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The monocyte–lymphocyte ratio (MLR) is a useful biomarker for disease development, but little is known
about the extent to which genetic and environmental factors influence MLR variation. Here, we study the
genetic architecture of MLR and determine the influence of demographic and lifestyle factors on MLR in
data from a Dutch non-patient twin-family population. Data were obtained in 9,501 individuals from the
Netherlands Twin Register. We used regression analyses to determine the effects of age, sex, smoking, and
body mass index (BMI) on MLR and its subcomponents. Data on twins, siblings and parents (N = 7,513)
were analyzed by genetic structural equation modeling to establish heritability and genome wide single
nucleotide polymorphism (SNP) data from a genotyped subsample (N = 5,892) and used to estimate heri-
tability explained by SNPs. SNP and phenotype data were also analyzed in a genome-wide association study
to identify the genes involved in MLR. Linkage disequilibrium (LD) score regression and expression quan-
titative trait loci (eQTL) analyses were performed to further explore the genetic findings. Results showed
that age, sex, and age × sex interaction effects were present for MLR and its subcomponents. Variation in
MLR was not related to BMI, but smoking was positively associated with MLR. Heritability was estimated
at 40% for MLR, 58% for monocyte, and 58% for lymphocyte count. The Genome-wide association study
(GWAS) identified a locus on ITGA4 that was associated with MLR and only marginally significantly asso-
ciated with monocyte count. For monocyte count, additional genetic variants were identified on ITPR3,
LPAP1, and IRF8. For lymphocyte count, GWAS provided no significant findings. Taking all measured SNPs
together, their effects accounted for 13% of the heritability of MLR, while all known and identified genetic
loci explained 1.3% of variation in MLR. eQTL analyses showed that these genetic variants were unlikely
to be eQTLs. In conclusion, variation in MLR level in the general population is heritable and influenced by
age, sex, and smoking. We identified gene variants in the ITGA4 gene associated with variation in MLR.
The significant SNP-heritability indicates that more genetic variants are likely to be involved.
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As early as the 1960s, the relevance of the monocyte–
lymphocyte ratio (MLR) for disease prediction was pointed
out. The first studies focused on infectious diseases, sug-
gesting MLR reflects the balance between effector and host
(Hanifin & Cline, 1970), and found MLR to predict the de-
velopment and progress of tuberculosis (Iqbal et al., 2014).
In later studies, the association betweenMLR and other dis-
eases was studied and the MLR emerged as a predictor for
cancer (Nishijima et al., 2015). While MLR is examined in
relation to disease, studies examining the causes of variance
in MLR in the general population are lacking. To fully un-
derstand the role of MLR in disease, it is, however, neces-
sary to understand the factors underlying variation inMLR
in the general non-patient population.

We recently showed that heritability plays a role in
individual differences in two other lymphoid ratios, the
neutrophil–lymphocyte ratio (NLR) and the platelet–
lymphocyte ratio (PLR). ForNLR, the heritability wasmod-
erate (35%), but for PLR, heritability was high (64%), with
evidence of the presence of non-additive genetic effects
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(Lin et al., 2016). The first genome-wide association study
(GWAS) for these two ratios identified a genome-wide locus
on the HBS1L-MYB intergenic region associated with PLR
(Lin et al., 2016), which has been associated with multiple
blood parameters, including platelet count (Lin et al., 2016).

Although the heritability of MLR has not been studied,
genetic studies have been conducted for its subcomponents,
the monocyte and lymphocyte levels, showing heritability
estimates of 56–73% for monocyte levels and 35–66% for
lymphocyte levels (Evans et al., 1999; Hall et al., 2000). In
addition, linkage and GWAS have pointed to the genetic
variants partly responsible for the individual variation in
monocyte and lymphocyte levels. GWASs have identified
eight loci associatedwithmonocyte levels: ITGA4 at 2q31.3,
HLA-DRB1 at 6p21.32, CCBP2 at 3p22.1, RPN1 at 3q21.3,
LPAR1 at 9q31.3, intergenic regions at 8q24 and 3q21, and
IRF8 at 16q24.1 (Crosslin et al., 2013; Keller et al., 2014;
Nalls et al., 2011; Reiner et al., 2011). GWAS also identified
two loci for lymphocyte levels: 6p21 (EPS15L1 gene) and
19p13 (Crosslin et al., 2013; Nalls et al., 2011). Taken to-
gether, genetic factors are likely to play a role in normal vari-
ation in MLR, but the nature of the involvement remains to
be determined.

Environmental and lifestyle factors may also influence
MLR levels. Here, too, studies onMLR itself are lacking, but
our own study on PLR and NLR (Lin et al., 2016) showed
that lifestyles influence PLR and NLR levels, and agreed
with other studies (Azab et al., 2014; Li et al., 2015) that
smoking and BMI may also affect these parameters. In ad-
dition, its subcomponents, monocyte and lymphocyte lev-
els, have been found to be influenced by BMI (Tenorio et al.,
2014; Zaldivar et al., 2006) and smoking (Schwartz &Weiss,
1994), although these effects are not found in all studies (Al-
Sufyani & Mahassni, 2011; Perez-de-Heredia et al., 2015).

In this article, we examined several potential causes of
variance in MLR in the general population. First, age, sex,
smoking, and BMI effects onMLRwere investigated. Then,
we studied genetic influences on MLR to provide more in-
sight into its genetic architecture in a healthy population.
We started by estimating the heritability of MLR and it
subcomponents by extended twin family modeling. Next,
we used GWAS to identify genetic variants associated with
MLR variation and genome-wide complex trait analysis
(GCTA) to determine the percentage of variance of MLR
that is explained by significant versus all measured genetic
variants (single nucleotide polymorphisms; SNPs). Subse-
quently, we performed an expression quantitative trait loci
(eQTL) analysis of all the top SNPs,whichwere significantly
associated with MLR. We repeated the GWAS, GCTA, and
eQTL analyses for monocyte levels, while referring to lym-
phocyte levels in the results presented previously (Lin et al.,
2016). Finally, linkage disequilibrium (LD) score regression
was performed using the summary statistics of the GWAS
results to determine the polygenetic effects and genetic cor-
relations between MLR and subcomponents.

Methods
Participants and Phenotypes

All participants were adults registered with the Nether-
lands Twin Register (NTR), who took part in a longitudi-
nal study on health and lifestyle in twins and their family
members (Willemsen et al., 2013). Data were obtained as
part of NTR biobanking projects conducted in 2004–2008
(Willemsen et al., 2010, 2013; Sirota et al., 2015). After re-
moving outliers (i.e., absolute values exceeding mean ±5
SD), data on monocyte and lymphocyte count were avail-
able for 9,501 participants clustered in 3,412 families. Dur-
ing the interview conducted at the time of the home visit,
height and weight were obtained. BMI was calculated as
weight (kg) divided by height squared (m2). Participants
reported whether they currently smoked or had smoked.
If so, they were asked for the number of cigarettes smoked
per day and how long they (had) smoked. Participants were
divided into five categories: non-smoker, ex-smoker, light
smoker (currently smoking less than 10 cigarettes a day),
average smoker (currently smoking 10–19 cigarettes a day),
and heavy smoker (currently smoking 20 ormore cigarettes
a day). Participants were asked to indicate when they were
last ill and the nature of the illness. In the case of medica-
tion use, the dosage, brand, and namewere recorded. In ad-
dition, participants indicated on the presence and nature of
any chronic disease. The following exclusion criteria were
used to identify individuals who may have had a compro-
mised immune system at the time of blood sampling: (1)
illness reported in the week prior to sampling (N = 552);
(2) C-reactive protein (CRP)≥ 15 (N= 307); (3) basophile
count> 0.02× 109/L (N= 154); (4) report of blood-related
disease or cancer (N= 84); and (5) use of anti-inflammatory
medication (N = 423), glucocorticoids (N = 143), or iron
supplements (N= 29). Participants meeting one or more of
these criteria were labeled as unhealthy (N = 1,362), leav-
ing 8,139 individuals from 3,280 families as the population
that we will here refer to as the healthy population. Ge-
netic twin-family modeling was conducted using data from
twin families limited to at most one twin pair per family
and at most two brothers and two sisters and father and
mother. This resulted in a sample of 7,513 participants from
3,252 families, including 240 monozygotic male (MZM),
98 dizygotic same-sex male (DZM), 536 monozygotic fe-
male (MZF), 219 dizygotic same-sex female (DZF), and 222
dizygotic opposite-sex (DOS) twin pairs. The study proto-
col was approved by the Medical Ethics Committee of the
VU University Medical Center Amsterdam and all partici-
pants provided informed consent.

Procedure

Participants were visited at home, or when preferred, at
work, to obtain blood samples and conduct a brief health-
related interview. Visits took place in the morning between
7 am and 10 am and women were seen, when possible,
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between the 2nd and the 4th day of the menstrual cycle
or, if on hormonal birth control, were visited in their pill-
free week. Participants were asked to fast from the evening
before and to refrain from smoking or physical exercise 1
hour before blood sampling (for more details see Willem-
sen et al., 2010). Peripheral blood was collected in anticoag-
ulant vacuum tubes, whichwere inverted 8–10 times imme-
diately after the blood draw. All samples were transported
to the laboratory facility in Leiden, the Netherlands, within
3–6 hours after blood sampling. The blood samples were
then directly used or stored tomeasure parameters of inter-
est or extract DNA or RNA at a later moment (see Lin et al.,
2016;Willemsen et al., 2010). The hematological profilewas
obtained from EDTA blood samples with a Coulter system
(Coulter Corporation Miami, USA). This profile consisted
of total white blood cell count, percentages and numbers of
neutrophils, lymphocytes, monocytes, eosinophils, and ba-
sophils, and indicators of red blood cell types and platelets.
We calculatedMLR as the absolutemonocyte count (109/L)
divided by the absolute lymphocyte count (109/L). CRPwas
determined from a heparin plasma sample using the 1,000
CRP assay (Diagnostic Product Corporation).

Genotype Data

For DNA isolation, we used the GENTRA Puregene DNA
isolation kit on frozen whole blood samples, which were
collected in EDTA tubes. All procedures were performed
according to the manufacturer’s protocols (Boomsma et al.,
2008). Genotyping was done onmultiple platforms, includ-
ing a number of partly overlapping subsets of participants.
The following platforms were used: Affymetrix Perlegen
5.0, Illumina 370, Illumina 660, Illumina Omni Express 1
M, and Affymetrix 6.0 (for details see (Lin et al., 2016). The
individual SNPmarkers were lifted over to Build 37 (HG19)
of the Human Reference Genome using the LiftOver tool
(http://genome.sph.umich.edu/wiki/LiftOver). Genotype
calls were made with platform specific software (BIRD-
SUITE APT-Genotyper Beadstudio) for each specific array.
Phasing of all samples and imputing cross-missing plat-
form SNPs was done with MACH 1 (Li et al., 2010). The
phased data were then imputed with MINIMAC (Howie
et al., 2012) in batches of around 500 individuals for the au-
tosomal genome using the above 1000G Phase I integrated
reference panel for 561 chromosome chunks obtained by
the CHUNKCHROMOSOME program (Liu et al., 2013).
SNPs were removed if the Mendelian error rate was> 0.02,
if the imputed allele frequency differed more than 0.15
from the 1000G reference allele frequency, and if MAF <

0.01 and if R2 < 0.80. Hardy–Weinberg Equilibrium was
calculated on the genotype probability counts for the full
sample and SNPs were removed, if the p value <.00001.
After imputation, MZ twins were reduplicated back into
the data. This left 6,010,458 SNPs in the GWAS analyses.

As several different platforms were used, additional SNP
quality control (QC) included an evaluation of the SNP

platform effects, and SNPs showing platform effects were
removed. This was done by defining individuals on a spe-
cific platform as cases and the remaining individuals as con-
trols. Allelic association was then calculated and SNPs were
removed if the specific platform allele frequencies were
significantly different from the remaining platforms with
p value <.00001. In total, 5,987,253 SNPs survived this QC
and these SNPs were then used to build the genetic re-
lationship matrix (GRM) for all individuals. The selected
SNPs were transformed to best guess Plink binary format
and subsets were made for each of the 22 chromosomes.
The GRMS for all NTR samples were then calculated using
GCTA (Yang et al., 2011). We generated 24 GRMs in total.
A first autosomal GRM reflects an identity-by-state (IBS)
matrix for all individuals. This GRM is determined from
all autosomal SNPs and is used to estimate the SNP heri-
tability (h2g). A second autosomal GRM represents closely
related individuals (identity-by-state [IBS] > 0.05), so any
remaining pairwise relationship estimates smaller than 0.05
were set to zero in this matrix. This matrix is used as sec-
ond covariate matrix in the GWAS and GCTA studies to
account for the family structure of individuals and to esti-
mate the narrow-sense heritability (h2) of applying an addi-
tive model. Finally, 22 GRMs were created that included all
autosomal SNPs except for those on the one chromosome
that is tested in the GWAS (the leave one chromosome out
or LOCOstrategy). Thesematriceswere used in theGWASs
as a covariate matrix to remove artificial inflation due to all
kinds of subsample stratification.

Statistical Analyses

First, using age- and sex-corrected values, we tested for
differences in MRL, monocyte, and lymphocyte levels be-
tween the healthy and unhealthy population using a t-test.
Next, within the healthy population, we explored the age
and sex effects by linear regression. To detect the influence
of lifestyle on variation in the MLR level, we included BMI
and smoking behavior in a regression analysis conducted
separately by sex, taking age into account. Analyses were
conducted in STATA (Stata Corp., 2013) using the cluster
option to correct for the family structure within the data.
Using genetic structural equation modeling in OpenMx
(Boker et al., 2011), the heritability of MLR, monocyte
count, and lymphocyte count was estimated in the healthy
population. MLR, monocyte count, lymphocyte count, and
age were standardized using z scores. Parameters were esti-
mated by maximum likelihood. We summarized the family
resemblance with respect to MLR by means of correlations
corrected for age, sex, and age× sex effects. Then, we fitted
a series of genetic models. The total phenotypic variance
was decomposed into four sources of variation: additive ge-
netic (A), non-additive genetic (D), common environmen-
tal (C), and unique environmental (E) variation. The com-
mon environmental variance reflects the variance shared
between siblings and twins (VC). The resemblance among
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family members was modeled as a function of A, D, and C.
We allowed for a correlation in phenotype between spouses
(µ). In fitting the genetic models, we included as covariates
age, sex, sex × age. We fitted the full model as described
and tested the presence of assortative mating (i.e., the cor-
relation between phenotypes of spouses) and the presence
of shared environment and non-additive influences. The
nested submodels were compared to the full model by log
likelihood ratio test (-2LL) using a significance level of 0.05.

GWAS

We performed two GWASs: one for MLR level and one
for monocyte count, using the quality controlled imputed
SNPs, including age, sex, threeDutch principal components
(PCs) generated with the Eigensoft software and genotype
platform as covariates (N = 5,892; see Methods and Abdel-
laoui et al., 2013). As we had already conducted a GWAS
for lymphocyte count, using a largely overlapping sample
(N = 5, 901, overlap of 5,890 individuals) we did not rerun
this analysis but instead refer here to the results published in
Lin et al. (2016). Analyses were performed with the GCTA
software running a mixed linear model association model
to account for relatedness (Tucker et al., 2015). To avoid in-
flated test statistics in datasets with related individuals and
other remaining cryptic stratification, we used two covari-
ate GRMmatrices: the matrix for all individuals, excluding
the chromosome under analysis (LOCO analysis) and the
matrix only focusing related individuals with IBS > 0.05
(Tucker et al., 2015). For the GWAS, we assumed the statis-
tically significant threshold as a p value less than 5 × 10−8

(Pe’er et al., 2008), and we refer to as marginally significant
when p values exceed this threshold but remain below 10−4.

eQTL Analysis

To detect possible causal effects for significant genetic vari-
ants, we conducted eQTL analyses, in which eQTL effects
were detected with a linear model approach using Matrix-
eQTL (Shabalin, 2012). The analysis specified expression
level as the dependent variable and SNP genotype values as
the independent variable. The eQTL dataset is described in
detail elsewhere (Jansen et al., in press; Wright et al., 2014).
eQTL effects were defined as cis when the distance between
probe set–SNP pairs was smaller than 1M base pairs (Mb),
and as trans when the SNP and the probe set were separated
by more than 1 Mb on the genome according to hg19.

GCTA and Linkage Disequilibrium Score Regression

We performed GCTA analyses to estimate narrow-sense
heritability, the fraction of genetic variance explained by the
significant SNPs detected in the GWAS and the fraction of
genetic variance explained by the known significant SNPs
from the published literature. These analyses were done for
MLR level, monocyte count, and lymphocyte count. A re-
stricted maximum likelihood analysis procedure was used
under a linear design (Yang et al., 2011). Sex, age, genotype

TABLE 1
Average Levels (SD) for MLR and Its Subcomponents in the
Healthy and Unhealthy Population for Men and Women

Healthy population Unhealthy population

Men Women Men Women

N 3,074 5,065 444 918
Age 44.12 (15.88) 42.98 (14.48) 46.75 (17.37) 43.75 (15.48)
MLR 0.29 (0.09) 0.24 (0.08) 0.32 (0.14) 0.26 (0.12)
Monocyte 0.58 (0.17) 0.51 (0.16) 0.61 (0.19) 0.54 (0.20)
Lymphocyte 2.17 (0.64) 2.27 (0.71) 2.07 (0.75) 2.22 (0.75)

platform, and three Dutch PCs were included as covariates.
We used two covariance matrixes to estimate narrow sense
heritability (h2), and GWAS and known loci heritability
(Zaitlen et al., 2013). The first GRM is the full autosomal
GRM as described previously. The second GRM is the
closely related (IBS > 0.05) matrix. Pearson correlations
between the phenotypes of interest were calculated in R
(R Core Team., 2014). Whether polygenetic effects (Bulik-
Sullivan et al., 2015) influenced MLR and its compositions
was explored by LD score regression. The SNP heritability
(Finucane et al., 2015) of MLR, monocyte count, lympho-
cyte count, and genetic correlations (Bulik-Sullivan et al.,
2015) among the phenotypes were determined by LD score
regression on our computed GWAS summary statistics.
The genetic correlation of two traits can be calculated by the
slope from the LD regression on the product of effect sizes
(z score) for two phenotypes of interest. In order to do this,
we used the HapMap3 LD scores (N SNPs = 1,293,150)
computed for each SNP based on the LD observed in
European ancestry individuals from the 1,000 Genomes
project (accessible online at http://github.com/bulik/ldsc).
QC for genetic data is the default setting in the program.

Results
Health Status, Sex, Age, and Lifestyle

Table 1 gives the descriptive statistics for MLR and its sub-
components, the monocyte and lymphocyte count, for the
healthy and unhealthy parts of the population. The com-
parison of the healthy and unhealthy population (seeMeth-
ods for definition), taking sex and age into account as well
as family structure, showed, as expected, that individuals
in the unhealthy population had on average a higher MLR
ratio, t(9,499) = −7.95, p < .001, and monocyte count,
t(9,499) = −5.06, p < .001, and a lower lymphocyte count,
t(9,499) = −2.57, p = .01). We continued our investiga-
tion in the healthy population, examining the influence
of age and sex. Men had higher MLR levels than women,
b = −0.0176, p < .01, and MLR increased with age in both
men and women, b = 0.0013, p < .001. There was also evi-
dence for an age× sex interaction: the age effects were alle-
viated in the women. With respect to the subcomponents,
monocyte, and lymphocyte levels were higher in men than
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TABLE 2
Results of the Linear Regression Analyses (Regression Coefficients) for MLR and Its Subcomponents for Men and Women

Men Women

Dependent variable Independent variable Model 1 Model 2 Model 1 Model 2

MLR Age 0.0013∗∗∗ 0.0016∗∗ 0.0008∗∗∗ 0.0014∗∗∗
BMI − 0.0041 −0.0011 −0.0034 0.0075
Smoking −0.0029∗ 0.0016 −0.0044∗∗∗ 0.0046
Age × BMI 0.0007 −0.0002∗
Age × smoking −0.0001 2.8E-6

Monocyte count Age 0.00016 0.0005 −0.0001 −0.0011
BMI 0.0193∗∗∗ 0.0304∗ 0.0151∗∗∗ −0.0003
Smoking 0.0343∗∗∗ 0.0245∗∗ 0.0297∗∗∗ 0.00262∗∗∗
Age × BMI −0.0002 0.0004
Age × smoking 0.0002 0.0009

Lymphocyte count Age −0.0078∗∗∗ −0.0086∗∗ −0.0078∗∗∗ −0.0154∗∗∗
BMI 0.0947∗∗∗ 0.0972∗ 0.0902∗∗∗ −0.0487
Smoking 0.1512∗∗∗ 0.1163∗∗∗ 0.1765∗∗∗ 0.1836∗∗∗
Age × BMI −0.0003 0.0031∗∗
Age × smoking 0.0009 −0.0001

Note: Estimates in bold are significant (∗p < .05, ∗∗p < 0.01, ∗∗∗p < .001). MLR = monocyte count ratio; BMI = body mass index; Age × BMI = interaction of
age and BMI; Age × smoking = interaction of age and smoking; Model 1: blood variable = b0 + b1×age + b2×BMI + b3×smoking; Model 2: blood
variable = b0 + b1×age + b2×BMI + b3×smoking + b4×age×BMI + b5×age×smoking.

in women and increased with age. These age effects were
similar in men and women. To test the effects of BMI and
smoking, we included this variable in a regression analysis
conducted separately by sex and taking age into account.
The results, shown inTable 2 (model 1), indicate that smok-
ing is related to a decrease in MLR level in both men and
women. BMI was not associated with MLR in either sex.
However, an age × BMI interaction was seen for MLR in
women (model 2): the age effects were alleviated by an in-
creased BMI level. The BMI and smoking effects were also
examined in theMLR subcomponents: Higher BMI and be-
ing a smoker were related to higher monocyte and lympho-
cyte levels. For lymphocyte count in women, there was ev-
idence for an age × BMI interaction, again indicating a re-
duction of the BMI effect at an older age.

Heritability

The known genetic relations among mono- and di-zygotic
twins and their family members were used to model famil-
ial resemblance in MLR, and monocyte and lymphocyte
count as a function of genetic and environmental param-
eters. These models included sex, age, and sex × age effects
as fixed effects. Table 3 contains the familial correlations as
obtained for MLR, monocyte, and lymphocyte count. For
MLR, twin pair correlations did not depend on sex, and the
correlations did not differ across DZ twin and sibling rela-
tions. The correlations in MZ males and MZ female twin
pairs were equal as were the other male and female first-
degree relative correlations. The resulting MZ correlation
was 0.43 (CI is 0.33–0.46) and the DZ correlation was 0.22
(0.14–0.24), with spousal correlations significant at 0.104
(0.002–0.135). The pattern of twin correlations showed no
evidence for non-additive or common environmental ef-
fects. This was confirmed bymodel fitting in which the her-
itability of MLR was estimated at 40% (0.34–0.43).

We also conducted these series of geneticmodeling anal-
yses for monocyte and lymphocyte count. For monocyte
count, therewere no significant spousal correlations and the
MZ correlation was 0.58 (0.54–0.62) while the DZ corre-
lation was 0.27 (0.21–0.31). In line with the pattern of the
correlations, genetic modeling estimated the broad sense
heritability at 58%, with non-additive effects accounting for
12% and no evidence for the influence of common envi-
ronmental factors. For lymphocyte count, we estimated the
heritability in the current set (N = 5,892, with >99% over-
lap with the set described in Lin et al., 2016) and, as to
be expected, results were similar to those published in Lin
et al. (2016) with a broad sense heritability at 58% and non-
additive effects accounting for 22%.

GWAS

Figures 1, 2 and 3 show the QQ and Manhattan plots from
theGWAS forMLR,monocytes and lymphocytes. After ad-
justing for age, sex, genotype platform, and PCs, and using
the LOCO and family-based GRM correction, the GWAS
λs were 0.9965 for MLR and 1.0166 for monocyte count.

ForMLR, associations were found with 11 SNPs situated
on the ITGA4 (VLA-4 subunit alpha) gene on chromosome
2q31 (Figure 1 and Table 4). The top SNP rs3755021 T al-
lele was linked to a decrease in MLR level (β = −0.012,
p = 2.21E-8). This SNP was not associated with lympho-
cyte count, but in our study was marginally significantly
associated with monocyte count (β = −0.018, p = 6.34E-
6), and has also been associated with monocyte count in
a linkage study (Maugeri et al., 2011) and two previous
GWA studies (Crosslin et al., 2013; Nalls et al., 2011). The
G allele of rs6740847 in this region has been linked to de-
creased ITGA4 expression levels in blood, which increases
the number of circulating monocytes and may indicate this
is a causal gene (Maugeri et al., 2011).
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TABLE 3
Familial Correlations (Confidence Interval) for MLR Monocyte and Lymphocyte Count Within the Healthy Population

MLR Monocyte Lymphocyte

Pairs R 95% CI R 95% CI R 95% CI

MZ twins 0.431 0.330–0.463 0.583 0.539–0.622 0.582 0.537–0.621
MZ male 0.340 0.329–0.344 0.515 0.432–0.585 0.576 0.487–0.646
MZ female 0.489 0.478–0.492 0.620 0.568–0.663 0.584 0.531–0.630
Male first-degree relatives 0.182 0.082–0.205 0.247 0.183–0.308 0.234 0.156–0.307
DZ male 0.244 0.121–0.248 0.170 −0.034–0.354 0.390 0.153–0.551
Brother-male twin 0.128 0.116–0.132 0.182 0.054–0.301 0.181 0.007–0.336
Brother–brother 0.242 0.231–0.246 0.346 0.082–0.545 0.341 0.007–0.580
Father–son 0.186 0.174–0.190 0.269 0.194–0.339 0.219 0.122–0.307
Female first-degree relatives 0.224 0.139–0.239 0.228 0.186–0.268 0.225 0.183–0.266
DZ female 0.279 0.267–0.282 0.385 0.154–0.279 0.286 0.181–0.382
Sister-female twin 0.169 0.157–0.173 0.285 0.156–0.390 0.175 0.008–0.265
Sister–sister 0.241 0.230–0.247 0.315 0.214–0.406 0.151 0.055–0.243
Mother–daughter 0.228 0.216–0.232 0.247 0.183–0.307 0.210 0.157–0.260
Female-male first degree relatives 0.225 0.152–0.235 0.285 0.237–0.331 0.203 0.162–0.244
DZ opposite sex 0.098 0.086–0.103 0.181 0.054–0.301 0.216 0.086–0.333
Brother-female twin 0.232 0.220–0.236 0.335 0.026–0.443 0.182 0.007–0.336
Sister-male twin 0.193 0.181–0.197 0.189 0.060–0.307 0.172 0.023–0.307
Sister–brother 0.200 0.188–0.204 0.227 0.080–0.352 0.312 0.178–0.419
Mother–son 0.217 0.205–0.221 0.240 0.168–0.308 0.198 0.115–0.276
Father–daughter 0.262 0.250–0.265 0.218 0.154–0.278 0.245 0.183–0.260
Parents (father–mother) 0.104 0.002–0.135 0.061 -0.013–0.135 0.166 0.089–0.241
Narrow-sense heritability(VA) 0.397 0.341–0.429 0.468 0.404–0.530 0.353 0.294–0.402
Broad-sense heritability(VA+VD) 0.583 0.446–0.720 0.576 0.461–0.653

Note: Correlations in bold type were obtained from submodels in which all matching correlations of the tested subgroup of family relations were constrained
to be equal.

FIGURE 1
(Colour online) Manhattan and QQ plot for MLR level with SNPs having a minor allele frequency above 0.01 (λ = 0.996503).

For monocyte count, the four top hits were rs13029501
at ITGA4, rs55929401 located at a region nearby LPAR1 at
9q31.3, rs391855 at IRF8, and rs9469532 at 6p21. The most
significant locus rs13029501 at 9q31 has been previously
associated with monocyte count in European and Japanese
populations (Ferreira et al., 2009; Kamatani et al., 2010;
Maugeri et al., 2011; Nalls et al., 2011). This SNP is 14.6kb
upstream of the SNP most significant associated MLR
level (rs3755021, the pair wise LD is 0.22). It is located
in a region 163kb downstream of lysophosphatidic acid
receptor 1 gene (LPAR1, also known as EDG2) and in-
creases LPAR1 expression, which is linked to an increased
number of monocytes (Maugeri et al., 2011). As indicated
previously, genetic variants nearby the ITGA4 region are

involved in the down regulation of ITGA4 expression,
which increases the number of monocytes circulating in
peripheral blood. The IRF8 gene has also been associated
before with monocyte count and has been identified as
multiple sclerosis susceptibility loci (De Jager et al., 2009).
Animal model studies showed that IRF8 as a transcription
factor plays an essential role in the regulation of lineage
commitment during monocyte differentiation (Kurotaki
et al., 2013; Terry et al., 2015; Yanez et al., 2015). The
top SNP at 6p21 rs9469532 is an intergenic genetic vari-
ant nearby ITPR3, LOC101929188, and LOC105375023.
The HLA-DRB1 region 1,043kb upstream of this SNP
has previously been associated with monocyte count
(Okada et al., 2011).
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TABLE 4
Significant SNP Associations for MLR

p (monocyte p (lymphocyte
rs number Chr BP MAF β (MLR) SE (MLR) p (MLR) count) count)

rs3755021 2 182349409 0.186439 − 0.0119024 0.00212769 2.21E-08 6.34E-6 .067
rs17224699 2 182348554 0.186524 − 0.0118630 0.00212596 2.40E-08 6.55E-6 .069
rs17290693 2 182350489 0.186354 − 0.0118593 0.00212614 2.43E-08 5.63E-6 .074
rs79965377 2 182351172 0.186354 − 0.0118593 0.00212614 2.43E-08 5.63E-6 .074
rs17290351 2 182345875 0.187712 − 0.0117619 0.00211863 2.83E-08 8.91E-6 .067
rs17224524 2 182346146 0.187712 − 0.0117619 0.00211863 2.83E-08 8.91E-6 .067
rs2305588 2 182347072 0.187712 − 0.0117619 0.00211863 2.83E-08 8.91E-6 .067
NA 2 182348141 0.187797 − 0.0117540 0.00212030 2.96E-08 1.05E-5 .064
rs12479308 2 182348342 0.187797 − 0.0117540 0.00212030 2.96E-08 1.06E-5 .064
rs2305590 2 182346544 0.187627 − 0.0117502 0.00212048 3.00E-08 9.12E-6 .068
rs2305589 2 182346937 0.187627 − 0.0117502 0.00212048 3.00E-08 9.12E-6 .068

FIGURE 2
(Colour online) Manhattan and QQ plot for monocyte count with SNPs having a minor allele frequency above 0.01 (λ = 1.0166495).

FIGURE 3
(Colour online) Manhattan and QQ plot for lymphocyte count with SNPs having a minor allele frequency above 0.01 (λ = 1.022341).

As published in Lin et al. (2016), there were no sig-
nificant hits when conducting the GWAS for lymphocyte
count. However, it is of interest to note that the locus on
chromosome 6p21, which was associated with the mono-
cyte level, was also marginally associated with MLR (for

rs9469532, β=−0.069, p= 7.69E-5) and lymphocyte count
(for rs114641912, β = −0.059, p = 6.19E-6). This region
harbors candidate genes like ITPR3 (Oishi et al., 2008) and
HLA-DRB1 (Farragher et al., 2008), which have been pre-
viously implicated in immunological diseases. In addition,
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TABLE 5
Known Blood Cell Count Loci and their Significance in Our GWAS

Phenotype Gene SNP Chr Location p p (mlr) p (mono) p (lymp)

Monocyte ITGA4 rs2124440 2 182328214 4.63E-10 2.21E-6 1.53E-7 0.838
ITGA4 rs1449263 2 182319301 6.71E-14 2.40E-6 2.84E-7 0.776
RPN1 rs2712381 3 128338600 1.94E-10 0.005 4.01E-4 0.620
c3orf27 rs9880192 3 128297569 1.35E-8 5.97E-7 1.39E-7 0.430
CCBP2 rs2228467 3 42906116 1.57E-10 0.769 0.770 0.804
CCBP2 rs2228468 3 42907112 5.15E-14 0.128 0.146 0.588
Intergenic rs2047076 5 76058509 1.64E-8 0.492 0.296 0.956
HLA-DRB1 rs3095254 6 31221668 8.27E-9 0.910 0.198 0.276
Intergenic rs1991866 8 130624105 4.58E-11 2.44E-6 2.08E-4 0.171
EDG2 rs10980800 9 113915905 1.1E-14 2.23E-5 1.28E-14 0.011
PTGR1 rs2273788 9 114348617 4.50E-10 0.579 0.024 0.159
LPAR1 rs7023923 9 113925534 8.9E-6 4.26E-4 3.81E-12 0.001
IRF8 rs424971 16 85946450 3.16E-10 2.1E-4 8.16E-6 0.736

Lymphocyte LOC101929772 rs2524079 6 31242174 1.85E-8 0.0870 0.056 3.02E-4
EPS15L1 rs11878602 19 16555153 3.42E-9 0.0735 0.857 0.107

Note: Chr = chromosome; p = p values from previous studies; p (mlr) = p values for MLR in current study; p (mono) = p values for monocyte count in current
study; p (lymp) = p values for lymphocyte count in current study.

TABLE 6
Overview of eQTL Results: The Association Between Genetic Variants of Interest (β) with Gene Expression Level, Uncorrected for Blood
Composition

GWA SNP of Top SNP in
interest eQTL analysis Gene LD r 2 β FDR

rs3755021 rs2305591 ITGA4 0.32 0.191 1.4e-05
rs13029501 rs2305591 ITGA4 0.03 0.203 1.34e-05
rs13029501 rs16867443 CERKL 0.43 0.132 1.34e-05
rs9469532 rs115378869 HLA-DPB1 0.04 0.106 3.07e-04
rs391855 rs1568391 IRF8 0.45 0.13 1.34e-05
rs55929401 rs7023923 LPAR1 0.24 0.42 1.34e-05

Note: LD r2: LD between GWAS SNP and top SNP in eQTL analysis. β = eQTL β of GWA SNP, FDR = eQTL FDR GWA SNP.

other loci with ‘potential association peaks’, meaning p val-
ues are low but do not reach the required significance level,
have been found to be associated with immune disease
such as ERAP1 at 5q15 (Alvarez-Navarro et al., 2015) and
CNTN5 at 11q22 (Thomas et al., 2014).

Table 5 shows the loci for monocyte and lymphocyte
count found in previous studies and their significance lev-
els forMLR and its subcomponents in the current study. For
some loci, p values were low, indicating a ‘potential’ for as-
sociation, even though they did not reach the required sig-
nificance level. For example, rs9880192, located in the inter-
genic region between c3orf27 and rs1991866, an intergenic
variant at 8q24.21, shows p values<10−6 formonocyte level
and <10−3 for MLR.

eQTL Results

Among the significant GWA loci for MLR and blood cell
counts, there were a number of associations between the
SNPs of interest and nearby gene expression (Table 6).
However, the SNPs identified in our GWAS have low LD (r2
< 0.8) with the top SNPs associated with gene expression,
which suggest theGWASSNPs are not part of the functional
eQTL locus. Furthermore, no eQTLswith trans-effectswere
identified. In conclusion, we did not detect any cis- or trans-
effects for the SNPs of interest.

GCTA and LD Score Regression

The results of the GCTA are shown in Table 7. From the
GCTA we found a narrow-sense heritability of 43.3% for
MLR, 54.1% for monocyte count, and 51.7% for lympho-
cyte count. The significant SNPs obtained in the GWAS
for MLR explained 0.6% of the variance in MLR, and
the significant SNPS obtained in the GWAS for mono-
cyte count explained 4.4% of the variance in monocyte
count. All known loci from published literature together
explained 1.3% of MLR variance, 2.4 % of monocyte count
variance and 0.3% of lymphocyte count variance. In LD
score regression, all λ values were larger than the LD score
regression intercept, and intercepts were close to 1, indi-
cating that the inflation of the p value distribution from the
GWAS results is caused by polygenetic effects, rather than
population stratification. The SNP heritability of MLR,
monocyte count, and lymphocyte count when applying
LD score regression was 13%, 17%, and 19%, respectively
(see Table 8).

In addition, we observed positive phenotypic corre-
lations between MLR and monocyte count (r = 0.550,
p < .0001) and between monocyte count and lymphocyte
count (r= 0.386, p< .0001), and a negative phenotypic cor-
relation between MLR and lymphocyte count (r = −0.494,
p < .0001). However, despite the presence of phenotypic
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TABLE 7
Narrow Sense Heritability (Standard Error) and the Proportion of Genetic Variance Explained by Known Significant SNPs (Standard
Error) According to GCTA Analyses for Monocyte Count Ratio and its Subcomponents

Proportion of genetic Proportion of genetic
Narrow-sense variance explained by variance explained by

Phenotype heritability (SE) p significant SNPs (SE) p known loci (SE) p

MLR 0.43358 (0.025) 3.0E-8 0.005828 (0.008) 9.6E-9 0.01329 (0.006) 4.1E-13
Monocyte 0.5408 (0.022) 2.0E-12 0.043714 (0.024) 8.5E-5 0.02342 (0.009) 5.9E-11
Lymphocyte 0.51737 (0.023) 4.9E-8 NA NA 0.00274 (0.002) 0.014

Note: p values in bold type indicate significant estimates.

TABLE 8
LD Score Regression Results for MLR, Monocyte Count and
Lymphocyte Count

MLR Monocyte Lymphocyte

Median of signed_
sumstats

− 9.23E-05 9.03E-06 − 6.58E-05

Mean of χ2 1.007 1.011 1.021
λ GC 1.002 1.017 1.018
h2 (se) 0.1302 (0.0733) 0.1702 (0.0854) 0.1912 (0.0895)
Intercept (se) 0.9915 (0.0063) 0.9912 (0.0073) 1.0011 (0.0069)

Note: Estimates for heritability and intercept with SE in brackets. All esti-
mates are significant (p > 0.05).

associations, no significant genetic correlations were de-
tected between any pair of variables.

Discussion
We presented a detailed examination of the causes of vari-
ance in MLR in the general population. Health status was,
as expected, an important determinant of MLR level: indi-
viduals with a compromised immune system, our so-called
unhealthy group, had on average a higher MLR than the
healthy participants. In the healthy population, smoking,
sex, and age and their interactions were important determi-
nants of variation inMLR and its subcomponents. Smoking
was associated with a higher MLR and this is in line with
the higher MLR in the individuals with a compromised im-
mune system in our study and the higher MLR seen in can-
cer patients. Genetic factors also were shown to play a role
inMLR variation in the general population. Heritability for
MLR was estimated at 40% and MLR level was associated
with a locus near ITGA4. Earlier studies have shown this
locus to be associated with monocyte levels. Heritability es-
timates were higher forMLR subcomponents (58% for both
lymphocyte and monocyte count) and, in contrast to MLR,
there was evidence for non-additive effects. Monocyte level
was also associated with ITGA4, and four more genes were
related to monocyte level in our analyses, replicating find-
ings in previous GWA studies. For lymphocyte level, no sig-
nificant genetic variants emerged.

From these results, it is clear that the genetic variants
associated with blood cell counts may also influence their
balance, as reflected in their ratios. In addition to the ge-
netic variants in ITGA4 genes, which were significantly as-
sociated with both MLR and monocyte count, there were

a number of loci that were significantly associated with
monocyte count that may also affected MLR level: the
loci near LPAR1, IRF8, and ITPR3 were marginally signif-
icant associated with MLR level. Also, a locus near c3orf27
was marginally significantly associated with both MLR and
monocyte count.We did not see evidence for pleiotropic ge-
netic variants associated with MLR and lymphocyte count.
To understand the role of the genetic variants inMLR varia-
tion, we investigated what is known about the role the iden-
tified genetic variants play in regulating gene expression.
However, we did not find any evidence for cis-effects or
trans-effects of these genetic variants.

Among three phenotypes, the narrow-sense heritability
h2 of lymphocyte (35.3% in the healthy population) was the
lowest, but its SNPheritabilitywas the highest (19.12% from
the LD score regression). These results suggest more com-
mon autosomal SNPs may be associated with lymphocyte
count. The LD score regression results showed that poly-
genetic effects, rather than confounding factors, explain
both ratio and count variance. Although there are signif-
icant overall correlations and an overlap in associated ge-
netic variants has been detected between MLR and mono-
cyte count, no significant genetic correlations were detected
among variables, suggesting that the polygenetic effects are
too small to be detected with the current sample size.

Overall, this series of studies provided more insight into
the causes of variation in MLR within the general popu-
lation. While the genetic pathways as well as non-genetic
causes of variance still need more clarification, it is clear
that these factors need to be taken into consideration when
studying the relationship between MLR and disease devel-
opment.
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