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Introduction 

Considering the beginning of my PhD trajectory in 2014, and as described in chapter 1, there 

has been major progress in the field of (molecular) genetics and complex traits like well-

being. Up until 2014, most studies investigating the molecular genetics of well-being used 

either linkage or candidate gene analyses. As pointed out in chapter 1, linkage analysis is a 

powerful approach to detect genetic variants with large effect but has more difficulties 

detecting genetic variants with small effects. The candidate gene approach, on the other hand, 

theoretically has enough power to detect genetic variants with small effect. It requires, 

however, a sound theoretical mechanism with functional candidate genes a priori, knowledge 

that is still limited despite our increasing understanding of biological processes of complex 

traits. For these reasons, results based on these methods have shown to be extremely difficult 

to replicate
1
 and the valid question arose whether it would be possible at all to identify genetic 

variants explaining phenotypic variance in well-being. 

 

Since then, though, game-changing progress in the field of molecular/statistical genetics and 

bioinformatics has been made, resulting in the GWAS Era. One of the first promising signs 

indicating that it might become possible to detect genetic variants associated with well-being 

arose from results of a Genome-wide Complex Trait Analysis (GCTA)
2
. Rather than testing 

the association of a particular SNP with well-being, GCTA estimates how much of the 

variance in a trait can be accounted for by the genetic variance based on common SNPs, 

resulting in a heritability estimate based on molecular genetic data. Using GCTA in a sample 

of ~11,500 unrelated individuals, it was estimated that about 5-10% the variance in well-being 

could be explained by common SNPs
3
. Therefore, in chapter 1, we hypothesized that future 

genome-wide large-scale efforts to search for SNPs associated with well-being might have the 

potential to become successful.  

 

However, in order to make it an success, it became obvious that sample size was the key 

issue. For instance, the first genetic variant robustly associated with schizophrenia was 

identified in 2009 using a sample of ~3,300 cases and ~3,500 controls
4
. In 2014, using a 

sample of ~35,000 cases and 110,000 controls, 108 genetic variants were associated with 

schizophrenia
5
. Like Schizophrenia, well-being is a polygenic trait, i.e. each individual will 

carry multiple alleles that increase his or her level of well-being, and multiple alleles that will 

decrease his or her level of well-being. Therefore, each individual variant will typically 

explain only a very small proportion of the variance in well-being. In addition, because of 



many potentially different combinations of these risk alleles, it is likely that each individual 

carries a unique set of alleles. To detect these genetic variants with small effects, large sample 

sizes are required. Furthermore, it has been shown that the distribution of a phenotype in the 

population has an effect on the power to identify SNPs associated with it
6
. Higher levels of 

well-being are more prevalent in the population than psychiatric disorders. As a consequence, 

the sample size to detect SNPs robustly associated with well-being should be even larger than 

the sample size to detect genetic variants for psychiatric disorders.  

 

Genome-Wide Association Studies 

Using this information as a priori knowledge, we, together with the Social Science Genetic 

Association consortium (SSGAC; https://www.thessgac.org/) collected genetic and 

phenotypic data from 59 cohorts with a combined sample size of 298,420 individuals. 

Chapter 3 describes this large-scale GWAS meta-analysis of well-being that led to the 

identification of the first three independent genetic variants associated with trait variation in 

well-being. Supplementing this analysis, we performed a GWAS meta-analysis of depressive 

symptoms (N = 180,866) and neuroticism (N = 170,910) and identified the first two genome-

wide significant variants for depressive symptoms and eleven genome-wide significant 

variants for neuroticism. Additionally, the concordance of the allelic effect between the three 

traits was assessed, using a recently developed software tool called Linkage Disequilibrium 

Score Regression (LDSC)
7,8

. Within this approach, an “LD score” is computed for each SNP, 

taking the sum of correlation between that SNP and all neighboring SNPs. Under a polygenic 

model, these LD scores are expected to show a linear relationship with the GWAS test 

statistics of the corresponding SNPs, where the slope is proportional to the SNP heritability. 

Using LDSC, in chapter 3, we report a high genetic correlation between well-being, 

depressive symptoms, and neuroticism (| rg | > .75), which corresponded to the genetic 

correlations derived in chapter 2 using a large twin design. These high genetic correlations 

indicate common underlying biology between the three traits. 

Multivariate Genome-wide association meta-analysis 

Recognizing this large overlap, together with the knowledge that increasing samples sizes are 

required to detect genetic variants with small effects, we introduced two multivariate genome-

wide association meta-analysis methods in chapter 4. Both methods enable analyzing clusters 

of correlated traits while handling bias resulting from inevitable sample overlap. Method 1, N-



weighted multivariate genome-wide association meta-analysis (N-GWAMA), assumes a 

single underlying construct with a unitary effect of the SNP on all included traits. Method 2, 

model averaging GWAMA (MA-GWAMA), relaxes this assumption and allows different 

effects on the various traits. We applied both methods on measures of life satisfaction, 

positive affect, neuroticism, and depressive symptoms, which we referred to as the well-being 

spectrum (Nobs = 2,370,390). Collectively, we found 319 genome-wide significant genetic 

variants associated with this spectrum.  

Thus, in just over 2 years, the field of genetics and well-being progressed from the first three 

genetic associated with well-being to 319 genome-wide significant genetic variants. This 

spectacular increase in significant associations is representative of the enormous progress in 

the field of complex traits genetics in the last couple of years, reflected in findings for 

phenotypes such as educational attainment
9,10

 and neuroticsm
11,12

. A significant player in the 

field of this progress is the UK Biobank (http://www.ukbiobank.ac.uk/), with the release of 

genome-wide genetic data on ~500,000 individuals in the summer of 2017
13

. The UK Biobank 

is a prospective study designed to be a resource for research into the causes of disease in 

middle and old age. Participants were recruited between 2006 and 2010 and completed a 

broad range of questionnaires. By meta-analyzing (smaller) cohort-data together with data 

derived from the UK Biobank, many studies, including ours described in chapter 3, 4, 6, 8, 

and 9, were able to increase the statistical power to find genetic variants associated with a 

specific trait of interest.  

Phenotypic Heterogeneity 

Although combining smaller cohort-data together with UK biobank has been proven 

successful, there is a downside to combining multiple measures of a trait (e.g. well-being). 

When combining multiple measures, there is always a dilemma; on the one hand including a 

cohort in the meta-analysis will increase the sample-size and consequently the power to find 

genetic variants of interest; on the other hand, including that specific cohort may bias the 

GWAS results, since combining different measures introduces phenotypic heterogeneity. In 

the studies described in chapter 3 and 4, we included multiple measures of positive affect as 

well as life satisfaction, neuroticism, and depressive symptoms leading to more noise in the 

GWAs analysis. To quantify the effects of this kind of phenotypic heterogeneity, chapter 3 

describes a “quantity-quality tradeoff” analysis that shows that in a realistic GWAS meta-

analysis scenario with high genetic correlations (rg > 0.6) between two measures of well-

http://www.ukbiobank.ac.uk/


being, the inclusion of a second cohort will reduce the measurement error in most cases. 

Therefore, based on the analysis of the costs and benefits of pooling heterogeneous measures, 

it can be concluded that pooling genetically associated traits increases the statistical power to 

detect genetic variants.  

Mixing different measures, though, will result in a drop of the SNP heritability (h
2

SNP), as the 

included measures are partly influenced by different genetic factors. This is indeed what we 

observed in chapter 3, 4, and 8. In chapter 8, we performed a GWAS of a homogenous 

measure of hedonic well-being resulting in a h
2

SNP of ~6.2%. This percentage dropped to four 

percent in the GWAS comprised of multiple well-being measures as described in chapter 3. 

Moreover, in chapter 4, where we performed a multivariate GWAMA including measures of 

well-being, neuroticism, and depressive symptoms, SNP heritability dropped to 2.1%. On the 

other hand, if we consider the GCTA h
2

SNP estimates of 5-10% for single-item well-being 

measures as an upper bound
3
, then we approached it pretty closely with our GWAS using a 

homogenous measure of well-being (h
2

SNP of ~6.2%). Additionally, Rietveld et al.
3
 state that 

12-18% of the h
2

SNP could be captured after correcting for measurement error. Therefore, a 

promising but challenging way to go forward is to re-measure well-being using similar 

questionnaires and perform a GWAS on the unified measures.  

Biological Analyses 

To shed some light on the possible biological mechanisms underlying our findings we 

performed several bioinformatics analyses. Previous work has demonstrated that some 

functional categories of the genome contribute disproportionally to the heritability of complex 

behavior
2,14,15

. Build on this observation Finucane et al.
16

 developed stratified LD Score 

Regression (SLDSC), which requires only GWAS summary data together with LD 

information from an external reference panel matching the population structure of the GWAS. 

Doing so, SLDSC can distinguish between h
2

SNP explained by different functional categories 

of the genome, for instance in the central nervous system (CNS), while accounting for 

influence of the remaining functional categories (e.g. blood, bone, and muscle tissues). Using 

SLDSC, in chapter 3 we report significant enrichment in the CNS for well-being, depression, 

and neuroticism, which we confirm in chapter 4 for the well-being spectrum. In chapter 4, 

we expanded these analyses by leveraging the genome-wide results, LDSC, and an atlas of 

brain gene expression. Doing so, we were able to pinpoint brain regions where genes that are 

significantly associated with well-being are significantly enriched in their effects. We report 



evidence for enrichment of genes differentially expressed in the Ventral Tegmental Area 

(VTA), as well as in the subiculum (part of the hippocampal formation). Furthermore, we 

report significant enrichment of glutamatergic neurons in the CA1 and CA3 of the 

hippocampus and in the prefrontal cortex as well as enrichment of GABAergic interneurons. 

However, as we only had specific cell types for specific regions (hippocampus and prefrontal 

cortex), there are some interpretational limitations. Gene expression is known to vary 

systematically between cell-types within the brain
17

 (e.g neurons, microglia, astrocytes) and 

developmental phases
18

 (prenatally, childhood, adulthood and old age). Although we find 

specific cell type enrichment for well-being, it stands to reason that the same cell type specific 

enrichment in other regions might exist, which we now missed. This limitation needs to be 

addressed in future well-being research. However, capitalizing on ongoing efforts to 

categorize gene expression across the human brain at increased (single cell) resolution, this 

will be a promising future approach to understand biological processes underlying phenotypic 

variation of well-being. 

Epigenome-Wide Association Studies 

Besides genetic influences, environmental factors play an important role in explaining 

variance in well-being, as evidenced by multiple twin-family studies and described in chapter 

2. Additionally, epigenetic regulation of gene expression by mechanisms such as DNA 

methylation may mediate the interplay between the genetic make-up of individuals and their 

exposure to the environment
19,20

. In humans and animals, various early life exposures can 

induce stable long-term changes in DNA methylation
21–23

. Examples include early postnatal 

maternal behavior
23

, childhood abuse 
22

, and prenatal maternal nutrition
21

. Later life exposures 

also induce changes to the methylome, for example exposure to cigarette smoke
24,25

.  

Recently, using epigenome-wide association studies (EWAS), changes in DNA methylation 

have been implicated in various complex traits such as obesity
26

, type 2 diabetes
27,28,29

, and 

educational attainment
30,31

. In chapter 5, we performed the first EWAS on well-being in a 

population-based sample (N = 2519) of adults from the Netherlands Twin Register (NTR)
32

. 

We identified two genome-wide significant methylation probes after correction for multiple 

testing (Bonferroni correction). Moreover, gene ontology (GO) analyses highlighted 

enrichment of several CNS categories among higher-ranking methylation probes. However, 

replication of these results is warranted in larger samples as (1) we are aware that potential 



unmeasured confounders could have an effect on our results, and (2) we are uncertain of the 

direction of causation of the association between well-being and CpG methylation.  

The foremost interpretational difficulty in EWAS is the uncertainty about cause and effect, 

e.g. does methylation causally influence complex trait outcomes, is the causal effect reverse, 

or does a third trait influence both methylation levels and traits? For instance, a recent study 

found that differential methylation is the consequence of inter-individual variation in blood 

lipid levels and not vice versa
33

. A second important consideration for EWAS is the 

assessment of methylation in trait relevant tissue. Empirical results suggest that easily 

accessible tissues, such as whole blood, cannot be used to address questions about inter-

individual epigenomic variation in inaccessible tissues, such as the brain
34,35

. 

To examine these interpretational issues, we performed an EWAS meta-analysis of well-being 

controlled for two well-known confounders of epigenetic associations, smoking and BMI, in 

chapter 6 (N = ~8,600). To guard against unmeasured confounding and to infer a direction of 

effect we performed summary-based Mendelian Randomization (SMR). In SMR, SNP effects 

on cis-methylation (cis-mQTLs), and a large GWAS of well-being were combined to infer the 

(causal) effect of CpG methylation on well-being. To assess concordance between blood and 

brain tissue, we performed SMR leveraging cis-mQTLs present in both blood and brain 

tissues and compared results between tissues, and between SMR and EWAS. Doing so, we 

found a high consistency of direction of effect (r > .9) between SMR results, where the mQTL 

was discovered in two whole blood datasets, as well as high consistency between whole blood 

and fetal brain datasets (r = .72). However, when comparing the direction of effect between 

our EWAS and SMR results, no notable correlations were observed. These results indicate 

that, if the aim is to increase our understanding of the functional consequences of epigenetic 

changes on wellbeing, SMR may be preferred over EWAS in whole blood. If, however, the 

aim is to identify ways in which well-being is itself a driver of environmental influences on 

differences in DNA methylation, possibly effecting gene-expression, a sufficiently powered 

EWAS study will provide valuable information. The concurrent use of Mendelian 

Randomization and epigenome-wide association analysis proved to be a potent combination to 

further our understanding of the relation between well-being and CpG methylation.  

Well-being framework 

It is well known that several mental health issues, such as anxiety, depression, neuroticism, 

and loneliness share a common genetic liability
36–38

. This common genetic liability offers an 



explanation as to why many disorders are comorbid or present highly similar behaviors. While 

there have been detailed investigations of the genetic similarity and comorbidity of mental 

disorders, there is much less information about the genetic similarity of mental health traits 

such as happiness, satisfaction with life, personality, self-rated health, and flourishing. The 

multivariate approach in chapter 4, focused on the overlap within a mental health spectrum, 

and leveraged the genetic overlap between well-being, neuroticism, and depressive symptoms 

to identify genetic variant for this 3-phenotype well-being spectrum (3-WBS). Studies on 

traits that could additionally be considered as part of a well-being spectrum are important 

given the large collection of studies pointing towards the emotional, cognitive, and 

interpretational benefits of high levels of well-being beyond the absence of mental 

disorders
39–41

. In the literature, several other traits, such as loneliness, self-rated health, and 

personality have been found to be strongly associated with well-being. Therefore, the aim of 

chapter 9 was to investigate the genetic overlap between well-being and these proposed traits. 

Using polygenic scoring and genetic correlations, we report that the 3-WBS is strongly 

genetically associated with loneliness and self-rated health. These findings suggest that these 

traits are interesting candidates to be included in the well-being spectrum and may increase 

our understanding of the causes and links between well-being and several mental and 

behavioral traits.  

Conceptualization the well-being framework  

So far, we have identified multiple genetic variants associated with well-being (chapter 3 and 

4) and showed that well-being is related to a broad range of mental –and behavioral traits 

(chapter 2, 3, 4, and 9). These studies have in common that they all use measures of life 

satisfaction and positive affect, which are often referred to as subjective well-being (SWB) 

measures. However, from a theoretical perspective, two types of well-being can 

predominantly be distinguished: subjective well-being (SWB) and psychological well-being 

(PWB), shaped by the philosophical constructs hedonism and eudaimonism, respectively. 

Ancient hedonism is centered around pleasure, or how good a person feels about his or her 

life
42

. From this perspective, well-being consists in the balance of pleasure over pain, that is: 

how to maximize pleasure and minimize pain (Aristippus (c. 435 – c. 356 BCE)). In contrast, 

eudaimonism, is more about virtue (defined as knowledge about how to live well) and human 

capacities. Although in contemporary sciences the terms hedonism and eudaimonism have 

gradually shifted to SWB and PWB, there is still an ongoing debate how these concepts relate 

to each other
42,44–48

. Therefore, to examine the complex framework of well-being, we 



performed a literature study aiming at analyzing the current view on the relation between 

SWB and PWB (chapter 7). We found that the main consensus is that SWB and PWB are 

related constructs that are likely domains of a general factor well-being. However, while the 

constructs are related, they are not interchangeable and can be distinguished both conceptually 

and biologically. Based on these findings we provide some general recommendations for 

follow-up research.  

(1) Re-define the well-being framework. We propose that an empirical well-being framework 

should be developed considering the actual empirical data rather than the ideas that inspired 

the research
50

. In the context of the social and behavioral sciences, the well-being framework 

might be best described as one hierarchical construct including both SWB and PWB 

constructs. This means that hedonism and eudaimonism are not to be defined as two clearly 

separated streams, but as related underlying domains of the same construct 

(2) Be detailed. It is often taken for granted that when we are using the same words, we mean 

the same things. As it turns out, at least in the field of well-being, we should be more cautious 

about this assumption. For example, SWB can be referred to as “happiness”, “hedonism”, 

“subjective happiness”, “emotional well-being” and “affective well-being”. This 

inconsistency might lead to interpretational issues of study results. To overcome this, the most 

feasible solution would be for researchers to be detailed about the constructs they aim to be 

measuring and about the scope of their study. This means that researchers should: 1) be 

consistent in their use of terminology; 2) give detailed descriptions of their most basic terms 

and constructs, and; 3) keep in mind that the results of their study might not cover well-being 

in its entirety. 

To add weight into the discussion to what extent hedonic –and eudaimonic well-being relate 

to each other, we had to wait for the availability of a sufficient powered molecular-genetic 

dataset with measures of eudaimonic well-being (Chapter 8). With the release of the UK 

Biobank data, we were able to conduct a GWAS, where the question: “To what extent do you 

feel your life to be meaningful” served a proxy-phenotype for eudaimonic well-being in 

~110,000 participants. Paired to this analysis, we conducted a GWAS where the question: “In 

general how happy are you” served as a proxy phenotype for hedonic well-being. We 

identified the first two genetic variants associated with eudaimonic well-being as well as six 

genetic variants for hedonic well-being. Moreover, the genetic correlation between both 

measures was, as expected, large (rg = 0.78), suggesting a large shared genetic etiology. 



Further evidence for a shared genetic architecture between both measures is provided by the 

similar patterns of genetic correlations with other traits (e.g. depressive symptoms, 

personality, and loneliness). These results complement our results found in the literature 

review (chapter 7) and indicate that both constructs can be seen as two related underlying 

domains of the same construct.  

Future perspectives 

Enormous progress has been made in the field of human genetics the last four years, with a 

tsunami of genetic associations with numerous traits identified as a consequence. In line with 

this progress, we reported the first 3 genetic variants associated with well-being in 2016, 

while two years later, this number increased to 319 genetic variants (chapter 3 and 4). Similar 

progress has been made for other phenotypes, like depression
51

, education attainment
10

, 

neuroticism
12

 and human intelligence
52

. These studies are staggering proof that the field of 

complex traits genetics has become increasingly successful in the last couple of years. With 

this progress, new questions arise. Valid questions, like how we should interpret these results 

and what the next steps are to take. Of course, there are no conclusive answers to these 

questions yet, but for (genetic)-research involving well-being, the following opportunities are 

worth exploring. 

From association to causation 

The high genetic correlation between different measures of well-being, as well as between 

well-being and other complex traits, such as neuroticism, depressive symptoms, and self-rated 

health, can be a product of a causal relationship between the traits, a third factor that 

influences the traits or a combination of both mechanisms. Although progress is being made 

in detecting causal relationships between correlated traits using Mendelian Randomization 

(MR), presence of horizontal pleiotropy can bias results. Horizontal pleiotropy occurs when 

the variant has an effect on the outcome outside of its effect on the exposure in MR. The 

presence of horizontal pleiotropy has been demonstrated by a recent study that developed a 

software tool called MR-PRESSO, showing that horizontal pleiotropy was detectable in over 

48% of significant causal relationships reported in MR-analyses
53

. A solution to overcome 

biased results in MR analyses is to include very strong instrumental variables. Given that the 

genome-wide significant SNPs associated with well-being explain typically little of the 

phenotypic variance (~ 0.01%), it will be difficult, to construct strong instrumental variables 

for well-being. There is, however, reason for optimism. Many methods that are better able to 



cope with pleiotropy have been proposed recently, such as the genetic instrumental variable 

(GIV) regression
54

 and two-sample MR (2S-MR)
55–57

. In addition to these MR methods for 

inferring causal relationships between two traits, one could ask how much of the relationship 

is mediated by a third factor. Given the high correlations between well-being and numerous 

traits (see chapter 8 and 9), this would be a reasonable scenario. To test this, the recently 

developed Genomic structural equation modelling SEM approach
58

 might be an informative 

way to go forward and lay the groundwork for a novel multi-faceted approach in investigating 

the well-being spectrum, and progress from showing association, to understanding direction of 

causation.  

From genetic variants to biological functioning 

The number of identified genetic loci for well-being has increased spectacularly in recent 

years as described in multiple chapters in this thesis. These findings are largely driven by the 

release of large-scale genetic-data sets such as the UK biobank. The next challenge is to 

improve our understanding of the biological effects of these genetic risk loci, especially since 

the actual genes mediating phenotypic variation are not necessary proximal to the lead SNPs 

identified in genome-wide association studies (GWASs). Supported by the observation that 

GWAS variants are preferentially located in enhancers and open chromatin regions
59,60

, the 

majority of common genetic risk factors are predicted to influence gene regulation, either 

directly or through modifiable epi-genetic processes, rather than directly affect the coding 

sequence of transcribed proteins
61

. Therefore, a promising way to go forward is to first 

identify the causal variants (eQTL) influencing gene-expression, using for instance SMR. 

Next, software tools like FUMA (Functional Mapping and Annotation of Genome-Wide 

Association Studies
62

), which utilize information from different databases and methods can be 

used. Using FUMA, functional consequences on gene functions, deleteriousness, regulatory 

functions, and biological pathways can be revealed from the causal SNPs identified in the first 

step. In chapter 4 and 5 we made a first step in identifying causal variants influencing gene-

expression or methylation –expression, and it is expected that this strategy will result in new 

insights in the biological underpinnings of the well-being spectrum. 

The effect of parental genotypes 

Another promising way to go forward is to include, the often ignored, genetic variants in the 

parental genomes that are not transmitted to a child in the studies of well-being. A recent 

paper Kong et al.
63

 showed that non-transmitted alleles canstill  affect a child through the 



impact  of the alless on the parents themselves or on other relatives (such as siblings), a 

phenomenon they called “genetic nurturing”. Kong et al. showed, using education attainment 

as an example, that polygenic scores computed from the non-transmitted alleles have an 

estimated effect on the educational attainment of that child that is roughly 30% of the 

magnitude of the polygenic scores based on the transmitted alleles. It would add a novel layer 

to “the genetics of well-being” if it could be demonstrated that genetic nurturing exists and 

has an impact on the variance of well-being in the off-spring.  

Phenotypic innovations 

Beside the progress in the field of human genetics, there have been major methodological 

advances in measuring complex behaviors .  

Social Media 

For example, recent work in language use has shown its innovative power to assess complex 

behavior. Self-report surveys provide a snapshot in time. Online social media data, on the 

other hand, may ‘fill in the gaps’ with ongoing ‘in the moment measures’ of a broad range of 

people’s thoughts and feelings and provide real-time assessment of well-being. For instance, it 

has been shown that patterns in a community’s Twitter language predict several health 

outcomes, including community-level disease mortality
64

, depression and mental illness
65

, and 

ADHD
66

. Moreover, it has been shown that social media language derived personality 

assessments match the psychometric quality of observer-report through surveys
67

. It would be 

very interesting to examine whether language use expressed through social media predict 

levels of well-being and to assess the genetic component of it. As pointed out in in chapter 3, 

4, 8, and 9, well-being is related to a broad range of positive and negative traits. The 

widespread use of social media may therefore provide additional opportunities to the detection 

of otherwise undiagnosed cases. 

 

Sensor data 

Besides social media use, sensors in everyday devices, such as our phones, wearables, and 

computers, leave a stream of digital traces. These traces can be captured, analyzed ,and related 

to human behavior (for review see Mohr et al. )
68

. For example, by leveraging built-in sensors, 

a number of smartphone-based sensing systems have been developed to passively monitor 

sleep periods. Several groups have shown that sleep duration can be estimated with 

approximately 90% accuracy, without asking the user to do anything special with the 



phone
69,70

. In turn, these sleep period markers have been correlated to the severity of 

depressive symptoms
71

 and a strong genetic correlation has been onserved between well-being 

and insomnia (Hammerslag et al., 2017). Although numerous challenges must be overcome 

before these types of measures become viable for large scale epidemiological deployment, 

recent technological progresses in machine learning methods give rise to a certain level of 

optimism. It would be very interesting for future studies to focus on sensor dating in relation 

to well-being and related traits.  

 

Societal Impact  

 

Well-being and the prevention of Mental Illness 

Happy people are healthy people: they live longer, function better, and are less susceptible to 

mental illness
41

. Given the power and potential of happiness, the previous lack of insight into 

the causes of individual differences in happiness and the persistence of isolated approaches 

from different disciplines was surprising. With the work in my thesis I have added some 

pieces to the complex puzzle of well-being. As a future perspective, I anticipate that a focus 

on well-being could be very beneficial for the society at large. In the field of epidemiology, 

for example, it has been proposed that larger benefits to overall public health are to be 

expected when the bell curve of mental health in the human population is shifted a little to the 

healthy side, the so-called population strategy
75,76

. So, a relatively slight increase in the level 

of well-being of the majority of the population may have a larger preventive effect than 

targeting the much smaller group of people at high risk or in the early stages of mental illness. 

To this end, knowledge on the causes of individual differences in well-being and modifiable 

risk and protective factors is crucial.  

 

Support for the potential preventive role of well-being to prevent mental illness is provided in 

chapter 2, where I showed that the phenotypic relationship between well-being and 

depressive symptoms is largest in adolescence and young adults, with genetic effects 

explaining most of this correlation. In other words, a genetic predisposition for increased 

levels of well-being will probably have a protective effect in developing these depressive 

symptoms. In combination with the strong genetic correlations of well-being with depressive 

symptoms, neuroticism, loneliness, and self-rated health as reported in chapter 3,4, and 9, it 

might be worth to investigate the effects of positive psychology interventions for prevention 

of (mental) illness.  



 

To date, two meta-analyses that examined the overall effects of positive psychology 

interventions (PPI) have been published. The first meta-analysis
77

 included 51 controlled 

studies and found that PPI significantly enhance well-being (mean r = 0.29) and decrease 

depressive symptoms (r = 0.31). The second meta-analysis included 39 randomized controlled 

trial studies (N ~ 6,100)
78

, including PPIs such as self-help interventions, group training and 

individual therapy. They reported a standardized mean difference of 0.34 for subjective well-

being, 0.20 for psychological well-being and 0.23 for depressive symptoms. These effect sizes 

attenuated at follow up (3 to 6 months) but were still significant, indicating that effects are 

fairly sustainable. Together, these studies indicate that engaging in simple positive activities 

can reliably increase an individual’s level of well-being as well as decrease someone’s 

depressive symptoms. Given that there is some evidence that Positive Psychology 

interventions might be effective, it is essential to understand the causes of difference in 

intervention response. As a first step, Haworth and colleagues
79

 revealed minimal changes in 

the overall magnitude of genetic and environmental influence on individual differences during 

the intervention, despite significant improvements in overall well-being. They furthermore 

showed that the genetic factors important for intervention response were the same as those 

influencing baseline well-being scores. This indicates that the genetic findings in my thesis 

could be informative in the development of personalized positive prevention interventions. 

 

To conclude, during my PhD trajectory, I have witnessed the enormous progress the field of 

human genetics has made from the frontline. On this wave of progress, my work has 

contributed to a better understanding of the factors influencing phenotypic variation in well-

being, a phenotype that is affecting us all.  
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