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While 1–2% of individuals meet the criteria for a clinical diagnosis of obsessive-compulsive disorder (OCD), many more (~13–38%)
experience subclinical obsessive-compulsive symptoms (OCS) during their life. To characterize the genetic underpinnings of OCS
and its genetic relationship to OCD, we conducted the largest genome-wide association study (GWAS) meta-analysis of parent- or
self-reported OCS to date (N= 33,943 with complete phenotypic and genome-wide data), combining the results from seven large-
scale population-based cohorts from Sweden, the Netherlands, England, and Canada (including six twin cohorts and one cohort of
unrelated individuals). We found no genome-wide significant associations at the single-nucleotide polymorphism (SNP) or gene-
level, but a polygenic risk score (PRS) based on the OCD GWAS previously published by the Psychiatric Genetics Consortium (PGC-
OCD) was significantly associated with OCS (Pfixed= 3.06 × 10−5). Also, one curated gene set (Mootha Gluconeogenesis) reached
Bonferroni-corrected significance (Ngenes= 28, Beta= 0.79, SE= 0.16, Pbon= 0.008). Expression of genes in this set is high at sites of
insulin mediated glucose disposal. Dysregulated insulin signaling in the etiology of OCS has been suggested by a previous study
describing a genetic overlap of OCS with insulin signaling-related traits in children and adolescents. We report a SNP heritability of
4.1% (P= 0.0044) in the meta-analyzed GWAS, and heritability estimates based on the twin cohorts of 33–43%. Genetic correlation
analysis showed that OCS were most strongly associated with OCD (rG= 0.72, p= 0.0007) among all tested psychiatric disorders
(N= 11). Of all 97 tested phenotypes, 24 showed a significant genetic correlation with OCS, and 66 traits showed concordant
directions of effect with OCS and OCD. OCS have a significant polygenic contribution and share genetic risk with diagnosed OCD,
supporting the hypothesis that OCD represents the extreme end of widely distributed OCS in the population.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) is a common and impairing
disorder characterized by persistent, intrusive thoughts and/or
repetitive, ritualized behaviors. OCD is a heritable condition with
an estimated heritability of 47% in a large twin study [1] and a
heritability based on common single nucleotide polymorphisms
(SNPs) of 16–28% [2, 3]. However, replicated specific genetic risk

factors for OCD have yet to be identified. Several disorders co-
occur with OCD such as anxiety disorders, mood disorders,
anorexia nervosa (AN), tics, among others [4–6] and these
disorders share genetic risk with OCD [7, 8].
For many psychiatric disorders, including OCD, it is thought that

their genetic risk is continuously distributed in the general
population, contributing to varying levels of symptom expression
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[9]. This is in line with the observation that obsessive-compulsive
symptoms (OCS) are relatively common in the population. For
example, 13 to 38% [10] of all adult individuals experience OCS,
with even higher rates in younger individuals [11, 12], but only 1
to 2% meet the criteria for a clinical diagnosis of OCD13.
Nevertheless, these subclinical symptoms can result in substantial
distress and interference, even in individuals not meeting
diagnostic criteria for the disorder [14].
Studies showing a shared genetic risk between OCS and

diagnosed OCD support the hypothesis that clinical OCD may
represent the extreme end of a continuous distribution of
symptoms [12, 15] and that by considering sub-clinical OCS data
we can increase the population available for study [16]. Like
clinical OCD, OCS measured as a quantitative trait are heritable,
with estimates of 30–74% from twin studies (total heritability;
[17–21]) and a SNP-based heritability of 7–16% from genome-
wide association studies (GWAS; [12, 15, 22]). Studies of
quantitative OCS have also identified genome-wide significant
variants. A study by den Braber et al. [22] first reported a genome-
wide significant SNP (rs8100480) in MEF2BNB for OCS in the
Netherlands Twin Register (NTR; N= 6931), although this was not
replicated in a relatively small clinical sample of patients with OCD.
When OCS in the NTR sample were meta-analyzed with diagnosed
OCD in the Psychiatric Genomics Consortium (PGC) sample
(N= 17,992), no genome-wide significant variants were identified
[12]. A study by Burton et al. [15] reported a genome-wide
significant hit (rs7856850) in PTPRD for OCS in the Spit for Science
sample (N= 5018), which was also associated with OCD in a meta-
analysis of independent clinical OCD and control samples
(N= 11,980). Together these studies suggest that cohort- and
community-based samples may be useful for identifying genetic
risk for not only OCS but also OCD.
Here we present the results of the largest GWAS meta-analysis

of OCS to date, combining the results from various large-scale
population-based cohorts from Sweden, the Netherlands, England,
and Canada that assessed OCS with a variety of questionnaires. To
further characterize our GWAS results, we conducted gene-based
and gene-set analyses, as well as genetic correlation analyses with
97 other traits. Further, polygenic risk score (PRS) analysis allowed
us to assess the probabilistic susceptibility of OCS using the
combined risk measure of variants associated with educational
attainment and several psychiatric disorders that often co-occur
and genetically correlate with OCD, such as depression (DEP;
15–41% comorbidity rate [23–25]), schizophrenia (SCZ; 8–26%
comorbidity rate [26]), autism spectrum disorder (ASD; 17%

comorbidity rate [27]), and attention-deficit hyperactivity disorder
(ADHD; 6–21% comorbidity rate [23]). We further assessed the
validity of using OCS in population-based samples as a proxy for
clinical OCD diagnosis by comparing the OCS GWAS to the latest
GWAS of OCD [2]. We assessed the association of the OCD
polygenic risk score (PRS) with OCS in our samples and compared
the genetic correlation patterns of OCS and OCD with other traits
and disorders.

METHODS
Cohorts & obsessive-compulsive symptom measures
Individuals included in this study stem from seven different European-
ancestry cohorts, including four cohorts from the Swedish Twin Registry
(STR; [28–30]), namely CATSS18 [31], CATSS24 [31], STAGE, YATSS, and one
each from the Netherlands Twin Register (NTR; [32]), Spit for Science (SfS;
[33, 34]), and TwinsUK [35]. The cohorts are predominantly population-
based twin cohorts, except SfS, with a mean age between 10 and 57 years
(see Table 1). CATSS is a prospective, longitudinal study of all twins born in
Sweden since 1992. Here, we used data measured at age 18 (CATSS18),
and/or age 24 (CATSS24), selecting only one measurement time
point per individual (preferring the measurement at age 24 over age 18
if both measurements were completed as the CATSS24 cohort employed
the Obsessive-Compulsive Inventory Revised (OCI-R) which was also used
by other cohorts). Data from NTR [12] and SfS [15] were included in
previous GWASs. See Supplementary Material for more detailed cohort
descriptions.
Several questionnaires were used to assess OCS across the cohorts. STR-

CATSS18 employed the Brief Obsessive-Compulsive Scale (BOCS; [36]), STR-
STAGE used a seven-item OCS instrument [1], while STR-CATSS24, STR-
YATSS, and TwinsUK employed the OCI-R [37], excluding the hoarding and
neutralizing sub-scales. In NTR, the Padua Inventory Revised was used [38,
39] in the form of the 12-item abbreviated and Dutch translated version
[40] excluding the rumination items, leaving 9 items on checking, washing,
precision, and intrusive thoughts. In SfS, parent- or self-reported obsessive-
compulsive traits within the last 6 months of visiting the Ontario Science
Center were assessed using 19 items from the Toronto Obsessive
Compulsive Scale (TOCS), a 21-item questionnaire described elsewhere
[15, 41, 42]. Two items related to hoarding were removed. To ensure
reliable and valid symptom reporting, SfS participants below 12 years of
age with self-reported OCS and above 16 years of age with parent-
reported OCS were excluded (see Supplementary Table S1 for cohort-
specific details on OCS questionnaires).
For all cohorts, individuals with one or more missing items were

excluded and items were summed and standardized into a Z-score.
Distributions of the raw obsessive compulsive item scores are shown in
Supplementary Figs. S1–S9. The distributions of the Z-transformed sum
scores are shown in Supplementary Figs. S10–S13.

Table 1. Overview of the individual cohorts.

STR CATSS18 STR CATSS24 STR STAGE STR YATSS NTR SfS TwinsUK

Questionnaire Brief
Obsessive-
Compulsive
Scale (BOCS)

Obsessive
Compulsive
Inventory
Revised (OCI-R)

7-item OCS
instrument

Obsessive
Compulsive
Inventory
Revised (OCI-R)

Padua
Inventory
Revised

Toronto
Obsessive
Compulsive
Scale (TOCS)

Obsessive
Compulsive
Inventory
Revised (OCI-R)

N 3870 2225 7846 2947 8550 5171 3334

N MZ twin pairs 292 194 561 276 1137 – 269

N DZ twin pairs 1230 661 991 646 1722 – 633

N siblings – – – – 859 – –

N parents – – – – 2608 – –

% females 56% 57% 60% 63% 64% 48% 92%

Mean age ± SD 18.53 ± 0.33 23.84 ± 0.32 33.89 ± 7.74 23.93 ± 1.78 41.94 ± 15.80 10.87 ± 2.75 56.7 ± 12.6

For each individual study included in the OCS meta-analysis (STR-CATSS18, STR-CATSS24, STR-STAGE, STR-YATSS, NTR, SfS, TwinsUK), the table lists the
questionnaire used, total sample size included (N), the number of monozygotic twin pairs (N MZ twin pairs), the number of dizygotic twin pairs (N DZ twin
pairs), the number of siblings (N siblings), the number of parents (N parents), the percentage of females and males in the total N (% females (males)), and the
mean age with standard deviations (Mean age ± SD). The NTR twin pairs include 14 multiplets; twins where only one twin participated were not counted as
twins; other individuals included 288 spouses of twins or siblings. Note that CATSS samples were later pooled across the two CATSS cohorts (CATSS18,
CATSS24) for GWAS analysis, depending on the platform they were genotyped on (GSA, PsychChip).
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Genome-wide association analysis
All participants were genotyped on SNP-arrays using DNA from saliva or
blood. One part of the STR-CATSS samples was genotyped on the
PsychChip genotyping array (N= 5683), another part was genotyped on
the GSA genotyping array (N= 412). For the GWAS analyses STR-CATSS
cohorts (CATSS18, CATSS24) were pooled over each genotyping platform
(GSA, PsychChip), forming two separate CATSS datasets (STR-CATSS-GSA
and STR-CATSS-PC). Each of the seven datasets (STR-CATSS-GSA, STR-
CATSS-PC, STR-YATSS, STR-STAGE, NTR, SfS, and TwinsUK) underwent
stringent quality-control (QC), including the removal of non-European
ancestry outliers based on PCA and imputation using the Haplotype
Reference Consortium (HRC; STR, NTR) or the 1000G (SfS, TwinsUK)
reference sets (see the Supplementary Material for more detailed
information). Together, all cohorts comprised 33,943 individuals (STR:
N= 16,888, NTR: N= 8550, SfS: N= 5171, and TwinsUK: N= 3334) with
complete phenotypic and genotypic information (see Table 1 and
Supplementary Material for a more detailed description of each cohort).
We used GCTA-fastGWA [43] to perform a mixed-linear-model GWAS

within each cohort separately. GCTA-fastGWA controls for population
stratification by principal components (PCs) and for relatedness by a SNP-
derived genetic relationship matrix (GRM). In STR, NTR, and TwinsUK a
sparse family GRM was defined, and each GWAS analysis included the first
10 genetic PCs, sex, age, age squared, and genotyping batches as
covariates. In a sparse GRM, all off-diagonal values below 0.05 are set to 0
(default), thereby capturing the same proportion of phenotypic variance as
by pedigree-relatedness and accounting for the close relatedness of
individuals in the data. In SfS, analyses were performed on unrelated
individuals. For sibling pairs, the first enrolled sibling from each family was
selected for further analysis (see Table 1 for the number of siblings
included). Siblings were removed in this cohort as the high genetic
resemblance between them may dominate the genetic variation covered
and adjusted for by the GRM, and with only few sibling pairs this adds to
the uncertainty of the estimate. Here, the GCTA-fastGWA linear mixed
model was performed using a full GRM and sex, age, respondent (parent
vs. child reporting), genotyping array type, PCs 1–3, and projected PCs 1–3
(see supplement for details) as covariates.
For each of the seven resulting GWAS summary statistics, variants were

filtered on minor allele frequency (MAF) > 1%, and imputation-quality
(INFO) score >0.8. For strand ambiguous (A/T and C/G) SNPs, those with a
MAF ≥ 0.4 were removed, while the frequencies of those with a MAF < 0.4
were compared to frequencies in the HRC reference [44]. Same strand
orientation was assumed if the frequencies matched (i.e., the minor allele
was the same in both data sets). All SNPs with matching frequencies were
retained while mismatched SNPs (i.e., the minor allele was different in
either dataset), assumed to be reported on different strands, were flipped
according to the orientation reported in the HRC reference. Following
removal of poorly genotyped SNPs, all datasets were aligned to the HRC-
reference.
With these harmonized datasets, we conducted an inverse variance

weighted meta-analysis utilizing METAL [45], a tool included within the
Rapid Imputation for COnsortias PIpeLIne (Ricopili; [46]). To identify any
residual population stratification or systematic technical artifacts, we
inspected the genomic control factor (Lambda and Lambda1000). The
genome-wide significance threshold was set to p < 5 × 10−8.

Gene-based analyses (MAGMA/FUMA)
We performed gene-analysis and gene-set analysis using Multi-marker
Analysis of GenoMic Annotation (MAGMA) [47] v1.08 as implemented in
Functional Mapping and Annotation of Genome-Wide Association Studies
(FUMA; [48]) v1.3.7. To test genetic associations at the gene level for the
combined effect of SNPs in or near protein coding genes, we applied
default settings (SNP-wise model for gene analysis and competitive model
for gene-set analysis). Gene-based p-values were computed by mapping
SNPs to their corresponding gene(s) based on their position in the
genome. Positional mapping was based on ANNOVAR annotations, and
the maximum distance between SNPs and genes was set to 10 kb (default).
A multiple regression model was employed while accounting for linkage
disequilibrium (LD) between the markers. The 1000 Genomes phase 3
reference panel [49], excluding the MHC region, was used to adjust for
gene size and LD across SNPs. Using the result of the gene-based analysis
(gene level p-values), competitive gene-set analysis was performed with
default parameters: 15,496 gene sets were tested for association. Gene sets
were obtained from MsigDB v7.0 (see www.gsea-msigdb.org for details),
including ‘Curated gene sets’ consisting of nine data resources including

KEGG, Reactome, and BioCarta, and ‘GO terms’ consisting of three
categories (biological processes, cellular components, and molecular
functions).

Heritability and cross-disorder analyses
Heritability estimates. Heritability estimates of each cohort were extracted
from the GCTA association output. GCTA uses the restricted maximum
likelihood (REML) approach [50] to estimate heritability in the GRM that is
supplied to correct for relatedness in the linear association test. For the
twin cohorts (STR, NTR, and TwinsUK), this means that heritability was
based on the sparse GRM. For SfS, with no related individuals, the
heritability was based on the full GRM. For all heritability estimates, the
same covariates as in the GWAS analyses were used. We also calculated the
SNP-based heritability of the OCS meta-analysis using LD score regression
(LDSC; [51]). LDSC bases its calculation of SNP-based heritability on the
estimated slope from the regression of the SNP effect from the GWAS on
the LD score.

Cross-trait genetic correlations. With LDSC [51] we calculated genetic
correlations between OCS and 97 traits, including psychiatric, substance
use, cognition & socio-economic status, personality, neurological, auto-
immune, cardiovascular, anthropomorphic, and fertility phenotypes (see
Supplementary Table S4 for a list of the source GWASs used). 15 of the
included traits pertain to neuroticism and include the neuroticism sum
score, worry- and depressive subclusters, as well as individual neuroticism
items. The genetic correlation is based on the estimated slope from the
regression of the product of Z-scores from the two GWASs of interest on
the LD score. It represents the genetic correlation between two traits based
on all polygenic effects captured by the included SNPs. Because
imputation quality is correlated with LD score, and low imputation quality
generally yields lower test statistics, imputation quality is a confounder for
LD score regression. We therefore filtered on INFO > 0.9, if INFO was
available, and MAF > 0.01. The SNPs from the European HapMap3 [52]
were used as a reference. We further compared the genetic correlation
patterns between OCS and OCD with all other 96 traits, to identify
concordant and discordant patterns. OCD results were based on the
publicly available summary statistics from the PGC [2].

Cross-phenotype polygenic risk score analyses. To further explore the
genetic relationship between OCS in each of our datasets and other
(psychiatric) phenotypes, we calculated polygenic risk-scores (PRS) based
on large-scale GWAS summary statistics of OCD (Ncases= 2688, Ncontrols=
7037; [2]), DEP (Ncases= 170,756, Ncontrols= 329,443; excluding 23andMe
[53]), SCZ (Ncases= 53,386, Ncontrols= 77,258; [54]), ASD (Ncases= 18,381,
Ncontrols= 27,969; [55]), ADHD (Ncases= 19,099, Ncontrols= 34,194; [56]), and
educational attainment (EA; Ntotal= 245,621; [57]) using PRSice2 [58] and
evaluated their association with OCS in our cohorts (STR-CATSS-GSA, STR-
CATSS-PC, STR-STAGE, STR-YATSS, NTR, SfS, and TwinsUK). We pre-selected
p-value thresholds based on the best performing thresholds reported in
the primary publications (EA: P= 1; ADHD, ASD, OCD, SCZ: P= 0.1; DEP:
P= 0.5). The PRS scores were calculated as the weighted sum of the risk
allele dosages.
For STR, NTR, and TwinsUK, we employed a generalized estimating

equation (GEE) [59] in R to evaluate the relationship between the PRS
scores and OCS scores in each cohort. The GEE analysis takes into account
the resemblance within clusters, accounting for the relatedness in the
datasets. Robust standard errors (sandwich-corrected) and Z-scores are
reported. For SfS we applied linear regression, as conducted within the
PRSice2 pipeline, to evaluate the relationship between PRS and OCS.
Contributions of the PRSs were measured through comparison of the R² of
the full model (including the PRS, and covariates) minus the null model
(including only covariates). The same covariates that were previously
included in the respective GWASs were used. We combined the PRS
estimates across all target datasets using an inverse variance weighted
meta-analysis using the metagen package in R. Cochran’s Q test [60] and
Higgin’s I² [61, 62] were used to examine a possible heterogeneity in PRS
estimates across the cohorts. Q is calculated as the weighted sum of the
squared differences between individual cohort effects and the pooled
effect across cohorts, with the weights being those used in the pooling
method. The I² statistic describes the percentage of variation across studies
that is due to heterogeneity rather than sample variation and does, unlike
Q, not inherently depend on the number of measures included in the
meta-analysis. We calculated a fixed effects model to evaluate the
association of each PRS with OCS, regardless of observed heterogeneity.
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We further calculated a random effects model if there was substantial
observed heterogeneity across study sites (I² > 0.5 and/or PQ < 0.05).

Comparability of cohorts
To identify if the summary statistics from any of the included cohorts
substantially deviated from the rest, we performed leave-one-out (LOO)
GWAS meta-analyses and subsequently used those datasets to conduct a
set of sensitivity analyses. First, we performed sign-test analyses on the top
SNPs (inclusion threshold of p= 0.0001, p= 0.00001, and p= 0.000001)
using the replication module of the RICOPILI pipeline. Sign-tests allow for
quantification of the number of genomic regions that are independent
across the different p-value thresholds and identification of how many
genomic regions within the replication study have the same direction of
effect as the discovery. The output (in the form of a ratio) provides an
estimate of the percentage of genomic regions with the same direction of
effect between any two datasets. A sign-test is a binomial test with the null
hypothesis= 0.5, with a ratio > 0.5 indicating a positive sign test
(convergence), while a ratio < 0.5 indicates divergence. We conducted
two sets of sign-tests, one comparing the direction of effect for each pair-
wise combination of cohorts, and one comparing each LOO meta-analysis
with the respective sample that was left out. While fluctuations in the sign-
tests across different p-value thresholds are expected, depending on the
true association of each SNP with the phenotype, we mainly aimed to
assess whether a specific cohort markedly deviated from the rest.
Following the same procedure as for the cross-trait PRS analyses

described above (see previous method-section on cross-trait PRS analyses
for details), we conducted LOO PRS analyses to evaluate the relationship
between the PRS scores of each LOO GWAS and standardized OCS scores
in the left-out cohort. Further, we conducted genetic correlation analyses
between each LOO OCD meta-analysis (LOO_NTR, LOO_SfS, LOO_STR, and
LOO_TwinsUK) and the same set of 97 phenotypes as described earlier to
explore a possible heterogeneity in correlation patterns depending on the
included OCS cohorts.

RESULTS
Genome-wide association results
The final OCS GWAS meta-analysis was based on 33,943
individuals with complete phenotypic and genomic data available
and included 6,232,765 associations of autosomal SNPs. No
significant inflation was observed (λ= 1.027, λ1000= 1.001, LDSC
intercept= 1.0047, see Supplementary Fig. S14 for a QQ-plot). No
SNP reached genome-wide significance (p < 5 × 10−8; see Fig. 1 for
a Miami-plot including the Manhattan-plot of the GWAS in the
upper panel). The SNP with the lowest p-value was rs113538937
(p= 6.36 × 10−8) on chromosome 4 (see Supplementary Fig. S15
for a regional association plot and forest plot). The region tagged
by this SNP spans 207.6 kb (LD R² > 0.6) and entails the genes
SH3BP2, ADD1, MFSD10, NOP14-AS1, NOP14, GRK4, HTTAS, and HTT.
Another 26 independent SNPs with a p-value < 1 × 10−5 were
identified (see Supplementary Table S2 for a list of association
results).

Gene and gene-set analyses
Gene-based tests were conducted to test whether any protein-
coding gene carries a load of common variation associated with
OCS. Using MAGMA v1.08 within FUMA v1.3.7, input SNPs were
mapped to 18,464 protein coding genes. No gene reached the
Bonferroni-corrected significance threshold (p= 0.05/
18,464= 2.71 × 10−6) in the gene-based test (see Fig. 1 for a
Miami-plot including the Manhattan-plot of the gene-based test in
the lower panel, and Supplementary Fig. S14 for a QQ-plot).
Further, 15,496 gene sets (Curated gene sets: 5500, GO terms:
9996) from MsigDB v7.0 were tested for association. One curated
gene set (Mootha Gluconeogenesis) reached Bonferroni-corrected

Fig. 1 Miami plot of the association results from the GWAS meta-analysis (upper panel) and of the gene-wide association analysis (lower
panel) of OCS. The y-axes represent -log10 p-values for the association of SNPs/genes with OCS. The x-axis represents chromosomes 1 to 22.
In the upper plot, the p-value threshold for genome-wide significance (p = 5 × 10−8) is represented by the horizontal red line, suggestive
significance (p= 1 × 10−5) by the blue line. In the lower panel, Bonferroni-corrected gene-wide significance (p= 2.708 × 10−6) is represented
by the horizontal red line, suggestive gene-wide significance (p= 1 × 10−3) is indicated by the blue horizontal line.
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significance (Ngenes= 28, Beta= 0.7872, SE= 0.1611,
Pbon= 0.008).

Heritability and cross-disorder analyses
Heritability estimates. For the twin cohorts, the additive genetic
variance of OCS, estimated based on the sparse genetic relatedness
matrix from the association tests in GCTA, ranged between 0.33 (NTR)
and 0.43 (TwinsUK), with estimates for the STR cohorts in between:
STR-CATSS: 0.35 (GSA chip sub-sample), STR-CATSS: 0.41 (PsychChip
sub-sample), STR-YATSS: 0.39, STR-STAGE: 0.39. Note that these
heritability estimates based on the twin cohorts are largely driven by
the twin resemblance (~0.5 between DZ twins and siblings, 1.0 for MZ
twins, and 0 between unrelated individuals). The heritability for SfS,
only including unrelated individuals, was 0.083 (SE= 0.053,
P= 0.0516). The SNP-based heritability estimate of the GWAS meta-
analysis using LDSC resulted in a total observed scale h² of 0.041
(SE= 0.0144, Z= 2.85, P= 0.0044).

Cross-disorder genetic correlations. We estimated genetic correla-
tions using LDSC between the current OCS GWAS and OCD as well
as 97 other phenotypes, including psychiatric, personality,
psychological, substance-use, neurological, cognition, socioeco-
nomic status, autoimmune, cardio-vascular, anthropomorphic, and
fertility traits. Of these, 24 exceeded the FDR-corrected signifi-
cance threshold (Fig. 2). As expected, OCS were most strongly
associated with OCD out of all psychiatric disorders, followed by
anxiety, DEP, major depressive disorder (MDD), SCZ, and AN.
Significant positive genetic correlations were also observed for all
15 neuroticism phenotypes (14 sub-items and the neuroticism

total score). Higher correlations emerged for all worry-related
items, and slightly lower correlations for all depressive-related
items. A significant positive correlation was further observed for
“cigarettes per day” and “tiredness”, while “subjective well-being”
yielded a significant negative correlation (see Fig. 2, and
Supplementary Table S4). We further compared the genetic
correlation patterns of OCS and OCD with all other 97 traits, to
identify concordant and discordant patterns. There was a clear
relationship between the two correlation-patterns of OCS and
OCD (see Fig. 3), with 66 traits showing concordant directions of
correlation (i.e., both correlations above 0 or both below 0), and 30
traits showing a discordant direction of correlation (i.e., one
correlation above 0 and one below 0). Especially strong
concordance was observed for the psychiatric and personality
traits. Of the significant correlations with OCS, only ‘neuroticism
loneliness’ (non-significant for OCD) and ‘cigarettes per day’
(significant for OCD) showed a different direction of effect with
OCD (both positive with OCS, but negative with OCD).

Polygenic risk score analyses. We calculated a range of PRSs,
based on publicly available summary statistics of OCD, DEP, SCZ,
ASD, ADHD, and EA and examined their relationship with OCS in
each cohort. GEE (STR, NTR, TwinsUK) and linear regression
analyses (SfS) revealed significant (Bonferroni-corrected p < 0.05/
7= 0.0071) associations between OCS and PRS based on OCD,
DEP, SCZ, and EA, but not consistently across all target datasets
(see Supplementary Table S4). In the meta-analysis, summarizing
the PRS results across all target cohorts, the OCD (P®xed= 3.06 ×
10−5) and SCZ (Prandom= 3.69 × 10−6) PRS showed significant

Fig. 2 Genetic correlations between OCS and a variety of other traits and disorders. Genetic correlations (rg) between OCS and a broad
range (N= 97) of other phenotypes, assembled into 11 groups (psychiatric, substance, cognition/socioeconomic status (SES), personality,
psychological, neurological, autoimmune, cardiovascular, anthropomorphic, fertility, and other). Error bars represent 95% confidence intervals;
red circles indicate significant association after FDR correction for multiple testing.
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associations with OCS. The DEP PRS also showed a significant
association with OCS, however, there was significant heterogene-
ity across the four cohorts (PQ= 0.0020), and the random effects
model failed to reach significance (Prandom= 0.0801). The other
traits’ PRSs (ASD, ADHD, EA) were not significantly associated with
OCS in the PRS meta-analysis (All meta-analyzed results are shown
in Table 2).

Comparability between cohorts
No genome-wide significant heterogeneity was observed in the
OCS GWAS meta-analysis (see Supplementary Fig. S16 for

Manhattan plot and QQplot). The LOO PRS meta-analysis showed
a significant positive association between the LOO PRS and OCS
(Pfixed= 5.03 × 10−7) (see Table 2 for the PRS meta-analysis results
and Supplementary Table S4 for individual results for each target
cohort).
Given the low power for the main GWAS analysis, the power for

LOO GWAS analyses and signtests between partial analyses is
even lower, making it difficult to draw any definitive conclusions
from the results. While no individual study markedly stands out
from the rest, results of the sign tests analyses fluctuate with
estimates ranging from 0.28 to 0.68 (and between 0 and 1 for

Fig. 3 Comparing concordance and discordance between genetic correlation estimates of OCS and OCD. Comparison between genetic
correlation estimates (rG) of OCS and OCD for 97 other phenotypes, color-coded according to 11 groups (psychiatric, substance, cognition/
socioeconomic status (SES), personality, psychological, neurological, autoimmune, cardiovascular, anthropomorphic, fertility, and other). On
the x-axis the genetic correlation estimates for OCD are displayed, on the y-axis for OCS. Green quadrants indicate concordance, red
quadrants discordance in the direction of genetic correlations between OCS and OCD.

Table 2. The table shows the PRS results for OCS (Leave-one-out), obsessive-compulsive disorder (OCD), depressive disorder (DEP), schizophrenia
(SCZ), autism-spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and educational attainment (EA), meta-analyzed across all
target datasets for pre-selected p-value thresholds (Pthreshold).

Discovery Pthreshold Neffective Heterogeneity Pfixed Prandom

I² PQ

OCS (Leave-one-out)

OCS 0.5 30342.69 0 0.78822 5.03 ×10−7

Cross-trait

OCD 0.1 31125.74 0.1540 0.31500 3.06 ×10−5

DEP 0.05 30245.80 0.7972 0.00201 2.12 ×10−9 0.080143

SCZ 0.1 30817.02 0.5667 0.07436 4.22 ×10−17 3.69 ×10−6

ASD 0.1 32446.66 0.4640 0.13300 0.04289

ADHD 0.1 29644.22 0.7391 0.011118 0.11762 0.518405

EA 1 30866.38 0.8944 2.98 ×10−6 0.52699 0.793110

As measures of heterogeneity of PRS associations across all target datasets, Higgin’s I² statistic and the p-value for Cochran’s Q test (PQ) are reported. Pfixed and
Prandom list the p-values of a fixed and a random-effects model, respectively. A random effects model was only calculated if there was substantial (I² > 0.5 and/or
PQ < 0.05) heterogeneity across the datasets. The effective sample size (Neffective) is summed over the separate target datasets. For STR, NTR, and TwinsUK the
effective N was determined based on the actual N (including family members) weighted by the ratio of the squared SE from the GEE sandwich-corrected model
and the naive model. For SfS the sample N is listed. Bonferroni-corrected significance threshold was set to 0.00714 (i.e. 0.05/7), significant p-values are in bold.
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P= 1 × 10−6). See Supplementary Figs. S17–S20 for Manhattan-
plots and QQ-plots of the LOO GWASs and Supplementary
Tables S5 and S6 for sign-test results.
We further calculated genetic correlations between each LOO

OCS meta-analysis and the same 97 phenotypes (described above)
to compare the individual influence of each cohort on the overall
correlation estimates. When not considering the individual sub-
items of neuroticism, the LOO GWAS excluding SfS showed
13 significant correlations, the GWAS without TwinsUK showed
eight significant correlations, the GWAS without STR showed two
significant correlations, while the GWAS excluding NTR did not
significantly correlate with any of the traits (see Supplementary
Fig. S21). As sample sizes for the LOO GWAS meta-analyses varied
(LOO STR: N= 17,055; LOO NTR: N= 25,393; LOO SfS: N= 28,772;
LOO TwinsUK: N= 30,609), it was expected that the power to
detect significant correlations for each LOO GWAS differs. For
almost all genetic correlations, each LOO GWAS meta-analysis
showed the same direction of effect. For all correlations with
psychiatric disorders and neuroticism phenotypes, the LOO
analysis excluding NTR showed slightly higher estimates (but also
larger confidence intervals).

DISCUSSION
This is the first meta-analysis aiming to identify the genetic
underpinnings of OCS in the general population. Although we
could not replicate previous findings, two SNPs previously
associated with OCS reached suggestive significance in this
meta-analysis: the SNP found by den Braber et al. (rs8100480,
p = 2.56 × 10−8; [22]) had a p-value of 0.0155 in the current study,
while the SNP reported in Burton et al. (rs7856850,
p= 2.48 × 10−8; [15]) had a p-value of 0.00029. The SNP with the
lowest p-value (p= 6.36 × 10−8) in the current meta-analysis was
rs113538937 on chromosome 4, tagging eight genes which have
previously been associated with alcohol use (HTT), smoking (GRK4,
NOP14, NOP14-AS1, ADD1, SH3BP2), worry (HTT), and measures of
socioeconomic status and education (HTT, GRK4, NOP14, NOP14-
AS, ADD1). In the gene-based tests, no gene achieved genome-
wide significance. One gene-set reached Bonferroni-corrected
significance. Expression of genes in this set is high at sites of
insulin-mediated glucose disposal [63]. Dysregulated insulin
signaling in the etiology of OCS has been suggested by a previous
study describing a genetic overlap of OCS with an insulin
signaling-related trait in children and adolescents [64]. Epidemio-
logical studies similarly support the role of dysregulated insulin
signaling in OCD and OCS. Specifically, patients diagnosed with
OCD were found to have a significantly higher risk of developing
type 2 diabetes compared to population controls [65].
Our results show that OCS share genetic risk with OCD.

Polygenic risk for OCD was associated with OCS; and OCS and
OCD case/control status showed a substantial genetic correlation
(rG= 0.72, p= 0.0007). This is comparable to estimates reported in
recent studies (rG= 0.61, p= 0.017 [12]; rG= 0.83, p= 0.07; [15]).
Notably, OCS did show the highest correlation coefficient with
OCD (rG= 0.72), but the strength of this genetic correlation was
statistically not significantly different from that with anxiety
(rG= 0.62), DEP (rG= 0.51), SCZ (rG= 0.34), or AN (rG= 0.30), as
confidence intervals overlapped. While we did not exclude
participants with any of these diagnoses, the most likely
explanation is that these common comorbidities of OCD share
genetic underpinnings with OCS. We also observed a high
concordance in direction and strength of the correlation patterns
of OCS and OCD with other phenotypes. The concordance
between the OCD and OCS GWASs indicate that the genetic
variation captured by our symptom based GWAS in the general
population reflects that of the disorder OCD. However, given the
present sample size, these values must also be interpreted with
caution. A fact that is further illustrated by our PRS analyses: scores

calculated based on the most recent SCZ GWAS more accurately
predicted OCS than scores calculated based on the most recent
OCD GWAS, which is considerably underpowered. This suggests
that larger cohorts are needed for the accurate estimation of these
associations.
SNP-based heritability for OCS in the current sample of 4.1%

was significant, but lower than previous studies (7–16%;
[12, 15, 22]), also standing in stark contrast with heritability
estimates observed in twin studies (37–41%; [66]). This may be
explained by the heterogeneity across the eight cohorts.
Specifically, these samples differed in their ascertainment (twins
vs. community-based samples), instruments employed, as well as
age range of participants. While no specific pattern emerged in
our compatibility analyses, the sign tests indicated some level of
heterogeneity. Further evidence for heterogeneity was found in
the leave-one-out analysis (Supplementary Fig. S3), supporting the
view that there were some differences in cohorts with respect to
the genetic correlation with specific variables. For leave-STR-out,
the correlations with IQ and some related phenotypes were lower,
whereas for leave-NTR-out, the correlations with neuroticism were
increased. For most phenotypes, however, the leave-one-out
genetic correlations did not yield strong or significant change as
evidenced from the confidence intervals. In the PRS analyses,
results deviated mostly for the SfS sample, which is the youngest
and only non-twin sample included. It also uses the only
questionnaire that is coded from strengths to weaknesses (from
−3 meaning far less often than average to +3 meaning far more
often than average), which could have led to further differences
between the cohorts.
In line with previous research reports, we found a lower SNP-

based heritability for OCS [12, 15] than for clinical OCD (0.28–0.37)
[67, 68]. The reason for the disparity in SNP heritability between
traits and diagnosis is unclear but could be explained by the fact
that clinical diagnosed OCD represents the extreme of the OCS
distribution in the general population. The conversion to liability
scale SNP-h2 [50] may also have contributed to uncertainty in the
estimates, as the uncertainty of a population prevalence close to
zero may improperly inflate the correction factor from observed to
liability scale. Previous studies of related psychiatric disorders,
such as SCZ, or MDD, revealed that the genetic risk is higher for
more severe and chronic cases [69, 70]. In addition to this
consideration of impairment, differences including informant
(parent/self vs. clinician), type of measurement (categorical vs.
quantitative), and timing (cross-sectional vs. lifetime symptoms)
could contribute to the divergence in SNP-based heritability
estimates of OCS and OCD.
The present study had several limitations. First, despite being

the largest meta-analysis of OCS including, to our knowledge, all
samples currently available worldwide, the sample size is still
relatively small for estimating heritability and detecting specific
significant genetic markers. The meta-analysis also currently lacks
the integration of non-European samples. The present results thus
call for replication in, and extension to larger and more diverse
cohorts. Second, previous research has suggested that OCS
dimensions (e.g. contamination, checking, harm or symmetry)
may be etiologically heterogeneous [12, 65, 66, 71]. As such, future
studies might aim to identify the genetic underpinnings of specific
OCS dimensions. This could also tackle some of the heterogeneity
issues that may have caused imperfect overlap between cohorts,
lower SNP-h2, and reduced genetic correlation with clinical OCD.
Third, no information was available on the presence of common
clinical comorbidities in all samples. This precluded detailed
analysis of the identified genetic overlap. Future studies in larger
cohorts should also investigate in more detail how OCS relate to
other phenotypes, for instance addiction and personality dis-
orders. Fourth, the observation that patients often establish non-
random relationships with persons affected by the same or
another mental disorder [72], might extend to people with OCS
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and contribute to the observed genetic correlations of OCS with
anxiety, DEP, SCZ and AN. However, the LD-score method does
not investigate the impact of assortative mating [73]. Therefore,
assessing the degree to which this phenomenon may have
influenced the genetic correlation estimates was beyond the
scope of the present study. Future investigations of larger data
sets for OCS and other psychiatric disorders are needed to refine
the analysis of shared and specific genetic risk as well as
communalities and specificities of the respective disorders. Finally,
for many of the samples included in our study the distribution of
quantitative OCS scores followed a right-tailed distribution, with
most of the subjects reporting low OC symptom scores (see
Supplementary Material for more detail). Although we captured
substantial variability that would not have been present in more
conventional case-control analyses, less variability amongst
individuals with lower scores may have limited our power to
identify positive genetic associations. The right-tailed distribution
is due to the fact that most OCS scales are designed to screen for
disorder in a clinical setting, rather than capture population
variation in symptoms. The one exception in our study was the
Spit for Science cohort, where the TOCS measure was explicitly
designed for capturing variation in non-clinical samples [41, 42].
Despite these limitations, we argue for the inclusion of data based
on conventional screening measures in order to achieve the
necessary sample sizes for genomic studies, as they have been
widely adopted and still capture greater variability in OCS
compared with studies based on dichotomized case/control
samples.
To summarize, OCS have a significant polygenic contribution

and share genetic risk with diagnosed OCD, supporting the
hypothesis that OCD represents the extreme end of widely
distributed OCS in the population.

DATA AVAILABILITY
The meta-analyzed summary statistics are available via the Psychiatric Genomics
Consortium Download page (https://www.med.unc.edu/pgc/download-results/).
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