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Abstract

Background: The aims of this study were to analyze associations of dopamine receptor genes (DRD1-5) with Major
Depressive Disorder (MDD) and nicotine dependence (ND), and to investigate whether ND moderates genetic influences on
MDD.

Methods: The sample was ascertained from the Finnish Twin Cohort. Twin pairs concordant for smoking history were
recruited along with their family members, as part of the multisite Nicotine Addiction Genetics consortium. Genetic
association analyses were based on 1428 adults. Total of 70 tagging single nucleotide polymorphisms within the dopamine
receptor genes were genotyped and analyzed for association with MDD, ND, and MD-ND co-morbidity. Individual level
logistic regression analyses were based on 1296 adults with data on ND and MDD diagnoses, as well as on dopamine
receptor genotypes adjusted for sex, age, and alcohol use. Four independent samples, such as population-based and case-
control samples, were used for replication.

Results: Rs2399496, located 1.5 kb downstream of DRD3, showed suggestive association for MDD (p = 0.00076) and
significant association for MDD-ND co-morbidity (p = 0.000079). Suggestive gene-(rs2399496) by-ND-interaction justified
analyses by genetic risk variant and ND status. Individuals with ND and two minor alleles (AA) of rs2399496 had almost six-
fold risk for MDD (OR 5.74, 95%CI 3.12–10.5, p = 9.010e-09) compared to individuals without ND and with two major alleles
(TT).

Conclusions: Significant association between a variant downstream of DRD3 and a co-morbid MDD-ND phenotype was
detected. Our results further suggest that nicotine dependence may potentiate the influence of the DRD3 genetic variant on
MDD.
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Introduction

Depression, ranging from mild depressed mood to major

depressive disorder (MDD) [1] is estimated to be the second

leading cause of disability worldwide by 2020 [2]. Approximately

8–13% of the general population experience clinical depression

during their lifetime [3]. Persistent smoking, being primarily

sustained by nicotine dependence (ND), represents one of the most

preventable causes of morbidity and mortality. Estimated preva-

lence of ND among Finnish ever smokers is 48–52% [4].

Depression is known to co-occur with smoking and ND [5].

While this association is well established, causal influences may be

posited under several hypotheses. Twin and family studies show

significant genetic correlations suggesting that shared genetic

predisposition underlies this co-occurrence [6]. Genes are

estimated to explain about 40% of variability in risk of developing

MDD [7], and 40–75% in etiology of ND [6]. Genome-wide

association (GWA) studies and meta-analyses show robust

association between the CHRNA5-CHRNA3-CHRNB4 nicotinic

acetylcholine receptor gene cluster on chromosome 15q25 and

smoking phenotypes including ND [8]. However, the identified

variants do not explain the extent of familial variation for ND.

Furthermore, although the CHRNA5-CHRNA3-CHRNB4 cluster

has been associated with many ND phenotypes, to our knowledge,

it has not been directly associated with MDD, although the

rs11636753 in CHRNB4 showed suggestive association with the co-

morbidity of MDD and ND [4].

Dopamine receptor genes may also be of interest to explain the

association between MDD and ND. Deficiency in dopaminergic

neurotransmission may underlie MDD symptomatology [2] and

dysfunctional mesolimbic dopamine system plausibly underlies

substance dependence [3]. Nicotinic acetylcholine receptors are

widely distributed in mesolimbic reward pathways. Thus, nicotine

can increase extracellular dopamine levels in these reward

pathways [2]. Candidate gene studies have implicated dopami-

nergic pathway genes in depression and ND. The role of DRD2

and ANKK1 variants in smoking and ND has been suggested in

various populations [9–13]. Variation in DRD2 has been

associated with depressiveness [14]. Evidence exists also for

involvement of DRD4 in mood disorders [15] and ND [16].

Genotype-by-phenotype-interactions concerning smoking and

depression have been sparsely investigated, with a few small-scale

studies focusing on dopamine receptor genes. A significant DRD4

genotype-by-depression-interaction was found for stimulation- and

negative-affect-reduction-smoking [17]. Likelihood of increased

smoking level rose 2-fold with each additional DRD2/ANKK1

rs1800497 minor allele, with a pronounced association among

adolescents with depression symptoms [18]. Further, the associ-

ation between smoking cessation and lifetime depression was

significantly modified by DRD2/ANKK1 rs1800497 genotype [19].

Given the co-occurrence and plausible shared etiology of ND and

depression, it is pertinent to investigate whether dopamine receptor

gene variants have pleiotropic associations on ND and MDD and

whether the association between dopamine receptor genes and ND is

modified by MDD - or vice versa.

We aimed to investigate: 1) magnitude of shared genetic factors

underlying the association between lifetime DSM-IV diagnoses of

MDD and ND; 2) whether ND moderates genetic influences on

MDD or vice versa; 3) dopamine receptor genes’ single nucleotide

polymorphisms (SNPs) for associations with MDD and ND.

Finally, we tested two alternative hypotheses: A) MDD modifies

the association between dopamine receptor genotype and ND; B)

ND modifies the association between dopamine receptor genotype

and MDD.

Methods

Ethics Statement
The authors assert that all procedures contributing to this work

comply with the ethical standards of the relevant national and

institutional committees on human experimentation and with the

Helsinki Declaration of 1975, as revised in 2008.

Sample
Sample collection has been previously described in detail

[20,21]. It was ascertained from the Finnish Twin Cohort of

adult twins born in 1938–1957. Based on earlier questionnaires,

ever-smoking concordant twin pairs and their family members

were recruited in 2001–2005 for the Nicotine Addiction Genetics

(NAG) Finland study, as part of the consortium including Finland,

Australia, and USA. Data from diagnostic interview, blood

samples, and informed consent were available on 2188 individuals.

The study was approved by the Ethics committee of the Hospital

District of Helsinki and Uusimaa, Finland and by the IRB of

Washington University, St. Louis, Missouri, USA.

The quantitative genetic models included 115 MZ and 415 DZ

pairs. The genetic association analyses included 1428 individuals

(1128 twins, 271 siblings, 29 other family members; mean age 55.6

years, 59% males) who smoked on average 19.7 (SD 9.9) cigarettes

per day (CPD). Ninety four percent had smoked $100 cigarettes

over lifetime, 51.5% fulfilling the ND DSM-IV criteria. Prevalence

of DSM-IV MDD was 17.2% (Table 1A). Multiple logistic

regression analyses included 1296 individuals (mean age 55.2

years, 60.6% males). All had smoked $100 cigarettes over lifetime

the average CPD being 18.9 (SD 10.4). ND and MDD prevalence

was 54.5% and 18.4%, respectively (Table 1B).

Phenotypes
Participants were interviewed using the diagnostic Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA)

[22] protocol including an additional section on smoking behavior

and ND adapted from the Composite International Diagnostic

Interview (CIDI) [23]. The following phenotypes were used:

DSM-IV diagnosis of lifetime MDD (presence of depressed mood,

irritable mood when age ,18 years or diminished interest or

pleasure in activities; altogether $5 symptoms out of 9 symptoms

of depression clustering within 2 weeks leading to impairment in

social, occupational or other important functioning), number of

DSM-IV MDD symptoms, DSM-IV diagnosis of ND ($3

symptoms out of 7, occurring within a year), number of DSM-

IV ND symptoms, and the binary phenotype of co-morbidity of

MDD and ND. (Phenotype correlations are presented in Table S1

in File S1). In hypothesis testing sex, age and alcohol use (defined

as number of binge drinking days per year, binge drinking

meaning $5 drinks at one occasion) were considered as potential

confounders. In post-hoc analyses heavy smoking ($20 CPD

during heaviest smoking period or $40 cigarettes in a single day)

was used.

Genotyping
DNA was extracted from blood samples by standard methods.

Altogether 303 individuals were genotyped for 76 SNPs in all

known dopamine receptor genes (DRD1-5) using Sequenom’s

homogeneous hME and iPLEX Gold technology (Sequenom, San

Diego, CA, USA), as previously described [4]. For 1125

individuals, genotypes were derived from GWA data. Of the 76

SNPs genotyped with Sequenom, 70 were available in the GWA

data (21 DRD1 SNPs, 30 DRD2/ANKK1 SNPs, 15 DRD3 SNPs,

two DRD4 SNPs, and two DRD5 SNPs). All analyses in this paper
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are based on these 70 SNPs. Genotyping was performed at the

Welcome Trust Sanger Institute (Hinxton, UK) on the Hu-

man670-QuadCustom Illumina BeadChip (Illumina, Inc., San

Diego, CA, USA), as previously described [4]. Altogether 29

markers were genotyped, 41 being imputed using IMPUTE v2.1.0

[24] using HapMap rel#24 CEU - NCBI Build 36 (dbSNP b126)

as reference panel. The reference panel used in the imputation was

HapMap rel#24 CEU - NCBI Build 36 (dbSNP b126). The

posterior probability threshold for "best-guess" imputed genotype

was 0.9: genotypes below the threshold were set to missing.

Marker quality controls are presented in Table S2 in File S1.

Statistical Analyses
Logistic Regressions. To verify the expected association

between lifetime MDD and ND, individual level logistic regres-

sions were applied for the affected/non-affected phenotypes

adjusted for sex, age, and alcohol use, using the Stata 11.1

statistical software 1 [25]. Since observations on members within

family may be correlated, this dependence (i.e. lack of statistical

independence of individual observations due to genetic and

familial factors) was statistically accounted for by using robust

estimators of variance and the cluster option when estimating

standard errors [26].

Quantitative Genetic Modeling. The quantitative genetic

models included 115 MZ and 415 DZ twin pairs. A bivariate

Cholesky decomposition for number of MDD and ND symptoms

was conducted to estimate the genetic and environmental

correlations underlying the phenotypic association. Univariate

moderation models were conducted to examine whether the

number of ND symptoms moderates the magnitude of genetic or

environmental variance of MDD symptoms, and vice versa. This

model extends the standard univariate twin model by adding a

moderator effect, b, on the estimated additive genetic, common

environmental and unique environmental paths of the model. A b
coefficient that differs significantly from zero is regarded as

evidence for a moderating effect on the genetic or environmental

path in question. The model takes into account the phenotypic

association between the two traits [27]. The modeling was

conducted with the statistical package Mx, using standard Mx

scripts (http://www.psy.vu.nl/mxbib/).

Linkage Disequilibrium Analyses. The linkage disequilib-

rium (LD) between SNPs was estimated among non-related

individuals (one per family) by using Haploview 4.2 [28].

Haplotype blocks were defined according to the ’solid spine of

LD’ algorithm by using the default threshold values for block

estimation.

Genetic Association Analyses. Qualitative association anal-

yses were performed with Pseudomarker [29], which performs

separate and joint linkage and LD analyses, testing each marker

locus against a phenotype-based ’pseudomarker’ locus. This

likelihood-based estimation method is numerically equivalent to

model-free analysis, and efficiently uses data on all family types.

Both recessive and dominant models (default parameters) were

fitted. Additive model could not be tested as it is not implemented

in Pseudomarker. P-values were minimized over ’LD given

linkage’, ’LD given no linkage’, and ’LD and linkage’ (joint test),

as well as dominant and recessive models. Quantitative association

analysis was performed with QTDT [30] with sex and age at

recruitment as covariates. In the analysis the proportion of alleles

shared identically by descent (IBD) were estimated by multipoint

computation of MERLIN [31] to extract maximal inheritance

information from the pedigrees. The total association model was

used, allowing powerful analysis of the sample including incom-

plete families. In the analysis, the variance components ’polygen-

ic’, ’non-shared environment’ (environmental effects unique to

each family member), ’common environment’ (environmental

effects shared by all related individuals), ’nuclear family environ-

ment’ (environmental effects shared by all members of a nuclear

family), and ’twin environment’ (environmental effects shared only

by twins) were used to model the phenotypic similarities between

related individuals.

Hypothesis Testing. For testing the study hypotheses, we

conducted logistic regressions to analyze the effect size and

significance of rs2399496 coded 0 (TT = 0 minor alleles), 1

(TA = one minor allele), and 2 (AA = two minor alleles). We used

the recessive model as the previous genetic association analyses

produced the best results on this gene when using a recessive

model. When testing the hypothesis (A) ‘Genetic vulnerability

potentiated by self-medication’ the outcome was binary ND, while

the assumed modifying variable was MDD. Gene-by-MDD-

interaction was tested using the Nested Likelihood-ratio approach.

When testing the hypothesis (B) ‘Genetic vulnerability potentiated

by chronic exposure to risk factor’ the outcome was binary MDD,

while the assumed modifying variable was ND. Similarly, gene-by-

ND-interaction was tested using the Nested Likelihood-ratio

approach. Logistic regression analyses were adjusted for sex, age,

and alcohol use and clustering by family number option was

applied [26].

Accounting for Multiple Testing. To account for multiple

testing we used a modified Bonferroni correction to set p-value

thresholds for significant and suggestive association. As the

analyzed markers and traits are correlated, the number of

independent markers and traits was estimated with SNPSpD

and matSpD [32], respectively, and their MeffLi and VeffLi

estimates [33] were used as they were smaller than Meff and Veff,

respectively, as recommended by the author (http://gump.qimr.

edu.au/general/daleN/SNPSpD/). In our data set, the number of

independent markers was 36.9, and the number of independent

traits was 3.20. A p-value threshold of 0.00042 for significant

association was achieved by dividing p = 0.05 by the product of the

number of independent markers and the number of independent

traits. A p-value threshold of 0.0014 for suggestive association was

achieved by dividing p = 0.05 by the number of independent

markers.

Replication
In an attempt to replicate the detected association, we analyzed

the top-three SNPs (rs2399496, rs3732790, and rs2134655) in four

independent data sets as follows: a Finnish adolescent twin sample

[FT12: N = 967, DSM-IV MDD and Fagerström Nicotine

Dependence Test (FTND) available], a Finnish adult population

sample of unrelated individuals [Health2000: N = 2123, CIDI for

major depressive episode, Beck Depression Inventory (BDI),

smoking status, and CPD available], an Australian twin family

sample (NAG-OZALC: N = 4425, DSM-IV MDD and DSM-IV

ND available], and a Dutch sample combining data of the

Netherlands Twin Register (NTR) and Study of Depression and

Anxiety (NESDA) studies (NTR-NESDA: N = 1613 MDD cases,

N = 1661 controls, DSM-IV MDD, FTND, and ever smoking

available). These replication datasets are described in detail earlier

[34–39].

In two of the replication samples, FT12 and the Health2000,

the analyses were performed respectively with the study sample. In

the NAG-AUS replication sample analyses were performed using

MQLS (http://www.sph.umich.edu/csg/liang/MQLS/) [40] for

the binary traits and MERLIN (http://www.sph.umich.edu/csg/

abecasis/Merlin/index.html) [31] or MERLIN Offline for the

continuous variables. Finally, in the Dutch NTR-NESDA
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replication sample analyses were performed using PLINK (http://

pngu.mgh.harvard.edu/purcell/plink/) [41] logistic regression

adjusting for age, sex, and principal components to correct for

population stratification. The SNP associations with MDD were

first tested in the whole sample, and then restricted to ever

smokers. Next, SNP associations with ND were tested among

smokers with data on FTND (cases defined as FTND$4, controls

defined as FTND 0–3). Finally, SNP associations with MDD-ND

co-morbidity were tested among smokers with data on FTND.

Genotype data for three SNPs in DRD3 (rs2399496, rs3732790,

and rs2134655, or correlates of those) were derived from GWA

data. We used the recessive model in this replication analysis.

Results

As expected, ND and MDD were significantly associated:

individuals with MDD diagnosis having higher likelihood for

lifetime ND (adjusted OR = 2.63, 95%CI 1.94–3.58, p = 3.0e-10)

and individuals with ND diagnosis having higher likelihood for

lifetime MDD (adjusted OR = 2.51, 95%CI 1.83–3.46, p = 7.6e-

09).

The bivariate quantitative twin model on MDD and ND

symptoms indicated substantial, although non-significant, correla-

tion between genetic components (rA = 0.51, 95% CI 20.11,

+1.00), whereas the correlation between environmental compo-

nents was moderate (rE = 0.21, 95% CI 0.09, +0.32). Albeit wide

confidence intervals, these results suggested that a substantial

proportion of the correlation between ND and MDD may derive

from shared genetic factors, justifying further analyses of specific

genes. The univariate moderation models indicated that ND

symptoms did not significantly moderate additive genetic

(x2(1) = 2.05, p = 0.15) or common environmental (x2(1),0.01,

p.0.99) variance of MDD. Instead, moderating on unique

environmental variance was detected (x2(1) = 14.0, p,0.001), such

that this variance (including error variance) of MDD symptoms

increased 5.3-fold in the absence of ND. No significant moder-

ation by MDD symptoms for genetic or environmental variance of

ND appeared (x2(3) = 0.36, p = 0.95).

The LD blocks for the SNPs were similar to those in the

HapMap CEPH data (Figure S1 in File S1) and the somewhat

stronger intermarker LD is in agreement with previous findings

from the Finnish population [42]. We detected a significant

association between DRD3 rs2399496 and the co-morbid pheno-

type of MDD and ND (p = 0.000079). Rs2399496 also showed

suggestive association with MDD (p = 0.00076) and a similar trend

with MDD symptoms (p = 0.0017). No significant or suggestive

association for ND diagnosis or symptoms appeared. We detected

no significant or suggestive association with SNPs in the other

genes (Table S3 in File S1). Association results for DRD3 SNPs are

presented in Table 2.

To follow up the marker exhibiting significant association for

MDD-ND co-morbidity (rs2399496 in DRD3), we divided

individuals with rs2399496 genotype available (N = 1353) into

those fulfilling (N = 692) and not fulfilling (N = 661) the DSM-IV

ND criteria. In separate association analyses for MDD, the

association signal emerged solely from nicotine dependent subjects

(data not shown). Similarly, we divided individuals into those

fulfilling (N = 239) and not fulfilling (N = 1114) the MDD criteria

and separately performed association analyses for ND, both

subgroups giving negative results (data not shown).

We could not replicate the association between rs2399496 and

depression or the co-morbid phenotype in the adolescent sample

(FT12), in the Finnish population sample (Health2000) or in the

Australian twin family sample (NAG-OZALC; rs9817063 used as

proxy for rs2399496, intermarker r2 = 0.8–0.9, depending on the

reference sample). Best evidence for replication was seen in the

NTR-NESDA sample for rs3732790 which is in high LD with

rs2399496 (r2 = 0.67, D’ = 0.997). No significant association with

MDD was seen in the whole NTR-NESDA sample (OR = 1.13,

95%CI 0.93, 1.36, p = 0.21) or among ever smokers (OR = 1.19,

95%CI 0.94, 1.52, p = 0.15). However, when analyzing the co-

morbid phenotype of MDD and ND the association became

stronger and significant (OR = 1.56, 95% CI 1.05, 2.33, p = 0.03).

Consistently with the study sample, no statistically significant

association was seen between rs3732790 and ND (OR = 1.17,

95%CI 0.88, 1.55, p = 0.28). Association results for all replication

samples are presented in detail in Tables S4a, S4b, S4c, and S4d

in File S1.

Finally, two hypotheses were tested in the study sample, i.e.

whether MDD potentiates the association of the SNP (rs2399496)

with ND or vice versa. When the SNP’s association with ND was

adjusted for MDD, sex, age, and alcohol use individuals carrying

one (TA) or two (AA) minor alleles did not have significantly

elevated risk for lifetime ND when compared to individuals

homozygous for the major allele (TT). Thus, the first hypothesis

was rejected. When the SNP’s association with MDD was adjusted

for ND, sex, age, and alcohol use, individuals carrying two minor

alleles (AA) had a nearly 2-fold risk for lifetime MDD (OR 1.89,

95% CI 1.26–2.84, p = 0.002) compared to individuals homozy-

gous for the major allele (TT) (Table 3). Although the interaction

test using the Nested Likelihood-ratio approach showed only a

trend towards SNP (rs2399496)-by-ND-interaction (LR

x2(2) = 5.13, p = 0.08) the p-value was ,0.10 – a cut point often

used to perform additional analyses. Thus, the analyses separately

by ND status were justified. Among nicotine dependent subjects

(N = 678), the corresponding genetic risk for MDD was 2.29-fold

(95% CI 1.37–3.83, p = 0.002), while no association was seen

among non-dependent subjects (N = 618) (Table 4).

To illustrate the relative contribution of the SNP and ND, we

created a new variable combining ND status and number of

rs2399496 minor alleles on individual level. Subjects with two

rs2399496 minor alleles (AA) and ND (N = 165) had more than

five-fold risk for lifetime MDD (OR 5.74, 95%CI 3.1–11, p = 9.0e-

09) compared to subjects not fulfilling ND criteria and carrying no

rs2399496 minor alleles (TT) (N = 177) (Table 5). We estimated

the proportion of co-variation of ND and MDD accounted for by

DRD3 rs2399496. Based on logistic regression where MDD co-

morbid with ND was the outcome variable rs2399496 explained

1.32% (Pseudo R2 = 0.0132) of co-variation. Finally, in order to

verify that the ND diagnosis in our data reflects chronic exposure

to cigarettes we conducted subgroup models, and detected

significant association between rs2399496 and MDD among 673

heavy (ever) smokers (smoked $20 CPD) (ORminor/minor = 2.44,

95% CI 1.45–4.10, p = 0.001). No association was detected among

575 non-heavy ever smokers.

Discussion

Utilizing a Finnish sample of twins and their siblings ascertained

for heavy smoking from the population based Finnish twin cohort,

we aimed to scrutinize the association between lifetime DSM-IV

diagnoses of MDD and ND, as well as the magnitude of genetic

factors associated with this co-morbidity. Ever smokers with ND

had over 2-fold risk for MDD compared to non-dependent ones,

in concordance with earlier literature [2]. We detected significant

association between rs2399496 1.5 kb downstream of DRD3 and

co-morbid MDD and ND. Rs2399496 is in high LD with

rs3732790 (D’ = 1.0, r2 = 0.55), 274 bp downstream of DRD3, and
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with intronic rs2134655 (D’ = 0.98, r2 = 0.46). Rs3732790 showed

similar trend, approaching suggestive association. As none of the

variants have a clear functional role, we hypothesize that the

detected association reflects LD with an unidentified functional

variant. Although rs2399496 is imputed in the GWA data, its high

minor allele frequency (0.47), results in improved imputation

accuracy compared to rare variants. Individuals carrying two

minor alleles had nearly 2-fold risk for lifetime MDD compared to

individuals homozygous for the major allele. Although no

association was detected between rs2399496 and ND, individuals

with two minor alleles and ND diagnosis had over five-fold risk for

lifetime MDD compared to individuals not fulfilling DSM-IV ND

criteria and carrying no minor alleles.

Our results do not substantiate pleiotropic associations of DRD3,

but rather support the gene-by-ND-interaction hypothesis, with

ND enhancing the influence of rs2399496 on MDD risk. As

portrayed in our second hypothesis, chronic heavy exposure to

nicotine, sustained by ND, can be deemed as an environmental

factor in the etiology of MDD. Supporting this, subgroup models

among individuals with ND diagnosis yielded similar results than

those among heavy ever smokers. Thus, in our data ND diagnosis

seemed to reflect chronic nicotine exposure, although the DSM-IV

ND criteria focus on other aspects of ND than smoking quantity.

Gene-by-environment-interaction has been previously reported for

DRD2 and DRD4 [17,18]. In discordance with previous reports,

we detected no association between the tested traits and DRD2

rs1800497 (TaqIA) or any of the other DRD2 SNPs. Similarly, no

Table 2. Association analyses results (p-values) for DRD3 SNPs.

Marker Gene DSM-IV MDD
DSM-IV MDD
symptoms DSM-IV ND

DSM-IV ND
symptoms

Co-morbidity of DSM-IV MDD
and ND

rs2399496 DRD3 0.00076 b 0.0017 0.058 1.000 0.000079 a

rs3732790 DRD3 0.0087 0.0072 0.482 0.286 0.011

rs2134655 DRD3 0.125 0.037 0.696 0.483 0.047

rs9880168 DRD3 0.072 0.337 0.996 0.584 0.194

rs324036 DRD3 0.098 0.337 1.000 1.000 0.089

rs324035 DRD3 0.759 0.732 0.533 0.695 0.910

rs167771 DRD3 0.998 0.609 0.985 0.901 0.648

rs11721264 DRD3 0.869 0.529 0.330 0.464 0.828

rs226082 DRD3 0.674 0.465 0.445 0.460 0.950

rs324029 DRD3 0.720 0.381 0.383 0.437 0.874

rs16822416 DRD3 0.304 0.876 0.740 0.674 0.115

rs9825563 DRD3 0.128 0.311 0.998 0.629 0.209

rs7629232 DRD3 0.207 0.289 0.423 0.915 0.333

rs6787134 DRD3 0.947 0.938 0.944 0.678 0.952

rs1354348 DRD3 0.292 0.678 0.592 0.035 0.556

DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, 4th edition (APA 1994); MDD, major depressive disorder; ND, nicotine dependence.
a, significant p-value (study-specific threshold p,0.00042).
b, suggestive p-value (study-specific threshold 0.00042,p,0.0014).
doi:10.1371/journal.pone.0098199.t002

Table 3. Logistic regressions on the associations of lifetime DSM-IV nicotine dependence (ND)a and the DRD3 variant rs2399496
with lifetime DSM-IV major depressive disorder (MDD) b (N = 1296).

Outcome Model 1c Model 2

MDD Independent association of ND and gene Associations of ND and gene adjusted for each otherc

Risk Factor OR 95% CI p-value OR 95% CI p-value

ND

No 1.00 1.00

Yes 2.51 1.83–3.46 7.569e–09 2.48 1.80–3.41 1.512e–08

rs2399496

TT 1.00 1.00

TA 1.32 0.92–1.88 0.130 1.28 0.89–1.83 0.185

AA 1.97 1.30–2.96 0.001 1.89 1.26–2.84 0.002

aDSM-IV nicotine dependence diagnosis.
bDSM-IV major depression disorder diagnosis.
cAdjusted for sex, age, and alcohol abuse.
doi:10.1371/journal.pone.0098199.t003

Nicotine Dependence, DRD3 and Depression

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98199



association was detected between DRD4 variants and the included

traits; however, the most commonly implicated DRD4 48-base-

pair-repeat polymorphism was not assessed in the current study.

We have the DRD4 48-bp minisatellite genotype data available in

a subset of the study sample (N = 651); no association was detected

with any of the phenotypes (data not shown).

Best evidence for replication was seen in the Dutch NTR-

NESDA sample with the MDD-ND co-morbid phenotype, with a

SNP in high LD with the SNP showing significant association in

the study sample. The detected association in the Dutch sample

may tag either the same or different underlying functional variant

than in the Finnish sample. It is highly plausible that the

underlying LD structure varies between the Finnish and Dutch

populations, especially when considering the unique genetic

architecture of Finns [42]. Population-specific functional variants

are known to exist, and one has already been documented in the

Finnish population for a behavioral trait [43]. Future studies are

needed to expose whether rs2399496 in the Finnish study sample

and rs3732790 in the Dutch NTR-NESDA sample tag the same

functional variant. In concordance with the results obtained from

Table 4. Logistic regressions on the associations of the DRD3 variant rs2399496 with DSM-IV major depressive disorder (MDD)
among sub-groups based on DSM-IV nicotine dependence (ND) statusa.

Outcome Non-nicotine dependent Nicotine dependent

MDD (N = 618) (N = 678)

Risk Factor OR 95% CI p-value OR 95% CI p-value

rs2399496

TT 1.00 1.00

TA 1.47 0.80–2.70 0.214 1.19 0.76–1.88 0.450

AA 1.23 0.58–2.60 0.583 2.29 1.37–3.83 0.002

aAdjusted for sex, age and alcohol abuse.
doi:10.1371/journal.pone.0098199.t004

Table 5. Logistic regressions on the associations of the DRD3 variant rs2399496 and nicotine dependence (ND) with major
depressive disorder (MDD): Models combining the ND (no/yes) and rs2399496 (TT = 0, TA = 1, or AA = 2 minor alleles) status.

Adjusted model a

(N = 1296)

OR 95% CI p-value

‘Effects’ of increasing number of risk factors

no ND + TT 1.00

no ND + TA 1.48 0.80–2.75 0.214

no ND + AA 1.24 0.58–2.64 0.581

ND + TT 2.50 1.30–4.83 0.006

ND + TA 3.01 1.72–5.28 0.00006

ND + AA 5.74 3.12–10.5 9.010e-09

‘Effect’ of nicotine dependence

no ND + TT 1.00

no ND + TA 0.81 0.38–1.72 0.581

no ND + AA 1.19 0.63–2.28 0.589

ND + TT 2.01 1.04–3.93 0.038

ND + TA 2.43 1.30–4.56 0.006

ND + AA 4.63 2.42–8.88 3.561e-06

‘Effect’ of the number of minor gene alleles

ND + TT 1.00

no ND + TT 0.40 0.21–0.77 0.006

no ND + TA 0.59 0.35–1.00 0.051

no ND + AA 0.49 0.25–0.96 0.038

ND + TA 1.20 0.77–1.89 0.421

ND + AA 2.29 1.38–3.82 0.001

aAdjusted for sex, age, and alcohol abuse.
doi:10.1371/journal.pone.0098199.t005
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the study sample, no statistically significant direct association was

seen with ND in the NTR-NESDA sample. The association did

not replicate in the Finnish adolescent FT12 sample or adult

population sample or in the Australian twin family sample (NAG-

AUS). In the adolescent sample DSM-IV ND diagnosis was not

available, so FTND was used instead. DSM-IV predominantly

measures loss of control in smoking behavior [44] while FTND

measures physical dependence [45]. Concerning MDD, the FT12

sample was interviewed at an average age of 21.9 (SD 0.8, range

21–26). Prevalence of lifetime MDD was 12%, comparable to

studies reporting 15–20% of youth experiencing a MDD episode

by age 20 [1]. However, the core phenotype in genetic analyses

was co-morbidity of MDD and ND with prevalence of only 2.8%

(N = 38) in the FT12 sample. Thus, those analyses suffered from

lack of power. In the population-based Health2000 sample MDD

and ND DSM-IV diagnoses were not available; rather, we

investigated associations with depression phenotypes defined by

the CIDI for major depressive episode [23], and the BDI, a 21-

question multiple-choice self-report inventory measuring severity

of depression. In an attempt to create a phenotype resembling co-

morbid MDD and ND, we examined depression phenotypes

among heavy ($20 CPD) ever smokers. The lack of association

may partly reflect inappropriate phenotype definitions, as we had

no means to identify the ‘extreme’ individuals with DSM-IV

diagnoses for both MDD and ND. Lack of association in the

Australian sample, despite availability of identical phenotypes,

may reflect population specificity of the detected risk variant.

Our results expand the existing knowledge on the etiology of

MDD and ND. It is plausible that the scarcity of association

findings for DRD3 and for the other dopamine receptor genes is partly

due to complexity of the underlying mechanisms and inability to

capture the signal when investigating one phenotype at a time. To

date, single studies have identified specific DRD3 variants

associating with FTND defined ND [46], heaviness of smoking

index, and time to first cigarette in the morning [11], as well as

treatment response and remission in depression patients [47].

Converging pharmacological, post-mortem, and genetic data

have suggested involvement of DRD3 in drug dependence. Rather

than being involved in direct reinforcing effects of drugs of abuse,

DRD3 appears to be implicated in motivation to self-administer

drugs under schedules where response requirements are high [48].

A 30% reduction of DRD3 expression in peripheral blood

lymphocytes has been reported in current smokers compared to

controls with no lifetime regular smoking, DRD3 expression

correlating negatively with CPD [49]. Given the known involve-

ment of DRD3 in reward mediation, such selective inhibiting effect

of smoking on DRD3 expression indicates vicious-cycle explana-

tion of motivation for continued smoking [49]. Dysfunction of

dopamine D3 receptors has also been linked to the pathogenesis of

major depression [3]. Preclinical data show enhanced D3 receptor

binding in the striatum upon antidepressant medication and

electroconvulsive therapy [47].

We diligently addressed multiple testing. As the included

markers and traits are correlated, standard procedures of

correcting for multiple testing would be overly conservative. Thus,

we used modified Bonferroni correction and utilized estimated

numbers of independent markers and traits to set p-value

thresholds for significant and suggestive associations. Estimation

of independent markers, based on LD matrixes, is straightforward;

however, estimating the number of independent traits is more

challenging. We used a statistical estimate based on the

correlation/covariance matrix, resulting in a sample-based

estimate that may vary in novel independent population samples.

Using estimated numbers of independent markers and traits in

adjusting p-value thresholds is still quite conservative but

nevertheless successful in reducing type I errors.

Although our sample size is moderate it is significantly larger

than in most previous candidate gene studies addressing dopamine

receptor genes and ND or depression. Our data on twins and

siblings were ascertained specifically for smoking, the initial sample

being drawn from the population-based Finnish twin cohort with

extensive phenotypic profiles. Due to enrichment for ND (52% in

the study sample vs. 40% in the Finnish population) our sample is

also enriched for commonly co-occurring depression (17–18% in

the study sample vs. 8–13% in the general population) yielding

more power than presumed based on sample size. With adequate

numbers of affected individuals available, we were able to focus on

the most extreme phenotypes, i.e. DSM-IV diagnoses of ND and

MDD, instead of investigating non-diagnostic phenotypes such as

CPD and number of depressive symptoms. Although considered

more powerful per se, neither of the quantitative DSM-IV

symptom counts proved more informative than the corresponding

dichotomous DSM-IV diagnoses. This is not surprising, as trait

distributions in our enriched sample do not correspond with the

population-level trait variance. Individuals with the most extreme

phenotypes are likely to possess the most predisposing genetic

variants [50] thus being most informative in genetic association

analyses. Furthermore, the Finnish population represents a well-

established isolate with minuscule population admixture. In

isolates, genetic drift may lead to overabundance of morbid alleles

for particular disorders and high proportion of patients is likely to

share these alleles IBD. Although the association is strongest for

rare disease alleles, isolates are also advantageous for genetic

studies of common disorders [51]. Further, we should note that it

is likely that our samples under study are relatively homogeneous

being from the Finnish population, with little risk of bias from

population stratification.

In this study where MDD-ND phenotype was the outcome

variable rs2399496 explained 1.32% of the variance. This level of

explanation is comparable to the finding of three genome-wide

association (GWA) studies which reported variation in 15q24-25,

containing three nAChR genes (CHRNA5, CHRNA3, CHRNB4),

contributing to lung cancer risk and associating strongly with

amount of smoking and ND [52–54] and where less than 1% of

the variance in number of daily cigarettes smoked was explained

by alleles of these genes.

To conclude, we detected a significant association between

DRD3 rs2399496 and MDD-ND co-morbid phenotype. We

further demonstrated that ND strengthens the influence of the

genetic variant on MDD, suggestive of gene-by-environment-

interaction. We could not provide significant replication for these

findings.

Supporting Information

File S1 Figure S1 and Tables S1–S4. Figure S1. A) DRD3

gene structure, B) genotyped SNPs, C) D’ in the HapMap CEPH

data (NCBI Build 36), D) r2 in the HapMap CEPH data, E) D’ in

the study sample (non-related individuals; one per family), F) r2 in

the study sample. Table S1. Correlations between the included

phenotypes. Correlations were computed by polychoric (tetra-

choric and point biserial) and spearman correlation. Number of

individuals varies from 1326 to 1428 depending on presence of

missing values. Table S2. Marker quality controls. Table S3.

Association analysis results (p-values) for all dopamine receptor genes.

The study-specific P-value threshold for significant and suggestive

association is 0.00042 and 0.0014, respectively. Table S4. a. The

association of rs2399496, rs3732790 and rs2134655 with nicotine
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dependence (ND) and Major Depressive Disorder (MDD) in the

Australian NAG-OZALC sample. Age, sex, and principal

components (for population stratification) were used as covariates.

All results are based on recessive models. b. The associations of

rs2399496, rs3732790 and rs2134655 with nicotine dependence

(ND) and Major Depressive Disorder (MDD) in the NTR-NESDA

sample. Age, sex, and principal components (for population

stratification) were used as covariates. All results are based on

recessive models. c. The associations of rs2399496, rs3732790 and

rs2134655 with nicotine dependence (ND) and Major Depressive

Disorder (MDD) in the FT12 sample. Age and sex were used as

covariates. All results are based on recessive models. d. The

associations of rs2399496, rs3732790 and rs2134655 with nicotine

dependence (ND1) and Major Depressive Disorder (MDD) in the

T2000 sample. Age and sex were used as covariates. All results are

based on recessive models.
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