
We study the situation in which a cheap
measure (X) is observed in a large, representa-

tive twin sample, and a more expensive measure (Y)
is observed in a selected subsample. The aim of this
study is to investigate the optimal selection design
in terms of the statistical power to detect genetic
and environmental influences on the variance of Y
and on the covariance of X and Y. Data were simu-
lated for 4000 dizygotic and 2000 monozygotic
twins. Missingness (87% vs. 97%) was then intro-
duced in accordance with 7 selection designs: (i)
concordant low + individual high design; (ii) extreme
concordant design; (iii) extreme concordant and dis-
cordant design (EDAC); (iv) extreme discordant
design; (v) individual score selection design; (vi)
selection of an optimal number of MZ and DZ twins;
and (vii) missing completely at random. The statisti-
cal power to detect the influence of additive and
dominant genetic and shared environmental effects
on the variance of Y and on the covariance between
X and Y was investigated. The best selection design
is the individual score selection design. The power
to detect additive genetic effects is high irrespective
of the percentage of missingness or selection
design. The power to detect shared environmental
effects is acceptable when the percentage of miss-
ingness is 87%, but is low when the percentage of
missingness is 97%, except for the individual score
selection design, in which the power remains
acceptable. The power to detect D is low, irrespec-
tive of selection design or percentage of
missingness. The individual score selection design is
therefore the best design for detecting genetic and
environmental influences on the variance of Y and
on the covariance of X and Y. However, the EDAC
design may be preferred when an additional purpose
of a study is to detect quantitative trait loci effects.

Questionnaires can be a cost-effective way to obtain
information on a wide variety of phenotypes (e.g.,
behavior, health, and social environment). Because of
the relatively low costs, it is feasible to phenotype
large numbers of subjects. Therefore, twin registries
often include survey data collected with question-

naires in twins and their family members. For some
purposes, however, it may be necessary to collect
more expensive phenotypic (e.g., endophenotypic or
biological) measures. For example, in gene finding
studies, high costs are involved in the collection of
DNA samples and the subsequent genotyping.
Endophenotyping may include endocrine measures,
assessment of neurocognitive measures, or assessment
of brain structure volumes and functioning with
Magnetic Resonance Imaging (MRI). Expensive phe-
notypes are sometimes collected through psychiatric
interviews or 24-hour ambulatory recordings of car-
diovascular functions. Because of the high costs
associated with such measures, the number of subjects
that can be tested is often limited. This may force one
to phenotype selected subjects from those in the large
representative sample. Such selection should be opti-
mized by selecting the most informative cases given
the objective of the study.

The purpose of the present article is to investigate
the precision of parameter estimates in various selec-
tion designs in the context of multivariate genetic
covariance structure modeling of monozygotic (MZ)
and dizygotic (DZ) twin data (Martin & Eaves,
1977). Specifically, we envisage the situation in which
we want to estimate the genetic and environmental
covariance structures of phenotypes X and Y.
Relatively cheap measures of phenotype X are avail-
able in a large representative sample of twin pairs.
Phenotype Y, in contrast, is expensive to measure, and
can only be measured in a selected subsample. The
question is: how should we select cases from the rep-
resentative samples so that we retain the greatest
possible statistical power, while ensuring that the esti-
mates are unbiased?

Sib-pair selection in quantitative trait loci (QTL)
analyses (Eaves & Meyer, 1994; Gu et al., 1996;
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Risch & Zhang, 1995) is designed to enrich the
sample with siblings who share zero or two alleles
identically by descent. The present objective is differ-
ent, namely to obtain estimates of the genetic and
environmental contributions to the variance of X and
Y, and to the covariance between X and Y. To achieve
this aim given the limitations (i.e., limited means to
phenotype Y), it would seem rational to select individ-
uals who score extremely high or low on X. Provided
that the correlation between X and Y is greater than
zero, subjects with extreme scores on X will also have,
on average, more extreme scores on Y. The linear rela-
tionship of X on Y can be estimated well with extreme
high and low values on Y, as in combination these
determine the orientation of the regression line in the
regression of X on Y. The loss of power to detect a
correlation between X and Y, as a result of missing-
ness, can be very small indeed in this situation (Dolan
et al., 2005). The present case is more complicated, as
we have twin pairs, and therefore four rather than two
variables. Although it may be expected that the selec-
tion of subjects with extreme scores on X will provide
the best statistical power, a number of questions can
be raised with respect to the selection design. Should
we select concordant and/or discordant twin pairs?
Should we select on a twin pair or on an individual
basis? The introduction of missingness due to selection
does not pose an estimation problem, as full informa-
tion (raw data) maximum likelihood (FIML)
estimation can be used if the data are missing at
random (MAR) or missing completely at random
(MCAR), in the sense of Rubin (1976; see also Little
& Rubin, 2002; Schafer & Graham, 2002). We briefly
explain the concepts of MCAR and MAR. The distrib-
utions for the missingness (R) can be classified
according to the nature of the relationship between
the missingness and the data (Schafer & Graham,
2002). Let the complete data matrix Zcom be parti-
tioned as Zcom = (Zobs, Zmis), where Zobs and Zmis are the
observed and missing parts, respectively. Missing data
are MAR if the distribution of missingness does not
depend on Zmis,

p(R|Zcom) = p(R|Zobs). [1]

In other words, the probability of missingness depends
only on the observed part of the data, and not on the
missing part. For example, suppose that blood pres-
sure was observed in a sample of 1000 subjects, and
that some additional data were collected in all subjects
who obtained a blood pressure score of one standard
deviation (SD) above average. Here, the probability of
missingness is 1, given that a subject scores below the
cut-off, and the probability of missingness is 0, given
that a subject scores above the cut-off. The data are
MAR, because the missingness depends on observed
data only. This example is relevant to the present
undertaking, where we have observed X, and on the

basis of X we select twin pairs for phenotyping with
respect to Y.

A special case of MAR is MCAR. In the previous
example, the data would be MCAR if a random
sample of the 1000 subjects is invited to participate,
and the probability of nonparticipation is not related
to the trait of interest. In other words, the distribution
of missingness does not depend on Zmis or Zobs,

p(R|Zcom) = p(R). [2]

When data are MAR or MCAR, a number of methods
are available to deal with the missingness. These
involve multivariate analysis of all available data with
FIML estimation, imputation of the missing data
(Little & Rubin, 2002) and data weighting (Heath et
al., 1998; Little & Rubin, 2002).

In the present article, we apply FIML in seven
selection designs. In five of these designs, selection
gives rise to data MAR. In the sixth design, we opti-
mize the number of MZ and DZ twins using the
derivations of Visscher (2004). In the seventh design,
which we include for reasons of comparison, the data
are MCAR. We present the results of genetic covariance
structure modeling using simulated twin data, with
missingness due to selection according to the seven
designs. The percentage of missingness was set at 87%
and 97%. We simulated data according to two different
etiological models, and fitted the models using FIML
estimation in our own FORTRAN program. This
program is available at http://www.tweelingenregister.
org/nederlands/onderzoek/missing_at_random.htm. At
this website, we also included an example of the R
script that was used for the data simulation. We report
the means and standard errors of the estimates of
genetic and environmental parameters in each design.
We also consider the power to detect additive genetic,
dominant genetic, and shared environmental effects. 

Methods
A Description of the Seven Selection Designs

Designs 1 to 5 are based on the selection of twins who
score lowly or highly on the (cheap) phenotypic test
X. The first design considered here is one that was
used in a study on attention problems (AP) and atten-
tion-deficit/hyperactivity disorder (ADHD; Derks et
al., 2006). Twin pairs were selected if (i) both
members obtained low AP checklist scores, or (ii) at
least one of the members obtained a high AP checklist
score. The lower threshold was not very extreme, but
only 25% of the twin pairs that obtained a low AP
score was randomly selected. In selection design 2
(extremely concordant; EC), twin pairs are selected if
both siblings scored extremely high, or if both siblings
scored extremely low. Selection design 3 is the extreme
concordant and discordant (EDAC) design. In this
design, pairs are selected if the two members of a twin
pair are discordant, or if both members score
extremely low or high. In selection design 4, only
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extremely discordant pairs (ED) are selected. In selec-
tion design 5, twin pairs are selected based on
individual scores rather than on a pair-wise basis.
Specifically, a complete twin pair is selected if at least
one of the twins scores extremely low or high. In selec-
tion design 6, we optimize the number of MZ and DZ
twin pairs according to the derivations of Visscher
(2004). After establishing the optimal number of MZ
and DZ pairs, subjects were randomly selected from the
total population of MZ and DZ twins. Because
Visscher provided derivations for the optimal MZ:DZ
ratio for the ACE model only, this design was not
included when data were simulated according to an
ADE model. Finally, in selection design 7 (MCAR),
twin pairs are selected completely at random. In addi-
tion to analyzing the data obtained in these seven
selection designs, we also analyzed the complete dataset
(i.e., no selection, and therefore no missingness). 

Data Simulation

All data were simulated using routines in the freely
available R program (Venables et al., 2002). The data
were multivariate normally distributed, with unit vari-
ances and zero means. In most European countries,
the number of DZ twins is about twice the number of
MZ twins. Therefore, we chose a 1:2 ratio for the
number of MZ:DZ twins. The number of MZ twin

pairs was 2000, and the number of DZ twin pairs was
4000. The number of replications was 250. To study
the effect of the amount of missingness that is intro-
duced, the percentage of missingness was either 87%
or 97%. To establish a constant percentage of missing-
ness irrespective of the selection design, the thresholds
were allowed to vary in the seven selection designs
(see Tables 2a–2d). Because of the different twin
covariances in MZ and DZ twins, the percentages of
missingness may vary between these groups. For
example, in the extreme discordant design and given
that phenotype X is a heritable trait, more DZ than
MZ twins will be selected.

The influence of the relative contributions of
genetic and environmental factors to individual differ-
ences in ADHD can be inferred from the different
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Table 1

Population Covariance Matrix (MZ/DZ Twins)

X1 Y1 X2 Y2

X1 1 .56/.56 .70/.45 .56/.36
Y1 .56/.56 1 .56/.36 .70/.45
X2 .70/.30 .56/.24 1 .56/.56
Y2 .56/.24 .70/.30 .56/.56 1
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Figure 1
Bivariate path model for twin data in which the selection variable is assessed in the complete sample and the selected variable in a subsample.
Note: A = Additive genetic influences; C = Shared environmental influences; D = Dominant genetic influences; E = Nonshared environmental influences; rA = 1 (.5) in MZ (DZ) twins;

rD = 1(.25) in MZ (DZ) twins; rC = 1 in MZ (DZ) twins.
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level of genetic relatedness of MZ and DZ twins
(Neale & Cardon, 1992). The variance may be due to
additive genetic effects (A), dominant genetic effects
(D) or shared environmental effects (C), and non-
shared environmental (E) effects. The genetic effects
(A and D) correlate 1 in MZ twins. In DZ twins, A
correlates .5 and D correlates .25. C correlates 1 in
both MZ and DZ twins. E or nonshared environmen-
tal effects are, by definition, uncorrelated. All
uncorrelated measurement error, if present, is
absorbed in the E term. Note that estimating C and D
at the same time is not possible in a design using only
data from MZ and DZ twins reared together. The
decomposition of the phenotypic covariance matrix
was based on Cholesky decompositions as shown in
Figure 1. The variation in phenotype X (i.e., the
variable on which the selection was based), phenotype
Y (i.e., the variable in which missingness is intro-
duced), and the covariance between X and Y is
influenced by A, C or D, and E. Simulation was based
on two etiological models: the ADE model and the
ACE model. In the ADE model, variation in the phe-
notypes X and Y was for 50% explained by A, for
20% by D, and for 30% by E. The covariation
between X and Y was for 71% explained by A and for
29% by D.

In the ACE model, A, C, and E explained 50%,
20% and 30%, respectively, of the phenotypic variance
in X and Y. A and C explained 71% and 29%, respec-
tively, of the phenotypic covariance between X and Y.
In Table 1, we report the theoretical covariance matri-
ces in MZ and DZ pairs for the ADE (below diagonal)
and ACE (above diagonal) models. X1 and Y1 refer to
variable X and Y as observed in the first-born while X2

and Y2 refer to variable X and Y as observed in the
second-born.

Statistical Analyses

The genetic model fitting was carried out in our own
FORTRAN program. In the case of the ADE model,
parameter estimates were obtained by fitting a multi-
variate ADE model, and the statistical power to detect
D on the variance of Y was obtained by fixing the
factor loadings y21 and y22 at zero (see Figure 1). The
power to detect influences of D on the covariance
between X and Y was obtained by fixing the factor
loading y21 at zero. Likewise, in the ACE model, para-
meter estimates were obtained by fitting a multivariate
ACE model, and the statistical power to detect A and
C on the variance of Y was obtained by fixing the
factor loadings x21 and x22, and the loadings y21 and
y22, respectively. The power to detect A and C on the
covariance between X and Y was obtained by fixing
the loadings x21 and y21, respectively.

The null distribution of the likelihood ratio test for
the significance of the genetic and environmental
influences on the covariance of X and Y follows a χ2

(1 df) distribution. However, because of the implicit
constraints on the parameters in the Cholesky decom-
position, the null distribution of the likelihood ratio
test for the genetic and environmental influences on
the variance of Y is not the expected central χ2 (2df;
Carey, 2004; Dominicus, Skrondal, et al., 2006).
Rather it is a mixture of χ2 distributions, differing in
dfs (see Stram & Lee, 1994). To obtain some insight
into the nature of this mixture, we performed a small
simulation. The results suggested strongly that the
null-distribution is asymptotically a χ2

(1)–χ2
(2) mixture

with mixing proportions approximately equal to
50:50. These results tally with those of Stram and Lee
(1994). The critical values associated with this
mixture was estimated at 5.138 (α = .05, df = 2) using
a R program.
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Table 2a

Standardized Parameter Estimates in ADE Model (87% Missingness)

Complete Concordant low + Extreme EDAC Extreme Individual
sample individual high concordant discordant score selection MCAR

Threshold low — –.44 –.9 –1 –.4 –1.78 —
Threshold high — 1.64 .9 1 .4 1.78 —
Mean NMZ/NDZ 2000/4000 269/526 386/433 344/459 118/679 240/551 267/532

Variance component True value

A variance X .50 .50 (.05) .50 (.05) .50 (.05) .50 (.05) .50 (.05) .50 (.05) .50 (.05)
A covariance XY .40 .40 (.04) .40 (.07) .40 (.08) .40 (.07) .41 (.11) .40 (.06) .41 (.08)
A variance Y .50 .50 (.06) .47 (.12) .47 (.14) .48 (.12) .49 (.17) .47 (.12) .49 (.13)
D variance X .20 .20 (.05) .20 (.05) .20 (.05) .20 (.05) .20 (.05) .20 (.05) .20 (.05)
D covariance XY .16 .16 (.04) .16 (.07) .16 (.09) .16 (.08) .16 (.08) .16 (.07) .15 (.08)
D variance Y .20 .20 (.06) .23 (.12) .23 (.15) .22 (.13) .21 (.14) .23 (.12) .21 (.14)
E variance X .30 .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01)
E covariance XY .00 .00 (.01) .00 (.02) .00 (.02) .00 (.02) .00 (.01) .00 (.01) .00 (.02)
E variance Y .30 .30 (.01) .30 (.02) .30 (.02) .30 (.02) .30 (.03) .29 (.03) .30 (.02)

Note: A = additive genetic effects, D = dominant genetic effects; E = nonshared environmental effects; EDAC = extreme discordant and concordant; MCAR = missing completely at
random.



Results
As expected, given the FIML theory, the estimates of
the genetic and environmental influences on pheno-
types X, Y, and on the covariance between X and Y
closely resemble the simulated values in the true ADE
and ACE model (Tables 2a–2d). The SEs of the stan-
dardized influences on phenotype Y are greater than
the SEs of the standardized influences on phenotype
X, as is to be expected, because missingness was
limited to Y. The lowest SEs are found in the individ-
ual score selection design. 

The statistical power to detect the influences of A,
C, and D on the variance of Y is reported in Tables 3a
and 3b for 87% and 97% missingness, respectively.
Tables 3c and 3d report the statistical power to detect
the influences of A, C, and D on the covariance
between X and Y for the respective percentages of miss-
ingness. The decrease in statistical power as a result of
the introduction of missingness can be derived from a
comparison of the mean χ2 of the selected samples with
the mean χ2 of the complete sample (i.e., the value
when no missingness is introduced). A lower mean χ2 is
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Table 2b
Standardized Parameter Estimates in ACE Model (87% Missingness)

Complete Concordant Extreme EDAC Extreme Individual Optimal MCAR
sample low + concordant discordant score NMZ:NDZ

individual selection
high

Threshold low — –.45 –1 –1.02 –.3 –1.77 — —
Threshold high — 1.65 1 1.02 .3 1.77 — —
Mean NMZ/NDZ 2000/4000 264/524 334/463 323/481 164/640 249/555 312/488 266/531

Variance component True value

A variance X .50 .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03)
A covariance XY .40 .40 (.02) .40 (.04) .40 (.06) .40 (.05) .40 (.04) .40 (.04) .40 (.05) .40 (.05)
A variance Y .50 .50 (.03) .49 (.08) .49 (.08) .50 (.08) .49 (.07) .49 (.07) .49 (.08) .49 (.08)
C variance X .20 .20 (.03) .20 (.03) .20 (.03) .20 (.03) .20 (.03) .20 (.03) .20 (.03) .20 (.03)
C covariance XY .16 .16 (.02) .16 (.04) .16 (.05) .16 (.04) .15 (.06) .16 (.03) .16 (.04) .16 (.04)
C variance Y .20 .20 (.02) .21 (.06) .21 (.07) .21 (.06) .20 (.08) .21 (.06) .21 (.07) .21 (.07)
E variance X .30 .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01)
E covariance XY .00 .00 (.01) .00 (.02) .00 (.02) .00 (.02) .00 (.01) .00 (.01) .00 (.02) .00 (.02)
E variance Y .30 .30 (.01) .30 (.03) .30 (.02) .30 (.02) .30 (.03) .30 (.03) .30 (.02) .30 (.03)

Note: A = additive genetic effects, C = shared environmental effects; E = nonshared environmental effects; EDAC = extreme discordant and concordant; MCAR = missing completely
at random.

Table 2c

Standardized Parameter Estimates in ADE Model (97% Missingness)

Complete Concordant low + Extreme EDAC Extreme Individual
sample individual high concordant discordant score selection MCAR

Threshold low — –1 –1.515 –1.52 –.77 –2.375 —
Threshold high — 2.35 1.515 1.52 .77 2.375 —
Mean NMZ/NDZ 2000/4000 75/117 109/86 107/92 11/197 62/136 65/132

Variance component True value

A variance X .50 .50 (.06) .50 (.06) .50 (.06) .50 (.06) .50 (.06) .50 (.06) .50 (.06)
A covariance XY .40 .40 (.04) .41 (.09) .41 (.12) .41 (.11) .39 (.16) .41 (.08) .41 (.12)
A variance Y .50 .50 (.06) .45 (.16) .45 (.19) .46 (.18) .46 (.25) .46 (.15) .46 (.19)
D variance X .20 .20 (.06) .20 (.06) .20 (.06) .20 (.06) .20 (.06) .20 (.06) .20 (.06)
D covariance XY .16 .16 (.04) .15 (.10) .15 (.12) .15 (.12) .17 (.12) .16 (.08) .15 (.11)
D variance Y .20 .20 (.05) .24 (.17) .24 (.20) .24 (.19) .28 (.22) .24 (.15) .24 (.18)
E variance X .30 .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01)
E covariance XY .00 .00 (.01) .00 (.03) .00 (.04) .00 (.04) .00 (.03) .00 (.02) .00 (.03)
E variance Y .30 .30 (.01) .30 (.04) .30 (.04) .30 (.04) .26 (.09) .30 (.05) .30 (.05)

Note: A = additive genetic effects, D = dominant genetic effects; E = nonshared environmental effects; EDAC = extreme discordant and concordant; MCAR = missing completely 
at random.
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associated with a lower statistical power. In addition to
the mean χ2, we included the proportion of simulations
in which the null hypothesis (i.e., no effect of A, C, or
D) was rejected. 

The statistical power to detect D on the variance of
Y and on the covariance of X and Y is substantially
decreased as a result of the selection in all seven
designs. For example, the power to detect a dominant
genetic component which explains 20% of the vari-
ance of Y equals .99 in the absence of missingness.
After the introduction of 87% missingness, the statis-
tical power drops to .27–.68 (see Table 3a), with the
individual score selection design showing the highest
power. Likewise, the statistical power to detect D on
the covariance of X and Y with 87% missingness

drops from .96 to .43–.69. As for the detection of D
on the variance of Y, the highest power is obtained
with the individual score selection design. Generally,
the statistical power to detect C is higher than the sta-
tistical power to detect D. However, the pattern of
results is similar, with the highest power being
obtained in the individual score selection design. The
power to detect A approaches 1, irrespective of the
percentage of missingness or selection design. Clearly
the effect size of A is too large to pick up any differ-
ences in power.

Discussion
In the current article we focused on the situation in
which a relatively cheap measure (X) is measured in a
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Table 2d

Standardized Parameter Estimates in ACE Model (97% Missingness)

Complete Concordant Extreme EDAC Extreme Individual Optimal MCAR
sample low + concordant discordant score NMZ:NDZ

individual selection
high

Threshold low — –1 –1.57 –1.57 –.67 –2.375 — —
Threshold high — 2.35 1.57 1.57 .67 2.375 — —
Mean NMZ/NDZ 2000/4000 74/129 95/106 95/108 21/179 61/134 78/122 65/132

Variance component True value

A variance X .50 .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03) .50 (.03)
A covariance XY .40 .40 (.02) .41 (.07) .40 (.08) .40 (.08) .40 (.06) .41 (.06) .41 (.09) .41 (.09)
A variance Y .50 .50 (.03) .49 (.13) .47 (.15) .47 (.15) .49 (.14) .49 (.12) .47 (.15) .49 (.14)
C variance X .20 .20 (.03) .20 (.02) .20 (.02) .20 (.02) .20 (.02) .20 (.02) .20 (.02) .20 (.03)
C covariance XY .16 .16 (.02) .16 (.05) .16 (.07) .16 (.07) .15 (.10) .16 (.05) .16 (.08) .15 (.07)
C variance Y .20 .20 (.03) .21 (.10) .22 (.12) .22 (.12) .21 (.15) .21 (.10) .22 (.13) .21 (.12)
E variance X .30 .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01) .30 (.01)
E covariance XY .00 .00 (.01) .00 (.03) .00 (.04) .00 (.04) .00 (.03) .00 (.02) .00 (.03) .00 (.03)
E variance Y .30 .30 (.01) .30 (.05) .31 (.04) .31 (.04) .30 (.08) .30 (.05) .31 (.05) .30 (.05)

Note: A = additive genetic effects, C = shared environmental effects; E = nonshared environmental effects; EDAC = extreme discordant and concordant; MCAR = missing completely
at random.

Table 3a

Effect of Missingness on the Statistical Power to Detect Additive Genetic Effects (A), Dominant Genetic Effects (D), and Shared Environmental
Effects (C) on the Variance of Y (87% Missingness)

Detection of D (in ADE model) Detection of C  (in ACE model) Detection of A (in ACE model)

Mean χ2 Statistical Mean χ2 Statistical Mean χ2 Statistical
(SD) power (SD) power (SD) power

Complete sample 18.14 (8.35) .99 77.37 (16.18) > .99 430.13 (36.17) > .99
Concordant low + individual high 6.67 (4.69) .56 22.85 (9.75) .99 101.68 (20.87) > .99
Extreme concordant 3.78 (3.07) .30 12.79 (6.26) .87 77.91 (17.05) > .99
Extreme concordant and discordant 5.78 (4.84) .46 17.83 (8.04) .96 83.01 (17.95) > .99
Extreme discordant 3.80 (3.19) .27 9.02 (5.53) .74 110.97 (19.21) > .99
Individual score selection 8.52 (5.81) .68 29.76 (10.71) > .99 122.09 (21.04) > .99
Optimal NMZ:NDZ — — 14.99 (7.20) .97 87.26 (17.23) > .99
MCAR 4.33 (3.72) .30 15.53 (7.37) .94 79.86 (16.69) > .99

Note: Statistical power is power with alpha = .05, df = 2; MCAR = missing completely at random.
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Table 3b

Effect of Missingness on the Statistical Power to Detect Additive Genetic Effects (A), Dominant Genetic Effects (D), and Shared Environmental
Effects (C) on the Variance of Y (97% Missingness)

Detection of D (in ADE model) Detection of C  (in ACE model) Detection of A (in ACE model)

Mean χ2 Statistical Mean χ2 Statistical Mean χ2 Statistical
(SD) power (SD) power (SD) power

Complete sample 17.74 (7.55) .99 76.67 (17.16) > .99 434.37 (35.32) > .99

Concordant low + individual high 2.78 (2.43) .16 8.61 (5.07) .75 39.80 (11.12) > .99

Extreme concordant 1.84 (1.89) .06 4.97 (3.63) .41 31.53 (10.29) > .99

Extreme concordant and discordant 2.23 (2.24) .09 5.66 (4.23) .48 31.81 (10.49) > .99

Extreme discordant 2.25 (2.12) .09 2.81 (2.48) .14 33.55 (10.25) > .99

Individual score selection 3.68 (3.16) .27 11.48 (6.24) .86 47.71 (12.71) > .99

Optimal NMZ:NDZ — — 5.32 (4.05) .44 28.74 (10.55) > .99

MCAR 1.92 (1.95) .08 5.18 (4.00) .43 26.44 (10.00) > .99

Note: Statistical power is power with alpha = .05, df = 2; MCAR = missing completely at random.

Table 3c

Effect of Missingness on the Statistical Power to Detect Additive Genetic Effects (A), Dominant Genetic Effects (D), and Shared Environmental
Effects (C) on the Covariance Between X and Y (87% Missingness)

Detection of D (in ADE model) Detection of C  (in ACE model) Detection of A (in ACE model)

Mean χ2 Statistical Mean χ2 Statistical Mean χ2 Statistical
(SD) power (SD) power (SD) power

Complete sample 14.00 (7.19) .96 61.86 (15.39) > .99 379.52 (34.94) > .99

Concordant low + individual high 5.49 (4.31) .58 20.96 (9.44) > .99 101.65 (20.88) > .99

Extreme concordant 3.05 (2.70) .32 11.51 (6.11) .88 77.72 (17.05) > .99

Extreme concordant and discordant 4.78 (4.49) .47 16.30 (7.81) .98 82.83 (17.95) > .99

Extreme discordant 3.44 (3.08) .35 7.58 (5.47) .71 110.91 (19.26) > .99

Individual score selection 7.14 (5.25) .69 27.62 (10.49) > .99 122.07 (21.06) > .99

Optimal NMZ:NDZ — — 13.48 (6.81) .96 87.08 (17.19) > .99

MCAR 3.47 (3.23) .34 13.86 (7.14) .94 79.75 (16.68) > .99

Note: Statistical power is power with alpha = .05, df = 1; MCAR = missing completely at random.

Table 3d

Effect of Missingness on the Statistical Power to Detect Additive Genetic Effects (A), Dominant Genetic Effects (D), and Shared Environmental
Effects (C) on the Covariance between X and Y (97% Missingness)

Detection of D (in ADE model) Detection of C  (in ACE model) Detection of A (in ACE model)

Mean χ2 Statistical Mean χ2 Statistical Mean χ2 Statistical
(SD) power (SD) power (SD) power

Complete sample 13.85 (6.87) .96 61.75 (15.16) > .99 382.91 (32.85) > .99

Concordant low + individual high 2.38 (2.26) .24 8.19 (5.06) .80 39.78 (11.13) > .99

Extreme concordant 1.60 (1.81) .10 4.51 (3.48) .48 31.52 (10.29) > .99

Extreme concordant and discordant 1.95 (2.13) .16 5.21 (4.06) .56 31.80 (10.48) > .99

Extreme discordant 2.02 (2.05) .17 2.18 (2.17) .18 33.54 (10.26) > .99

Individual score selection 3.22 (3.00) .34 10.98 (6.16) .92 47.70 (12.72) > .99

Optimal NMZ:NDZ — — 4.77 (3.89) .54 28.63 (10.60) > .99

MCAR 1.51 (1.66) .09 4.69 (3.87) .50 26.35 (10.01) > .99

Note: Statistical power is power with alpha = .05, df = 1; MCAR = missing completely at random.
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large representative sample, and a more expensive
measure (Y) is measured in a subset of the sample.
Little and Rubin (2002) have shown that, provided
that the missing data are either MAR or MCAR,
FIML produces an unbiased estimate of the popula-
tion covariance matrix. The goal of this article was to
investigate the best selection design in terms of the sta-
tistical power to detect genetic and environmental
influences on the variance of Y and on the covariance
of X and Y.

Standard errors of the estimates of genetic and
environmental influences were smallest in the individ-
ual score selection design. The better performance of
this design was also reflected in the results of the
power analyses, as it resulted in the highest statistical
power to detect genetic and environmental influences
on the variance of Y and on the covariance between X
and Y. Clearly, for the purpose of covariance decom-
position, informative twin pairs should not be selected
on a pair-wise basis but rather on an individual basis.
What could be the explanation for this finding? In the
individual score selection design, twins with a moder-
ate score are included if their co-twin has an extreme
score. It is likely that the inclusion of moderate scores
improves the estimation of the regression of X on Y.
To test this hypothesis, we simulated data and esti-
mated the variances and covariances in MZ and DZ
twins. Eighty-seven per cent missingness was intro-
duced by including a random sample of 5% of the
subjects while the remaining 8% of the twin pairs
were selected when they were extreme concordant.
This design is a combination of the MCAR and the
EC design. With this design, the standard errors of the
variances and covariances were lower compared to
both the EC design and the MCAR design. The expla-
nation for this finding is that the inclusion of subjects
with both moderate and extreme scores increases the
precision of the estimations.

Although the individual score selection design
was the best design in this study, most studies are not
limited to the decomposition of phenotypic variance
into latent genetic and environmental influences. An
additional purpose may be the detection of effects of
measured genetic polymorphisms. For this purpose,
the ED and EDAC designs are more suitable (Eaves
& Meyer, 1994; Gu et al., 1996; Risch & Zhang,
1995). With these designs, additive genetic effects,
which usually explain more variation than shared
environmental or dominant genetic effects do not
pose a problem. The power to detect shared environ-
mental factors is especially problematic in the ED
design, but is acceptable in the EDAC design, as long
as the percentage of missingness is not too extreme.
The power to detect D is not only very poor in the
ED and EDAC designs, but also in the individual
score selection design. Therefore, the EDAC design
may be a good alternative, if one is interested both in
traditional genetic covariance structure analysis and
in QTL analyses.

The fact that the statistical power to detect A and C
is satisfactory, even with a percentage of missingness of
87% (resulting in a sample size of 800 pairs), is promis-
ing for longitudinal studies, in which attrition may lead
to missing phenotypic data in a subset of the sample.
Usually, nonresponse rates will be much lower than
87%, which suggests that the power to detect genetic
and environmental influences is good, given that the
original (total) sample size is not very small.
Considering the effect of missingness as a result of attri-
tion, it should be kept in mind that we restricted
ourselves to the discussion of response models under
the assumption that the data are MAR or MCAR.
When the data are actually missing not at random
(MNAR), maximum likelihood estimation cannot
correct for the missingness, and genetic and environ-
mental influences may either be overestimated or
underestimated, depending on the nonresponse model
(Dominicus, Palmgren, et al., 2006; Taylor, 2004).

The results of the present study should be inter-
preted in the light of the following limitations. First,
we assumed that the data are either MAR or MCAR.
This does not affect the results in the present studies,
because the selection strategies that were applied guar-
anteed MAR. In other situations, however, the
mechanism giving rise to missingness may be
unknown which would result in data MNAR. As dis-
cussed above, in these instances, parameters may be
biased. Second, we assumed that phenotypes X and Y
are multivariate normally distributed. If the true distri-
bution of X is not normal, for example, as a result of
censoring or truncation, the selection may not be
optimal and the decrease in statistical power will be
greater than observed in the current analyses. 
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