO1(N,B,E)

43 rs5762534 rs5762534 22 26,963,571 T/C 0.84 69,322 –0.16 (0.03) 6.1 × 10−9 – – CHEK2(B)

44 rs763121 rs763121 22 37,209,886 G/A 0.36 66,632 –0.16 (0.02) 2.3 × 10−13 – – DMC1(B), DDX17(N,E,B)

aBest regional SNP selected by clumping based on 1-Mb distance. bLead independent SNP(s) in region selected through approximate conditional analysis. cPosition in Build 36 of the reference 
genome. dEffect allele/other allele. eEffect allele frequency. fUnivariate test statistics reported from the primary meta-analysis (no conditional analysis). gTest statistics derived from the joint 
model for regions containing more than one statistically independent SNP. hHighlighted gene in the region selected on the basis of the following criteria: N, nearest; B, biological candidate;  
E, eQTL effect; C, nonsynonymous SNP in high LD. Genes categorized as being in DDR pathways are shown in bold. An asterisk denotes a region previously described at genome-wide  
significance. Chr., chromosome.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature Genetics  VOLUME 47 | NUMBER 11 | NOVEMBER 2015	 1297

A rt i c l e s

(Supplementary Tables 13 and 14). Four of our genome-wide sig-
nificant hits were located in or near reported POI genes. Autosomal 
recessive mutations in MCM8 cause primary amenorrhea, hypothy-
roidism and hypergonadotropic hypogonadism10. Recessive muta-
tions in EIF2B4 (signal 5) cause ovarioleukodystrophy with vanishing 
white matter syndrome11. POLG (signal 31) mutations have been 
linked to POI in isolation or in association with other neurological 
conditions12. Mutations in MSH5 (signals 15a and 15b) have been 
associated with various human diseases, including POI13. In addition, 
TDRD3 (signal 28) is a primary binding partner of FMR1, in which 
triplet-repeat premutations are a risk factor for POI14. We saw no 
significant enrichment of ANM signals in our wider panel of ovarian 
function genes (Supplementary Tables 13 and 15).

Genetic correlation of ANM with other traits and diseases
We searched the GRASP database15 and the National Human Genome 
Research Institute (NHGRI) GWAS catalog for pleiotropy between 
ANM signals and proxies (r2 > 0.5) and GWAS-identified signals 
for other traits (Supplementary Table 16). The top overlapping sig-
nals were for liver enzymes, lipids, urate, height and fasting glucose  
(P ≤ 1 × 10−10 for association of the ANM SNP or its proxy with  
the second trait). We found no overlap with any autoimmune traits 
and only a very weak link with a cancer (upper airway tract cancer,  
P = 1 × 10−8). To test the relationship between ANM and other  
health outcomes more broadly, we performed cross-trait LD Score 
regression to estimate genetic correlation, using data from 53  
published GWAS meta-analyses (Supplementary Table 17). Adult 
obesity ranked highest in this analysis, with a negative trait correla-
tion (rg = −0.15; P = 0.0004), and there was supporting evidence 
from other growth-related and anthropometric traits, including age 
at menarche (rg = 0.14; P = 0.003), body mass index (BMI; rg = −0.13; 
P = 0.003), BMI in women but not men (P = 0.002 versus 0.17), 
waist circumference in women but not men (P = 0.009 versus 0.29) 
and waist-hip ratio (WHR) in men but not women (P = 0.03 versus 
0.27). Other nominally significant associations included high-density 
lipoprotein (HDL) levels (rg = 0.14; P = 0.02) and current or former 
smoking status (rg = 0.20; P = 0.04), both of which are supported by 
epidemiological observations16.

To elucidate the causal directions between these traits, we performed 
bidirectional Mendelian randomization analyses on ANM with both 
age at menarche and BMI. We were unable to resolve the causal direc-
tion with BMI (BMI to ANM: Pscore = 0.668, Supplementary Table 18;  
ANM to BMI: Pbinomial = 0.683, Supplementary Table 19). However, 
the 123 SNPs reported to be associated with age at menarche col-
lectively predicted ANM in the expected direction (Pscore = 0.0005; 
Supplementary Table 20), but the ANM SNP score was not associ-
ated with age at menarche (Pscore = 0.571; Supplementary Table 21). 
We further explored the nature of this shared genetic architecture by 

Table 2  Results of the exome chip meta-analyses

SNP Band Gene
Amino acid  

change
Minor/common  

allele Analysis MAF (%)
Effect (SE) of  

minor allele in years P n
Heterogeneity  

P

rs75770066 12q14.3 HELB p.Asp506Gly G/A Discovery 3.6 0.91 (0.08) 1.79 × 10–32 39,026

Replication 1.7 0.32 (0.24) 0.171 10,157

Combined 3.4 0.85 (0.07) 1.17 × 10–31 49,183 0.050

rs148126992 12q14.3 HELB p.Glu522Asp C/G Discovery 2.5 1.03 (0.09) 2.96 × 10–30 38,707

Replication 0.1 2.16 (1.75) 0.216 10,157

Combined 2.5 1.04 (0.09) 1.69 × 10–30 48,864 0.116

rs140267842 20q13.33 SLCO4A1 p.Val263Ile A/G Discovery 0.8 0.80 (0.16) 5.58 × 10–7 39,026

Replication 1.2 0.73 (0.28) 8.60 × 10–3 10,157

Combined 0.9 0.79 (0.14) 1.60 × 10–8 49,183 0.241

Amino acid change is from the amino acid coded by the common allele to the amino acid coded by the minor allele. Significant P values are shown in bold. SE, standard error.

10035

30

25

–l
og

10
 (
P

 v
al

ue
)

20

rs1183272

rs12371165

rs75770066

HapMap
Exome chip

HapMap after GCTA

rs148126992

rs7397861

GRIP1HELB

rs3741604

15

10

5

0

66.70

DNA helicase B

N-terminal
domain

N 1

470

Exome chip variants
Experimental mutations (mutated together)

480
Walker A motif Acidic motif

490 500 510 520 530

Helicase
domain

Phosphorylation-regulated
subcellular localization domain

C 1,087

66.75
Position on chr. 12 (Mb)

66.80

R
ecom

bination rate (cM
/M

b)

80

60

40

20

0

Figure 2  Multiple signals at HELB and relationship to DNA helicase 
B protein sequence. Positions are given in Build 37 coordinates of the 
reference genome. The top signal from the exome chip analysis maps 
to an acidic motif of DNA helicase B and results in the replacement of 
an acidic aspartate residue by a nonpolar glycine residue. Concurrent 
alteration of three acidic amino acids, (including the aspartate residue 
identified by the exome chip analysis) to nonpolar residues has been 
shown to reduce RPA binding8.
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testing for enrichment of all ANM-associated SNPs in or near genes 
implicated in monogenic or polygenic puberty timing17. Significant 
enrichment was found with the monogenic set (P = 0.01), under-
scored by the presence of ANM-associated SNPs in or near five genes  
reportedly causal for hypogonadotropic hypogonadism (KISS1R, 
TAC3, CHD7, SOX10 and FGFR1) (Supplementary Table 22).

ANM variants demonstrate a causal link with breast cancer
Given the overwhelming enrichment of DDR genes among ANM- 
associated loci and the known epidemiological associations between 
ANM and breast cancer risk18, we tested the causal relationship between 
ANM and breast cancer using a Mendelian randomization approach19.

Across the 56 ANM-associated SNPs (54 from HapMap 2 and 
2 from exome chip), there was a positive correlation between the 
effect sizes in ANM and the effect sizes for risk (log-transformed 
odds ratio) of breast cancer (in 46,347 breast cancer cases and 41,736 
controls from the Breast Cancer Association Consortium (BCAC); 
r = 0.67, P = 2.25 × 10−8). A polygenic risk score comprising ANM-
increasing alleles at the 56 SNPs, weighted by the size of their effects 
on ANM, was positively associated with breast cancer risk: each 
genetically predicted 1-year increase in ANM was associated with 
odds ratio (OR) = 1.064 higher risk of breast cancer (confidence 
interval (CI) = 1.050–1.081; P = 2.78 × 10−14; Supplementary  
Fig. 3). The size of this effect is larger than that reported by the 
largest pooled analysis of observational epidemiological studies  
(OR = 1.030, CI = 1.026–1.034)18. All of the women in the GWAS 
from the BCAC study were also included in the Mendelian  
randomization study (n = 14,884; ~14% of the total Mendelian  
randomization study). To confirm that this overlap did not bias our 
results, we conducted two analyses. First, a sensitivity analysis tested 
the effect on breast cancer of the 18 previously identified ANM-asso-
ciated SNPs, which were identified from a meta-analysis that did 
not include BCAC cases, and a similar effect estimate was observed  
(OR = 1.062, CI = 1.033–1.101; P = 1.58 × 10−7). Second, the reverse 
analysis tested 63 SNPs with independent robust associations with 
breast cancer20 and found no association between these breast  

cancer signals and ANM (Pscore > 0.05), 
which reduces the likelihood of case ascer-
tainment bias in our discovery meta-analysis 
(Supplementary Table 23).

Stratified analyses identified significantly 
larger effect estimates for the ANM risk score 
in estrogen receptor (ER)-positive versus  
ER-negative breast cancer cases (OR = 1.07, 
CI = 1.05–1.10, P = 1.73 × 10−12 versus  
OR = 1.03, CI = 1.00–1.07, P = 0.043;  
P = 0.0086 for the case-only analysis) and 
women aged ≥55 versus ≤45 years (OR = 1.06,  
CI = 1.04–1.10, P = 2.23 × 10−7 ver-
sus OR = 1.00, CI = 0.97–1.05, P = 0.95;  
case-only P = 2.30 × 10−5). Consideration of  
DDR-linked SNPs versus those not 
related to DDR in the polygenic risk score  
also produced discordant effect estimates  
(OR = 1.05, CI = 1.03–1.08, P = 1.06 × 10−7  
versus OR = 1.12, CI = 1.06–1.21, P = 7.84 
× 10−10; heterogeneity P = 0.01), a differ-
ence that was further reinforced in age- 
stratified analyses (Supplementary Fig. 3 
and Supplementary Table 24).

Furthermore, lack of association between 
ANM risk scores and risk of prostate cancer in men (in 25,074 cases 
and 24,272 controls; P = 0.36; Supplementary Table 25) provides no evi-
dence to support an effect of ANM-related DDR mechanisms on other 
cancer risks. We therefore surmise that ANM genetic variants influence 
breast cancer risk primarily through variation in menopause timing.

DISCUSSION
Our study represents a greatly expanded genetic discovery effort  
for ANM, both in terms of increased sample size and breadth of  
variation tested. By more than doubling the GWAS sample size,  
we have increased the number of loci robustly associated with the  
trait by threefold. In addition, we assessed the role of low-frequency 
protein-coding variation using exome genotyping arrays. This 
approach identified the first such variants of large effect for ANM, 
implicating both HELB and SLCO4A1 in the etiology of reproductive 
aging. Both of these regions contain common variants we identified in 
parallel, producing ‘synthetic associations’ at the HELB locus21.

Our analyses suggest a far more substantial role for DDR processes 
in ovarian aging than originally estimated. Both manual assessment 
and formal computational approaches identified an overwhelming 
excess of DDR genes mapping to the 44 GWAS loci, possibly explaining 
up to approximately two-thirds of the associations. Despite the limita-
tions of our GWAS approach in definitively mapping SNPs to genes, 19 
of the 44 loci contained signal SNPs where plausible DDR candidates 
were either the closest gene or were linked via altered expression levels 
to the associated variant. This level of enrichment is comparable to that 
observed in GWAS meta-analyses of several cancers22,23.

A notable inclusion in our list of DDR annotated genes was BRCA1, 
which was the nearest gene, was linked as an eQTL and contained 
multiple nonsynonymous SNPs in high LD with the lead index SNP. 
Although rare loss-of-function BRCA1 alleles are well studied in the 
context of cancer predisposition, coding variants in this gene are gen-
erally regarded as neutral and have not previously been mapped to 
any complex trait or disease, including breast cancer. Titus et al. have 
shown that BRCA1 expression decreases in human ovaries with age 
and that reduced Brca1 expression in mouse models leads to reduced 

Figure 3  Classification of the genes identified as being involved in DDR pathways at genetic loci 
associated with ANM. The figure was adapted with permission from ref. 39.
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ovarian reserve24. These findings are consistent with our data, where 
the ANM-lowering allele reduces BRCA1 expression in blood. BRCA1 
directly inhibits the transcriptional activation function of  ERα, and 
thus BRCA1 variants could also affect ANM through altered estro-
gen signalling25. Of the 34 DDR genes highlighted in Table 1, 15 
have experimental links to BRCA1, three of which form part of 
the BRCA1-A complex: BRE (BRCC45), FAM175A (abraxas) and 
UIMC1 (RAP80). Dispensable for the major tumor-suppressive role 
of BRCA1 in promoting DNA double-strand break repair by homolo-
gous recombination, the BRCA1-A complex components RAP80 and 
abraxas are actually involved in counteracting this activity, restrict-
ing BRCA1-dependent homologous recombination to appropriate  
levels26. Similarly, the DNA helicase FBH1 (FBXO18; signal 20)  
negatively regulates homologous recombination27,28. Although 
homologous recombination is essential for cell viability, such anti-
recombinase activities are also important for maintaining genome 
stability, and failure of this regulation is associated with inappropriate 
recombination events and the accumulation of toxic recombination 
intermediates, DNA repair activities associated with driving translo-
cations, loss of heterozygosity and chromosomal abnormalities29.

Double-strand break repair is an important response to metabolic 
and environmental damage to DNA but is also a key process in meiosis 
for resolving recombination events. Aberrant meiotic recombination 
is known to cause meiotic arrest and affect the viability of oocytes. 
Menopause occurs when the number of oocytes in the ovary falls 
below a threshold number (approximately 1,000), and thus processes 
that affect the size of the oocyte pool will affect the timing of meno-
pause. Recent studies have shown that recessive mutations in both 
MCM8 and MCM9 result in genomic instability, caused by a deficiency 
in double-strand break repair, which has a devastating effect on the 
oocyte pool, causing POI10,30. MCM8 is one of the genes highlighted 
in our study (signal 41), and a further 12 are also involved in homolo-
gous recombination–mediated repair, including two that are specific 
for meiotic repair (MSH5 and DMC1 (DNA meiotic recombinase 1)). 
Thus, double-strand break repair, during recombination at meiosis, 
appears to be a major mechanism by which oocyte numbers are regu-
lated, thus determining depletion of the oocyte pool and ANM.

In this study, however, the repair mechanisms highlighted are not 
confined to homologous recombination; mismatch repair and base-
excision repair are also implicated, as well as mitotic repair and repair 
checkpoints. Thus, it appears that the mechanisms are not confined 
to repair of meiotic crossovers, but more general mechanisms are 
also involved. Seven million oogonia are produced during fetal devel-
opment by mitosis. Inefficient repair of DNA damage during these 
mitotic events could result in apoptosis and thus a reduction in the 
initial oocyte pool. Loss of oocytes throughout female life predomi-
nantly occurs by atresia rather than ovulation. It is likely that oocytes 
are particularly sensitive to DNA damage because of the prolonged 
state of cell cycle arrest, lasting up to 50–60 years. Aberrant repair 
throughout life could affect the rate of atresia and thus ANM.

Several of the genes highlighted in our study are robust cancer predis-
position genes, for example, BRCA1, CHEK2 and MSH6. Additionally, 
BCAR4 and STARD3 have also been linked with breast cancer predispo-
sition. However, common susceptibility variants have not been mapped 
to any of these genes through GWAS approaches for any cancer (NHGRI 
GWAS catalog). Patients with known pathogenic mutations in BRCA1 
predisposing to breast cancer have been reported to have lower ANM31, 
although other studies have not replicated these findings32.

We found that carrying higher numbers of ANM-increasing vari-
ants was associated with increased breast cancer risk. This association  
is consistent with (and indeed slightly larger than) the observed  

epidemiological association. Our Mendelian randomization approach 
indicates a causal relationship between ANM and breast cancer risk, 
with prolonged estrogen and/or progesterone exposure likely to be the 
mechanism33. Consistent with this proposed mechanism, the effect 
size was greater for ER-positive than ER-negative breast cancer.

At first sight, this observation might appear paradoxical given the 
enrichment of DDR genes associated with menopause. However, we 
noted that the association between ANM variants and breast cancer 
risk was weaker for variants in or near DDR genes than those in the 
non-DDR set. This raises the possibility that the DDR variants that 
reduce menopausal age do modestly increase breast cancer risk, but this 
increase in risk is counterbalanced by the larger effect due to altered 
hormonal exposure. Alternatively, it is possible that variants in the 
non-DDR set may have a residual effect on breast cancer risk through 
hormonal or other mechanisms or that both mechanisms could have 
a role (Supplementary Fig. 4). BRCA1 mutations are known to be 
risk factors for prostate cancer34, and yet we found no association 
with prostate cancer predisposition for the ANM variants, supporting 
the hypothesis that the association with breast cancer is mediated via 
menopause and not a direct effect of the DDR variants. That the effect 
of the ANM polygenic risk score on breast cancer risk was larger than 
that predicted from observational studies might indicate measure-
ment error in the reporting of age at menopause or residual negative 
confounding in epidemiological studies; in either case, the Mendelian 
randomization analysis performed here using the polygenic risk score 
as an instrumental variable can give a more accurate estimate of the 
effect of age at menopause on breast cancer risk. Such measurement 
error would also be present in studies in the ANM GWAS from which 
the polygenic risk score weights were derived; hence, the ‘true’ effect 
of later menopause on breast cancer risk may actually be larger even 
than the ~6% increase in risk/year predicted here.

Our findings provide new evidence for a neural influence on the 
timing of ovarian follicular ageing. Until now, it has been thought 
that hypothalamic or pituitary activity in relation to menopause is 
simply secondary to the loss of feedback inhibition from ovarian hor-
mones35. We identified five ANM loci containing genes reported to be 
causal for hypogonadotropic hypogonadism. Monogenic disruption  
of three of these genes (CHD7, FGFR1 and SOX10) is a cause of 
Kallmann syndrome, characterized by anosmic hypogonadotropic 
hypogonadism due to failure of embryonic migration of gonadotropin- 
releasing hormone (GnRH)-secreting neurons from the olfactory  
bulb to the hypothalamus36. In addition, KISS1R (GPR54) encodes the 
receptor for kisspeptin, a key hypothalamic activator of the reproduc-
tive hormone axis, and TAC3 encodes neurokinin B, which is highly 
expressed in hypothalamic neurons that also express kisspeptin and 
promotes the pulse frequency of luteinizing hormone (LH) secretion 
from the pituitary. A possible central influence on ovarian aging is 
also supported by the ANM locus in or near FSHB (which is report-
edly also associated with circulating follicle-stimulating hormone 
(FSH) levels). Alternatively, recent studies have identified expres-
sion of TAC3, KISS1R and kisspeptin in ovarian granulosa cells37, 
suggesting peripheral actions of these neuropeptides and their recep-
tors38. Indeed, GPR54 haploinsufficiency in mice leads to progressive 
oocyte and follicle loss without affecting gonadotropin secretion38. 
Regardless of site of action, our findings indicate several mechanisms 
that could link the regulation of puberty to ANM and therefore influ-
ence both the start and end of the female reproductive lifespan.

In summary, our findings suggest a surprisingly narrow range  
of biological pathways governing ANM, highlighting a substantial  
role for DDR pathways in the etiology of ovarian ageing. We dem-
onstrate the usefulness of genetics in informing epidemiological  
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observations, identifying shared biological pathways linking  
puberty timing, breast cancer and reproductive aging.

URLs. UK Office for National Statistics publications, http://www.
ons.gov.uk/ons/publications/; Human Gene Mutation Database 
(HGMD), http://www.hgmd.cf.ac.uk/; Breast Cancer Information 
Core, http://research.nhgri.nih.gov/bic/; National Human Genome 
Research Institute (NHGRI) GWAS catalog, http://www.genome.
gov/gwastudies/; SNP info file SNPInfo_HumanExome-12v1_rev5.
tsv.txt, http://www.chargeconsortium.com/main/exomechip; STRING 
program, http://string-db.org/; SNAP, http://www.broadinstitute.org/
mpg/snap/; ldsc, https://github.com/bulik/ldsc;1000 Genomes Project 
Consortium, http://www.1000genomes.org/; ReproGen Consortium, 
http://www.reprogen.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Menopause data collection. ANM was self-reported and defined as the age 
at last naturally occurring menstrual period followed by at least 12 consecu-
tive months of amenorrhea. Recall bias or error in ANM reporting may have 
reduced our power to detect associations but would be unlikely to introduce  
systematic error. We assessed this issue in our previous meta-analysis  
and found no significant differences in effect estimates when considering  
retrospective versus prospective studies4. We included women with ANM who 
were 40–60 years of age in our analyses, excluding those with menopause 
induced by hysterectomy, bilateral ovariectomy, radiation or chemotherapy 
and those using hormone replacement therapy (HRT) before menopause 
(Supplementary Table 1). Within each of the studies included, each partici-
pant provided written informed consent and the study protocol was approved 
by the institutional review board at the parent institution.

GWAS. A total of 33 studies contributed genome-wide association data  
using self-reported ANM (Supplementary Table 1). One of the 33 studies  
was from BCAC, comprising 17 separate studies with menopause data;  
samples were genotyped using an Illumina iSelect array (iCOGS)20. There 
was a maximum total sample size of 69,360 individuals of European descent. 
Studies were asked to use the full imputed set of HapMap Phase 2 autosomal 
SNPs and to run an additive model including top principal components and 
study-specific covariates.

In some cases, studies submitted data using 1000 Genomes Projects–based 
imputation; in these cases, SNPs not included in the HapMap 2 set were 
removed. Once data were submitted, each study underwent quality control  
centrally according to standard quality control protocols implemented  
independently by two analysts. SNPs were filtered out if the MAF was less 
than 1% or the imputation quality metrics were low (imputation quality <0.4). 
Studies and SNPs passing quality control were combined using an inverse 
variance–weighted meta-analysis, implemented using METAL40. Again, this 
meta-analysis was run independently by two analysts who then separately  
ran PLINK clumping commands41 to identify the most significant SNPs 
in associated regions (termed index SNPs), using only SNPs that had data  
from more than 50% of the studies. SNPs were considered genome-wide  
significant if P < 5 × 10−8 (P value of 0.05 Bonferroni corrected for 1 million  
tests). Comparisons were made to ensure concordance of the identified  
signals between the two independent analysts.

Exome chip. Exome genotyping data were analyzed for 22 studies of European 
ancestry with questionnaire data on ANM (Supplementary Table 6). 
Genotype calling was performed using the CHARGE (Cohorts for Heart and  
Aging Research in Genomic Epidemiology) joint calling protocol, including  
X-chromosome variants. Each contributing study carried out study-
level analysis in the R package skatMeta or seqMeta using the skatCohort  
command, with the top genetic principal components included in the 
model and alleles coded according to a common reference file (SNPInfo_
HumanExome-12v1_rev5.tsv.txt; see URLs)42. After data submission, two data 
analysts carried out checks to ensure the consistency of allele coding. We car-
ried out a single-variant meta-analysis in METAL40, with a total sample size 
of 39,026; associations were considered significant if P < 5 × 10−8. Variants 
were put forward for replication in the deCODE study (n = 10,157) if they 
were present in more than half of the studies in the discovery stage and had  
P < 5 × 10−5 (MAF <1%) or P < 5 × 10−4 (MAF 1–5%).

Selection of independent signals and conditional analysis. Independent  
signals (termed signal SNPs) for ANM were identified using approximate  
conditional analysis implemented in the GCTA software package43. LD 
between variants was estimated using three independently genotyped studies  
as reference panels: the Rotterdam Study I (n = 5,974) and two EPIC-InterAct 
data sets (n = 7,397 and 9,294); these comprised males and females of European 
ancestry with GWAS data imputed using CEU (European-ancestry) haplotypes 
from HapMap 2. We assumed zero correlation between SNPs more than 10 Mb  
apart or on different chromosomes. We considered signals to be independ-
ent if they were observed in at least two of the three LD reference panels  
and were located in a 10-Mb region that contained a genome-wide significant 
SNP according to univariate test statistics.

We assessed the independence of the exome array and HapMap 2 signals by 
performing formal conditional analyses in the Women’s Genome Health Study 
(WGHS; n = 11,664). Regression was performed including all significant index 
SNPs in additive models, with the same study covariates as used in the primary 
analysis. LD computation in Haploview44 used experimental genotypes where 
possible (the exome chip rare variants and the common variants rs3741604 and 
rs2236553) but HapMap 2–imputed genotypes for the other common variants 
(MaCH v1.0.16; all Rsq >0.99).

Gene identification. At each locus identified by the GWAS meta-analysis, 
we annotated the likely causative gene(s) (Supplementary Table 3), selecting  
genes that were identified by at least one of the gene prioritization or path-
way programs (GRAIL or STRING), genes for which the top SNP or a 
proxy (r2 > 0.8) was an eQTL in one of 108 tissues or genes in which the 
top SNP or a proxy (r2 > 0.8) was a coding variant (Supplementary Fig. 5  
and Supplementary Tables 9–12, 26 and 27). In case of overlap between the 
results of the GWAS and exome array analyses, the gene indicated by the 
exome array analysis was chosen. Further manual annotation was used to 
select additional likely candidates on the basis of known biology (for example, 
monogenic POI) or biology highlighted by hypothesis-free pathway testing 
(Supplementary Table 15). If no candidate was identified by these methods, 
the nearest gene was chosen.

GRAIL is a literature-based text mining program used to suggest the 
most likely causal gene at each locus45, controlling for gene size and without  
any seed regions. GRAIL P < 0.05 was taken to indicate a suggested causal 
gene (Supplementary Table 9). All genes located within 500 kb of the top  
SNP at each locus were assessed using the STRING program, which was  
used to highlight any connectivity between genes in different regions 
(Supplementary Table 12).

Expression quantitative trait loci. Each independent SNP signal was 
assessed in over 100 separate eQTL data sets46 (Supplementary Table 11 and 
Supplementary Note). If an independent signal SNP was in high LD (r2 > 0.8; 
using SNAP) with the most significant signal for an eQTL, then the eQTL-
associated gene was highlighted as a potential causal candidate. The collected 
eQTL results met criteria of statistical thresholds for association with gene 
transcript levels as described in the original papers.

Pathway identification. We tested for signal enrichment across 2,580 pre-
defined biological pathways in GO, KEGG, Ingenuity, Panther, Reactome  
and Biocarta using MAGENTA47 with the full HapMap 2–imputed meta-
analysis (Supplementary Table 10). Analysis was performed using the 
same default settings as described in our previous paper4, with study-wise  
significance declared at false discovery rate (FDR) < 0.05. In addition to  
these predefined pathways, we also tested four custom pathways compris-
ing genes involved in POI (n = 31), ovarian function (n = 130), monogenic 
disorders of puberty (n = 21) and age at menarche (n = 154) (Supplementary 
Tables 13–15 and 22).

Estimating variance explained by SNP sets. An estimate of the total variance 
explained by highlighted ANM-associated SNPs was calculated using REML 
(restricted maximum likelihood) implemented in GCTA43. Using individual-
level data from the EPIC-InterAct cohort (n = 1,761), we calculated the attrib-
utable variance for the genome-wide significant SNPs at varying significance 
thresholds (5 × 10−7, 5 × 10−6, 5 × 10−5, 5 × 10−4, 0.005, 0.05 and all SNPs 
passing quality control) obtained from a repeated meta-analysis excluding 
EPIC-InterAct samples.

We used stratified LD score regression to quantify evidence of functional 
enrichment specific to groups of cell types6. We used the same baseline model 
as in Finucane et al.6, which comprises 53 overlapping categories, including 
basic annotations such as coding, UTR, promoter and intronic regions, as well 
as annotations for several histone marks, DNase I hypersensitivity site (DHS) 
regions, ChromHMM predictions48, regions that are conserved in mammals49, 
super-enhancers50 and FANTOM5 enhancers51. We evaluated enrichment for 
each of these categories, which are not specific to a particular cell type. We then 
took 230 cell type–specific annotations for four histone marks (H3K4me1, 
H3K4me3, H3K9ac (ref. 52) and H3K27ac (ref. 53); Supplementary Table 5)  
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and grouped them into ten cell type groups (adrenal/pancreas, central  
nervous system, cardiovascular, connective/bone, gastrointestinal, immune/
hematopoietic, kidney, liver, skeletal muscle and other)6. We added each cell 
type group to the baseline model one at a time and measured the P value of the 
resulting LD Score regression coefficient of the cell type group using the −h2 
flag in ldsc with LD Scores from 1000 Genomes Project Europeans. We ranked 
the cell type groups by whether the per-SNP heritability in the functional 
annotation was larger than the per-SNP heritability outside this annotation, 
controlling for the other annotations in the baseline model.

Breast and prostate cancer Mendelian randomization. To assess the asso-
ciation of the ANM SNPs with breast cancer risk, we used breast cancer 
cases (n = 46,347) and controls (n = 41,736) of European ancestry from  
41 studies in BCAC, who had been genotyped using a custom Illumina 
Infinium array (iCOGS). After standard quality control exclusions  
(as described in ref. 20), genotypes were available for 199,961 SNPs. Further 
genotypes were imputed in a two-stage procedure using SHAPEIT and 
IMPUTEv2 (ref. 54) with the 1000 Genomes Project March 2012 release 
as the reference data set55, giving ~11.6 million SNPs with imputation  
r2 > 0.3 and MAF >0.005. The 4,747 breast cancer cases and 7,285 controls in 
the BCAC data set for which ANM information was available had also been 
included in the ANM GWAS analysis.

The genotypes or imputed genotype dosages for the 56 significant SNPs in 
Tables 1 and 2 were used to construct a polygenic risk score for each breast 
cancer case and control, such that for the ith woman 

PRSi j ij
j

G=
=
∑ b

1

56

where βj is the ANM regression coefficient for the effect allele of the jth SNP 
(conditional β values were used for the correlated SNPs) and Gij is the number 
of copies of the effect allele at the jth SNP carried by the ith woman (Gij is 
between 0 and 2).

The association between the polygenic risk score and breast cancer was 
tested using unconditional logistic regression, adjusting for study and seven 
principal components (as estimated on the basis of a subset of 37,000 uncor-
related markers, including ~1,000 selected as ancestry-informative markers). 
The log-transformed odds ratio was scaled according to the effect size of a 
one-unit increase in polygenic risk score on ANM in control subjects, so as 
to obtain an estimated log-transformed odds ratio for a 1-year increase in 
genetically predicted ANM. Hence, the polygenic risk score can be thought 
of as an instrumental variable in a Mendelian randomization of ANM against 
breast cancer.

Additional analyses were conducted specifically for ER-positive (n = 27,026) 
or ER-negative (n = 7,401) cases and for participants with age at diagnosis (for 
cases) or interview (for controls) of ≤45 years (8,547 cases and 8,029 controls) 
or ≥55 years (24,841 cases and 20,410 controls) (as a surrogate for pre- or 
postmenopausal age at diagnosis, as ANM was not known for all participants), 
with heterogeneity evaluated in case-only analyses.

We also tested the association of ANM SNPs with prostate cancer risk, to 
determine whether any effect of the genetic variants was specific to breast 
cancer. Prostate cancer data were available from a similar sample size as for 
breast cancer, and there is known overlap in genetic risk for breast and pros-
tate cancers. Individual-level data were not available for prostate cancer; we 
therefore assessed the impact of ANM using an approximated allele score com-
prising the 54 HapMap 2 GWAS SNPs derived from summary-level results56. 
The score was assessed using summary statistics from a recent prostate cancer 
meta-analysis, comprising 25,074 cases and 24,272 controls from 32 studies 
in the PRACTICAL Consortium57, genotyped using the iCOGS array, with 
quality control and imputation carried out in the same way as for the BCAC 
iCOGS study.

Genetic correlation with additional traits. Cross-trait LD Score regression 
was used to estimate the genetic correlation between menopause timing and 54 
individual traits from published studies, including anthropometric and meta-
bolic traits58. We estimated genetic correlations with the method described 
in ref. 59 and the --rg flag in the ldsc software package, with LD Scores from 
1000 Genomes Project Europeans and default settings. Briefly, this method 
regresses the product of effect size estimates for trait 1 and trait 2 for each 
SNP against LD Score. The product of the slope and a constant estimates the 
genetic correlation, and the intercept estimates the product of the number 
of overlapping samples and the correlation between phenotypes among the 
overlapping samples.

Bidirectional Mendelian randomization analyses on ANM with age at 
menarche and BMI were carried out using similar methods as described for 
prostate cancer, with a weighted allele score56 generated from summary statis-
tics. Information on the associations with age at menarche came from the most 
recent GWAS for the trait (n = 182,416 women from 57 studies)17. The BMI 
data were taken from the most recent analysis (n = 249,796 from 64 studies)60. 
Although it was possible to calculate a full allele score for the genome-wide 
significant BMI-associated SNPs in ANM analysis, this was not possible for 
the ANM-associated SNPs in BMI analysis; instead, a binomial test of the 
consistency of effect direction was used.
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