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Maximum likelihood estimation techniques are
widely used in twin and family studies, but soon

reach computational boundaries when applied to
highly complex models (e.g., models including gene-
by-environment interaction and gene–environment
correlation, item response theory measurement
models, repeated measures, longitudinal structures,
extended pedigrees). Markov Chain Monte Carlo
(MCMC) algorithms are very well suited to fit complex
models with hierarchically structured data. This article
introduces the key concepts of Bayesian inference and
MCMC parameter estimation and provides a number
of scripts describing relatively simple models to be
estimated by the freely obtainable BUGS software. In
addition, inference using BUGS is illustrated using a
data set on follicle-stimulating hormone and luteinizing
hormone levels with repeated measures. The exam-
ples provided can serve as stepping stones for more
complicated models, tailored to the specific needs of
the individual researcher.

Currently, the most popular method of fitting variance
components models to twin data is maximum likeli-
hood (ML) estimation within the framework of
structural equation modeling (SEM) with multivariate
normally distributed latent variables. Several software
packages can be used, such as Mx, MPlus, EQS, and
LISREL. Alternatively, the usual twin models can be
formulated as linear mixed effects models and fitted by
procedures in, for example, SPSS, Stata, SAS or S-Plus.
For continuous univariate and multivariate normal
data these methods are often theoretically satisfactory
and practically feasible. They are often also reasonable
methods even for nonnormal continuous variables.

A natural extension to discrete data are general-
ized linear mixed models (GLMM), which are
generalized linear models with continuous random
effects (McCulloch & Searle, 2001), or generalized
linear latent variable models (Skrondal & Rabe-
Hesketh, 2004). In genetics, discrete data such as
dichotomous or ordered categorical data are often
fitted by threshold models. Packages that allow the
estimation of generalized linear mixed models (e.g.,
the GLLAMM routine in STATA, Rabe-Hesketh &
Skrondal, 2005) and most SEM packages can handle
threshold models or other models where latent vari-
ables are assumed underlying observed dichotomous

or ordered categorical data. The likelihood for such
models contains integrals that cannot be evaluated in
a closed form (in contrast to the likelihood for linear
mixed models). For relatively simple models, it is fea-
sible to directly evaluate those integrals numerically.
However, some serious computational challenges
must be met when the models become more complex
and many latent variables or random effects are
assumed, as then the solution of the ML estimation
equations require the repeated numerical evaluation
of high-dimensional integrals.

For elaborate (hierarchically structured) data with
many latent variables, alternative methods have been
developed that use random draws of values from the
(high-dimensional) distributions involved to evaluate
the integrals, rather than direct evaluation of the inte-
grals. The main ingredients of these methods are the
Metropolis-Hastings algorithm and in particular its
special case, the Gibbs sampler. The Gibbs sampler has
its roots in image processing (Geman & Geman,
1984). The algorithms found their application espe-
cially in Bayesian models, although they have also been
used in classical frequentist models. From a purely
formal point of view, the main difference is that in
Bayesian models a distribution is specified not only for
the random latent variables, but also for parameters
which would be considered fixed in a frequentist
model. The methods are now often called Markov
Chain Monte Carlo (MCMC) methods or algorithms.

The MCMC methodology has been successively
applied for twin models with gene–environment
(G–E) correlation and G–E interaction (Eaves &
Erkanli, 2003), a multivariate threshold model for
polytomous data (van den Berg et al., 2006) and twin
models that include measurement models based on
item response theory (IRT; Eaves et al., 2005, 2004;
van den Berg et al., submitted). MCMC estimation
can be easily performed using the BUGS family of
software programs that is currently freely obtainable
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through the Internet. This article introduces some key
concepts behind MCMC estimation and provides the
genetic researcher with a number of BUGS scripts and
example data (see http://www.psy.vu.nl/mxbib/). The
scripts are for relatively simple models that are as con-
veniently estimated using ML, but they are merely given
for illustrative purposes. Scripts for more elaborate
models that are not conveniently estimated using ML
techniques can then be based on one of these simple
scripts. Finally, the practical aspects of parameter esti-
mation using BUGS are then illustrated with a model
for bivariate continuous data with repeated measures.

MCMC and Bayesian Statistical Inference
MCMC estimation is most often applied in a Bayesian
statistical framework. In order to understand model-
ing using BUGS software and be able to interpret the
output, it is necessary to have a basic understanding of
Bayesian statistical inference. To illustrate Bayesian
statistics, consider the difference between the frequen-
tist approach to inference, where one is often
interested in a p value, the conditional probability of
observing the data or more extreme data given a par-
ticular hypothesis is true, P(Y ≥ c | H0 is true), and the
Bayesian approach to inference, where one is inter-
ested to know the conditional probability that a
particular hypothesis is true given the observed data,
P(H1 is true | Y). Suppose that all that is known
beforehand is that the average IQ in the Netherlands
must be somewhere between 0 and 200, and that after
we gather IQ data from a random Dutch sample we
find an average IQ of 110; a Bayesian statistician
might then want to know, given the assumptions and
the data, the probability that the true average IQ in
the Netherlands is higher than 100. This might indeed
be a more interesting question than asking about the
probability of observing an average of 110 or more,
given that the population average is 100 (which of
course we do not know to be true or not). The condi-
tional probability of a hypothesis being true given the
data is termed the posterior probability. The posterior
probability density function is a description of the
probabilities of possible values for a parameter or set
of parameters given the observed data and forms the
basis for Bayesian statistical inference.

More formally, Bayesian inference is based on the
posterior density function of the model parameters,
P(η | Y), where η represents the model parameters and
Y the observed data. By Bayes’ rule (a simple conse-
quence of the identity P(A & B) = P(A | B) P(B) =
P(B | A) P(A)), the density P(η | Y) is proportional
(�) to the product of the likelihood of the data
given the model parameter P(Y | η) and the mar-
ginal density for η, P(η), that is,

P(η | Y) � P(Y | η) P(η).

The marginal density of η, P(η), is termed the prior
distribution (prior in the sense of before the data have
been taken into account), and must be specified by the

analyst, either based on prior research or substantive
knowledge. The model provides us with the likelihood
function P(Y | η), and hence the posterior density
function of η is determined up to a proportionality
constant (posterior in the sense of after the data have
been taken into account).

As already stated above, the posterior density is a
probabilistic description of possible values for η given
the observed data and forms the basis for statistical
inference. In Bayesian statistics, the posterior density
quantifies the belief in the values of the parameter. As
our point estimate for η, we may take the mode (anal-
ogous to the ML), the mean or the median of this
density. Further, the interval between the 2.5th and the
97.5th percentile of the posterior density provides the
so-called central 95% credibility region, which, given
sufficient data and certain conditions, is analogous to
a 95% confidence interval in the ML framework. For
more on Bayesian statistics, the reader is referred to
the introductions by Box and Tiao (1973) and Gelman
et al. (2004).

Sometimes it is easy to determine the posterior
density function analytically, but very often this is not
possible. One can then use computer simulation to draw
a sample of η values from the posterior density function.
The mean or median of the posterior density can then be
approximated by the mean or median of the sampled η
values, and approximate credibility regions can be deter-
mined in a similar way. This is termed Monte Carlo. In
practice, however, the joint posterior density function of
all model parameters is usually quite complicated, too
complicated to directly simulate and sample from.
Therefore, the complete set of parameters is split up into
a number of subsets in such a way that the conditional
posterior density of every subset given the data and all
other parameters has a tractable form and can be easily
sampled from. For instance, one might be interested in
the posterior density function P(η, ξ | Y), with η and ξ
indicating subsets of parameters, that by itself is not
easy to sample from directly. It may be possible,
however, to sample directly from the conditional distri-
butions P(η | ξ, Y) and P(ξ | η, Y).

This approach is known as Gibbs sampling
(Gelfand & Smith, 1990; Geman & Geman, 1984),
which is a special case of the general class of MCMC
algorithms. When, however, the conditional posterior
density of a subset of the parameters is not easy or
even impossible to sample from directly, other MCMC
algorithms can be used, where one samples from a
similar proposal distribution and uses a decision rule
to either accept or reject a sample so that the accepted
values can be regarded as randomly sampled values
from the target distribution (Robert & Casella, 2004).

An MCMC algorithm starts with some starting
values, either randomized or provided by the analyst.
Next a number of so-called ‘burn-in’ iterations are
required, which are necessary for an MCMC chain to
achieve stationarity (i.e., for approaching the joint
posterior or target distribution sufficiently closely). In

http://www.psy.vu.nl/mxbib/
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each iteration, a new value is sampled from each con-
ditional distribution based on the most recent values
for the other parameters in the model. Thus, using the
above Gibbs example, in iteration k we first sample
ηk ~ P(η | ξk-1, Y) and then ξk ~ P(ξ | ηk, Y). It can be
shown that after a number of iterations, MCMC algo-
rithms generally end up by sampling from the joint
posterior distribution. Then the subsequent draws can
be regarded as sampled from the joint posterior distri-
bution. The sampling scheme approaches the joint
posterior distribution only asymptotically though; it is
up to the analyst to decide when the MCMC sam-
plings approach the target distribution sufficiently
closely. Note that such a decision (i.e., a stopping rule)
is also used with most ML estimation algorithms,
although there the algorithms converge to a value,
whereas the MCMC algorithm in a Bayesian analysis
converges to a distribution. With an adequate number
of sampled values for each parameter, the average, the
mode or the median of these sampled parameter
values can be used as a point estimate.

Fitting Models With BUGS
BUGS refers to a range of general purpose software
packages for Bayesian MCMC estimation for different
platforms that can be freely downloaded from the
Internet (http://www.mrc-bsu.cam.ac.uk/bugs/). A
large class of models can be fitted by BUGS. The user
must specify the data and the model, including the
specification of the prior distribution for the unknown
model parameters. The software then automatically
sets up an MCMC sampling algorithm and the user
can then monitor the samples that are iteratively
drawn and use these for statistical inference. A BUGS
program that runs under Windows is WinBUGS.

A model can be specified using either a script or a
graphical representation (see Eaves & Erkanli, 2003,
for an example). Here we only use scripts. The way
one specifies the model and sets up the script is very
much like simulating data sets in R or S-Plus. Some
familiarity with linear mixed effects model notation is
helpful (see, for example, McCulloch & Searle, 2001).
The scripts with example data can be downloaded
from http://www.psy.vu.nl/mxbib/

The Univariate ACE Model

Let us first start with a simple univariate model for
continuous data, which uses the classical twin design
to estimate the additive genetic variance, shared envi-
ronmental variance and nonshared environmental
variance (colloquially termed the ACE model). Using
Greek letters for fixed effects and Latin letters for
random effects, we can parameterize the phenotype of
subject j in family i as a linear mixed effects model

Phenotype ij = µ + a1i + a2ij’ + ci + eij

where µ indicates the population mean, ci denotes the
random effect for being a member of family i, the addi-
tive genetic effect is modeled by the random effects a1i

and a2ij’, and eij denotes a random (environmental) effect
for individual j in family i. All random effects are
assumed independent unless their symbol and subscripts
are identical. The additive genetic effect is split into a1i

and a2ij’ in order to model the different genetic correla-
tions among monozygotic (MZ) and dizygotic (DZ)
twins (cf. Jinks & Fulker, 1970). The genetic variance is
the same for DZ and MZ twins, while the genetic
covariance in MZ twins is twice as large as in DZ twins.
We now incorporate the restriction VAR(a1) = VAR(a2)
= 1/2 σ2

a, so that the total additive genetic variance
becomes σ2

a as the random effects are independent in our
model. For DZ twins the index j’ differs (i.e., j’ = 1, 2),
whereas it is the same for MZ twins. The genetic covari-
ance of DZ twins is then the genetic between-family
variance, cov(a1i, a1i) = Var(a1) = 1/2 σ2

a, and the genetic
covariance for MZ twins is cov(a1i + a2ij’ , a1i + a2ij’)
= cov(a1i, a1i) + cov(a2ij’, a2ij’) = Var(a1) + Var(a2) = σ2

a,
as a2ij’ is the same for MZ twins. Similarly, Var(c) can be
interpreted as the between-families environmental vari-
ance and Var(e) can be interpreted as the within-family
environmental variance. We assume normal distributions
for all random effects such that a1 ~ N(0, 1/2 σ2

a),
a2 ~ N(0, 1/2 σ2

a), c ~ N(0, σ2
c), and e ~ N(0, σ2

e).
An alternative but equivalent description of the

ACE model for twin pairs follows the logic of simulat-
ing a data set. For each DZ twin pair i we sample a
normally distributed environmental effect that is the
same for both twins (‘shared’), ci ~ N(0, σ2

c). We then
sample for each pair a genetic effect that is the same
for both twins, a1i ~ N(0, 1/2 σ2

a). For each individual
twin j from DZ pair i, we sample a genetic effect that
is unique for each twin, a2ij’ ~ N(0, 1/2 σ2

a) and a
unique environmental effect, eij ~ N(0, σ2

e). Then the
phenotypic value for twin j from pair i can be written
as the sum of all these effects plus the fixed effect µ,
just as shown above.

Yet another way to describe the model is a hierar-
chical-centred representation. Such a formulation may
lead to more efficient MCMC sampling, as it can
reduce or sometimes effectively nullify the correlations
among parameters in the posterior distribution
(Gelfand et al., 1995). In mixed models the random
effects are usually specified as having a zero mean (see
above). In the centered specifications, the distribution
of random effects may contain means that are not
equal to zero. Hierarchical centering is fairly unam-
biguous in completely nested models, but not for
models that are not or only partially nested, as for
example the ACE model. For the ACE model we may
specify for MZ pairs

ci | µ~ N (µ, σ2
c), fi | µ, ci ~ N (ci, σ2

a),
phij | µ, ci, fi ~ N (fi, σ2

e)

or the first two specifications may be changed into

ai | µ ~ N (µ, σ2
a), fi | µ, ai ~ N (ai, σ2

c )

http://www.psy.vu.nl/mxbib/
http://www.mrc-bsu.cam.ac.uk/bugs/
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In both cases, fi may be interpreted as the result of the
combined effects of shared environment and genotype.
Note that the means of the distributions are now
replaced by parameters. The first specification may
improve convergence if σ2

c is relatively large, the latter
if σ2

a is relatively large. For DZ twin pairs, the only dif-
ference is that we need to model the genetic
correlation of .5. This is accomplished by adding an
extra level f2ij to the model:

ci | µ ~ N(µ, σ2
c), fi | µ, ci ~ N(ci, 1/2 σ2

a), 
f2ij | fi, µ, ci ~ N(fi, 1/2 σ2

a),
phij | µ, ci, fi, f2ij ~ N(f2ij, σ2

e)

As we are performing a Bayesian analysis we have
to specify prior distributions for the parameters. Let
us assume we have no prior information about the
estimates of interest. Therefore we extend the model
by adding relatively noninformative uniform distrib-
utions for the square-root of the variance
components (the standard deviations, following
Gelman et al., 2004), σe ~ U(0, 100), σc ~ U(0, 100),
σa ~ U(0, 100), and a locally ‘flat’ normal prior for
the population mean, µ ~ N(0, 100), so that the
joint posterior distribution is mainly determined by
the likelihood.

It is generally advised to try out different kinds of
priors to assess to what degree the estimation depends
on them. One can for instance use a uniform prior for
the mean, µ ~ U(–100, 100), or normal priors that are
flatter (larger variance) or more pointed (smaller vari-
ance). If the results are highly sensitive to the priors,
this is an indication that the data provide relatively
little information about the parameters.

The ADE Model

When we want to specify a model with both additive
(A) and nonadditive (D) genetic effects, apart from
nonshared environmental effects (E), we have for
MZ twins ai ~ N(µ, σ2

a), fi | ai ~ N( ai, σ2
d), phij | ai ,

fi ~ N(fi , σ2
e). In order to model a correlation of .25 in

the DZ twins for the nonadditive (dominance) genetic
effects we may split up the D component, σ2

d, into two
parts, 1/4 σ2

d and 3/4 σ2
d as follows:

ai ~ N(µ, 1/2 σ2
a), fi | ai ~ N( ai, 1/4 σ2

d),
f1ij | ai, fi ~ N( fi, 1/2 σ2

a),
f2ij | ai, fi , f1ij ~ N( f1ij, 3/4 σ2

d),
phij | ai, fi, f1ij, f2ij ~ N( f2ij , σ2

e)

For some estimation problems, an alternative representa-
tion of the model may be more convenient to speed up
the sampling by reducing autocorrelation in the MCMC
chains. High autocorrelation means that a particular
draw from the posterior distribution is highly correlated
with the previous draw. As a result, the sampler moves
only very slowly through the entire posterior distribu-
tion, requiring many iterations to get reliable
information about the posterior distribution. For the
ADE model with continuous normal data it is more effi-

cient to model the sums and differences for each twin
pair i instead of modeling the observed phenotypic
values (Robert & Casella, 2004, p. 396; cf. Boomsma
& Molenaar, 1987): Si = Phenotype i1 + Phenotype i2

and Di = Phenotype i1 – Phenotype i 2. The covariance
of the transformed phenotypes is cov(P1 + P2, P1 –
P2) = var (P1) – cov(P1, P2) + cov(P1, P2) – var(P2)
= 0, as var(P1) = var(P2). The zero covariance is the
main reason for using this transformation, as this indi-
rectly reduces the autocorrelation. The means for
these new phenotypes are µS = 2µ, µD = 0 and their
expected variances become

Var(Smz) = 4 σ2
a + 4 σ2

d + 2 σ2
e

Var(Dmz) = 2 σ2
e

Var(Sdz) = 3 σ2
a + 2.5 σ2

d + 2 σ2
e

Var(Ddz) = σ2
a + 1.5 σ2

d + 2 σ2
e

First, the data set should be transformed in order to
have for each family the sum and the difference of the
phenotypes (be careful not to take the absolute differ-
ences). We next set up the model as follows. For DZ
twin pairs, we have Sdzi ~ N(2µ, 3 σ2

a + 2.5 σ2
d + 2 σ2

e)
and Ddzi ~ N(0, σ2

a + 1.5 σ2
d + 2 σ2

e) and for MZ twin
pairs we have Smzi ~ N(2µ, 4 σ2

a + 4 σ2
d + 2 σ2

e) and
Dmzi ~ N(0, 2 σ2

e).
For incomplete pairs, for which only one twin is

available, or for unrelated singletons, we can only
model the distribution of the original phenotypes as
Phenotypei1 ~ N(µ, σ2

a + σ2
d + σ2

e ). A more general
approach to model reparameterization to reduce the
correlations among parameters in the posterior distri-
bution is presented in Appendix A.

Threshold Models

The threshold model (Crittenden, 1961; Falconer,
1965) is often applied in order to estimate the heri-
tability of continuous but categorically measured traits.
In this model, an underlying continuous trait is defined,
usually termed liability, with a threshold value above
which the person is diagnosed. The threshold model is
appropriate if, for example, it is reasonable to assume
that many independent factors each have a relatively
small effect on the liability. Under the central limit
theorem, the resulting liability will then have a normal
distribution. The above ACE and ADE models must
then be extended by introducing an additional level,
which links the normally distributed latent liability to
an observed dichotomous trait through a step function.
For DZ twins and an ACE model we have

ci ~ N(µ, σ2
c), fi | ci ~ N(ci, 1/2 σ2

a), f2ij ~ N(fi ,
1/2 σ2

a), liability ij | ci , fi , f2ij ~ N(f2ij, σ2
e)

PhenotypeDZij = 1 if liability ij = > 0{ 0 otherwise

Note that in this parameterization, we fix the thresh-
old to be zero and estimate the average liability in the
population. This is equivalent to a parameterization
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where we fix the average liability to zero and estimate
a threshold. Here we also need the additional con-
straint that the total variance of the unobserved
liability is somehow fixed, for example by constrain-
ing σ2

e = 1. For an example of a multivariate model for
polytomous data, see van den Berg et al. (2006).

An Application

For an illustration of how statistical inferences can be
made using BUGS we used data on hormone levels
from the Netherlands Twin Registry (Boomsma et al.,
2002). Follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) levels were based on
morning urine samples from 9-year-old MZ (37 pairs)
and DZ twins (44 pairs) collected twice, 2 days apart.
Many LH levels (46% of the cases) could not be
detected (< .1 U/L) and these censored data were
included into the analysis by assigning these a value of
.05 U/L. Next, LH and FSH levels in units (U) per
mmol Creatinine (Cr) showed positively skewed distri-
butions and were therefore transformed by taking the
natural logarithm before statistical analysis.

Prior to applying genetic models, it is wise to first
get an idea of the twin correlations. This can be
accomplished by applying a simple model Phenotypeij

= fi + eij such that fi ~ N(µ, σ2
between) and Phenotypeij ~

N(fi, σ2
within), to obtain an estimate for the twin correla-

tion, namely r = σ2
between / (σ2

between + σ2
within) for a certain

phenotype. This can be done for MZ and DZ twins
separately. For multivariate datasets, see van den Berg
et al. (2006). This approach can be applied where one
wishes to estimate MZ and DZ correlations on latent
traits, if for example the latent trait is linked to a
number of dichotomous or polychotomous items such
as in an IRT model (van den Berg et al., submitted).

In this case, DZ correlations were about half the
MZ correlations (not shown), so we specified a bivari-
ate AE model in order to estimate genetic and
environmental correlations between FSH and LH
levels. For the jth individual of the ith MZ pair we
modeled the hormone levels as resulting from genetic
and environmental influences that are the same for LH
and FSH levels (common), and genetic and environ-
mental influences that are hormone specific:

A_commoni ~ N (0, σ2
ac)

A_FSHi ~ N (A_commoni , σ2
aFSH)

A_LHi ~ N (A_commoni, σ2
aLH)

E_commonij ~ N (0, σ2
ec)

FSHij ~ N (µFSH + A_FSHi + E_commonij, σ2
eFSH)

LHij ~ N (µLH + A_LHi + E_commonij, σ2
eLH)

Moreover, since we have two measures for each
hormone level, we specify that we have two random
samples, k = (1, 2), from each individual’s ‘true’ level
as follows:

FSH_measureijk ~ N(FSH ij , σ2
errorFSH)

LH_measureijk ~ N(LH ij , σ2
errorLH)

with σ2
errorFSH and σ2

errorLH representing measurement vari-
ance. The resulting variance decomposition can now
be based on the estimated ‘true’ FSH and LH levels,
thereby excluding unsystematic measurement error.
Consequently, the nonshared environmental variance
component will be estimated to be smaller than if the
analysis were based on only one urine sample.

The model for the hormone measurements in DZ
twin pair i is as follows, where the additive genetic
components are again split into between and within
family components:

Abetween_commoni ~ N (0, 1/2 σ2
ac)

Abetween_LHi ~ N (0, 1/2 σ2
aLH)

Abetween_FSHi ~ N (0, 1/2 σ2
aFSH)

A_commonij ~ N (Abetween_commoni , 1/2 σ2
ac)

A_LHij ~ N (Abetween_LHi , 1/2 σ2
aLH)

A_FSHij ~ N (Abetween_FSHi , 1/2 σ2
aFSH)

E_commonij ~ N (0, σ2
ec)

LHij ~ N (µLH + A_LHij + A_commonij + E_commonij,
σ2

eLH)

FSHij ~ N (µFSH + A_FSHij + A_commonij

+ E_commonij, σ2
eFSH)

LH_measureijk ~ N (LHij, σ2
errorLH)

FSH_measureijk ~ N (FSHij , σ2
errorFSH)

The total variance for each of the hormone level mea-
surements can now be decomposed into additive
genetic variance shared with the other hormone level,
hormone-specific additive genetic variance, environ-
mental variance shared with the other hormone level,
hormone specific environmental variance, and vari-
ance due to random measurement error.

σ22
LH = σ22

ac + σ22
aLH + σ22

ec + σ22
eLH + σ22

errorLH

σ22
FSH = σ22

ac + σ22
aFSH + σ22

ec + σ22
eFSH + σ22

errorFSH

When interested in the genetic background of the
‘true’ individual hormone levels (i.e., LHij and FSHij in
the model), we may ignore the measurement variance
so that the expected genetic correlation on the basis of
this model is rg = σ22

ac / [√(σ2
ac + σ22

aLH) √(σ2
ac + σ22

aFSH)].
Similarly, the expected correlation between the envi-
ronmental influences other than random measurement
error is re = σ22

ec / [√(σ22
ec + σ22

eLH) √(σ22
ec + σ22

eFSH)]. The
expected heritability coefficients for expected or ‘true’
LH and FSH level are

h2
LH = (σ22

ac + σ22
aLH) / (σ22

ac + σ22
aLH + σ22

ec + σ22
eLH), and

h2
FSH = (σ22

ac + σ22
aFSH) / (σ22

ac + σ22
aFSH + σ22

ec + σ22
eFSH)

The model was implemented in WinBUGS using
locally uniform and independent priors for the square-
roots of the variance component parameters and
normal (but locally uniform, thus uninformative)
priors for the average hormone levels (see
http://www.psy.vu.nl/mxbib/ for the script). After the
data were loaded, two independent Markov chains

http://www.psy.vu.nl/mxbib/forthescript
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were initialized using randomized starting values. By
putting the equations of interest (e.g., genetic and
environmental correlations) already in the script, one
is able to directly monitor these ‘nodes’ (as BUGS calls
parameters or functions of them) while sampling from
the joint posterior distribution. The randomized start-
ing values produced rather dissimilar initial values for
the environmental correlation (re). However, as can be
seen from Figure 1, over the first few draws the values
for the independent draws draw nearer. After that, the
chains seem to converge to the same sampling distrib-
ution: lines are continuously crossing each other and
show more or less the same variance. In order to be
sure that the chains have approached the target poste-
rior distribution, one needs to assess whether the other
parameters are converging too. Note that the chains
for the environmental correlation look a bit odd: at
times the chains seem to get stuck close to zero. This
behavior is often seen with estimates of variance com-
ponents that are zero or close to zero. In addition, the
chains show high autocorrelation.

Apart from whether independent Markov chains
with different sets of starting values seem to converge
by visual inspection, there are other ways to assess
sufficient convergence. For example, BUGS can plot
running quantiles. Figure 2 shows that the two chains
show largely the same distribution (left panel) and this
is also indicated by the Gelman-Rubin statistic (G-R;
right panel). A G-R statistic close to 1 indicates that
the chains are sampling from the same distribution,
which might be the target distribution.

When we decide that the sampling chains
approach the joint posterior distribution sufficiently
closely, we let BUGS run a number of extra iterations
to sample from in order to obtain point estimates for
the parameters of interest. In this case, the relatively
high autocorrelation for the environmental correlation
forces us to use a rather large number of iterations.
Here we first sampled from 5000 iterations, so that

we have (number of chains * number of iterations
equals) 10,000 sampled values for each parameter.
Figure 3 shows kernel density plots (smoothed his-
tograms) for the genetic and environmental
correlations indicating the shape of their marginal
posterior distributions. The distribution of the genetic
correlation looks rather smooth and suggests a nice
approximation to the true posterior density. The dis-
tribution for the environmental correlation looks
somewhat less pretty and rather bumpy, probably due

Table 1

Means, Standard Deviations and Quantiles of the Posterior Distributions for Several Model Parameters

BUGS name Model name Mean SD 2.5th percentile 50th percentile 97.5th percentile

mu1 µLH –4.80 0.07 –4.95 –4.80 –4.66
mu2 µFSH –1.24 0.07 –1.38 –1.24 –1.10
re re 0.06 0.05 0.00 0.05 0.17
rg rg 0.48 0.07 0.34 0.48 0.62
var_A1 σ2

aLH 0.31 0.08 0.18 0.30 0.49
var_A2 σ2

aFSH 0.30 0.07 0.18 0.29 0.45
var_AC σ2

ac 0.28 0.06 0.18 0.27 0.42
var_E σ2

ec 0.01 0.01 0.00 0.00 0.02
var_E1 σ2

eLH 0.09 0.04 0.03 0.08 0.17
var_E2 σ2

eFSH 0.09 0.03 0.04 0.08 0.16
var_rep1 σ2

errorLH 0.22 0.02 0.18 0.22 0.27
var_rep2 σ2

errorFSH 0.10 0.01 0.08 0.09 0.12

Note: Results based on two independent Markov chains, each consisting of 8000 iterations after a burn-in phase of 1000 iterations.
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Figure 1
Sampled values up until the 1110th iteration for the environmental 
correlation (first panel), the genetic correlation (second panel), and the
LH-specific additive genetic variance (third panel). 
Note: The two differently coloured lines represent independent Markov chains.
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to high autocorrelation. One could run more itera-
tions, trying to make up for this high autocorrelation.
Table 1 presents means and quantiles of the marginal
posterior distributions for several parameters, based
on 16,000 iterations. On the basis of this analysis, one
can conclude that the heritability of ‘true’ (perfectly
measured) FSH level is around 85% and around 86%
for LH level. The genetic correlation is estimated at
.48 (95% central credibility region: .34–.62), and the
environmental correlation is negligible. Since we used
relatively noninformative priors, these estimates
would not differ much from ML estimates and confi-
dence intervals.

If one wishes to know whether a model without
‘common’ environmental influences on FSH and LH
levels would fit the data as well (common in the sense
that these influences affect both LH and FSH levels)
— in other words, a model with zero environmental
correlation — one could request BUGS to print the
Deviance Information Criterion (DIC, Spiegelhalter et
al., 2002), a parsimony-based fit index, that could be
compared to the DIC index for a model where the
common environmental variance is fixed to zero (i.e.,
delete all references to this component in the script).
The model with the lowest DIC value is then the to-
be-preferred model in terms of parsimony. In this case,
the DIC index for the original model, including
common environmental variance, was 842.19, while
the DIC index for the restricted model, postulating no
environmental variance common to both phenotypes,
was 839.00. Thus, we may conclude that there is no

correlation between the environmental effects that
influence LH and FSH levels.

Note that this model assumes that the daily fluctu-
ations in measurements are not correlated across the
two hormones, that is, that daily fluctuations in LH
and FSH levels result from independent processes, and
this is not necessarily the case. A full analysis should
take this possibility into account, as well as dealing
appropriately with the data censoring (e.g., by defin-
ing a threshold) and sex differences in means and
variance components. Model fitting can be accom-
plished by either making use of the DIC index, or by
using the 95% central credibility regions. If a hypothe-
sized value, say zero for the difference between male
and female hormone levels, is not included in the 95%
central credibility region, the hypothesis that males
and females show the same average level can be
rejected. Note that the latter method cannot be
applied with variance components since these are con-
strained to be zero or larger through the priors, so
that the central 95% credibility interval will never
include zero.

Conclusion
Using a set of simple examples, we have attempted to
illustrate the use of BUGS in estimating the most
common genetic twin models. Once accustomed to the
language of mixed effects models, these simple models
can easily be extended to more complex models, includ-
ing covariates, repeated measures, a longitudinal
structure, measurement models, extended family data,
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Figure 2
Convergence indicators: plot of running 2.5th, 50th and 97.5th quantiles (left panel) and the Gelman-Rubin statistic (right panel) for the genetic correlation. 
Note: The two different lines represent independent Markov chains.
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Figure 3
Kernel density plots based on 10,000 sampled values from the posterior distributions of the genetic correlation (left panel) and the environmental
correlation (right panel), based on two independent Markov chains with a burn-in phase of 1000 iterations.
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sex limitation, mixtures, latent classes, and much more.
It is with the more complex models that MCMC esti-
mation can prove its value in comparison with ML
estimation techniques, as ML estimation time increases
exponentially with increasingly complex dependency
structures. In contrast, MCMC estimation time
increases at a much slower rate as a function of the
number of levels in the model. The sample of
WinBUGS scripts and example data at
http://www.psy.vu.nl/mxbib/ can function as a stepping
stone for more complex models tailored to the specific
needs of the genetic researcher. In addition, the freely
obtainable BUGS software is accompanied by a large
set of example scripts for many other, nongenetic types
of data models that may serve as sources of inspiration.

MCMC estimation has been observed only sporad-
ically in twin studies (but see Eaves & Erkanli, 2003;
Eaves et al., 2005, 2004; van den Berg et al., submit-
ted, 2006). MCMC algorithms allow the fitting of
highly complex models easily and swiftly, particularly
models with highly complex dependency structures,
such as latent growth models for repeated measures
on traits that are measured using a limited set of items
(see, for example, Burton et al., 2005; van den Berg et
al., submitted). Future work should, however, focus
on alternative parameterizations for specific types of
models to speed up MCMC estimation and on the
assessment of model fit.
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Appendix A

High autocorrelation in the MCMC chains can sometimes in part be accounted for by the high correlation in the
data. This can be remedied by not modeling observed twin phenotypes, that are correlated in twin pairs, but
some functions of these phenotypes that, even though they convey the same information, are no longer corre-
lated. One solution is to use the sum and the difference of the phenotypes from a twin pair: given the usual
assumptions of normal distributions and homoscedasticity, the expected sum of two twins is independent of
their difference.

The transformation to sums and differences is a case of an (unscaled) Helmert transformation. The same result,
uncorrelated data (i.e., a diagonal covariance matrix), can be obtained by applying the Helmert transformation to
families with an arbitrary number of genetically nonidentical regular offspring (DZ twins and/or other regular off-
spring). The Helmert matrix H of order n × n is defined in such a way that the sum of elements in the first row
equals √

__
n , the elements in the other rows sum to zero, and HH’ = I (since H is a square matrix H’ is the inverse of

H, hence also H’H = I). For example, for n = 3, the three rows are (1, 1, 1) / √
__
l1, (1, –1, 0) / √

__
l2 , (1, 1, –2) / √

__
l3 ,

where li is the sum of the squared numbers in row i.
The rows of H contain the Helmert transformations (or contrasts), which are defined in many textbooks on

analysis of variance. The values of the elements in the matrix depend only on n. To show why the Helmert trans-
formations achieve zero covariances, we write σ2

1 = σ2
a, σ2

2 = σ2
d, σ2

3 = σ2
c , σ2

4 = σ2
e and corresponding constants g1 = 1/2,

g2 = 1/4, g3 = 1, g4 = 0. Let 1n be a vector with all n elements equal to 1 and J = 11’. Then the expected covariance
matrix V for a family with n offspring under the ADCE model can be written as V = Σi [gi σ2

i J + (1 – gi) σ2
i I]. If

for the original phenotypes y ~ N (µ, V), then the transformation z = Hy gives µz = Hµ and Vz = HVH’. Now
Vz = H Σi [gi σ2

i J + (1 – gi) σ2
i I] H’ = Σi [gi σ2

i HJH’ + (1 – gi) σ2
i I]. Because J = 11’, HJH’ = H11’H’. But H1 is a

vector whose elements are equal to the row sums of H. Therefore the first element is √
__
n and all other elements

are zero. Thus HJH’ is a matrix with its leading element equal to n and all other elements zero. Therefore the
covariance matrix Vz becomes a sum of diagonal matrices and hence is diagonal. This transformation is espe-
cially attractive because H and its inverse are simple and do not depend on unknown parameters.

If a family contains both an MZ pair and other offspring, the covariance matrix cannot be written in the
simple form Σi [gi σ2

i J + (1 – gi) σ2
i I] as the covariances among the offspring are not all identical. Although the

covariance matrix associated with a particular σ2
i may still be diagonalized independently of unknown parame-

ters, this seems in general not to be possible for all matrices simultaneously. However, depending on the model
and data it may still be useful to apply the Helmert transformation. Alternatively, preliminary estimates can be
used to select a different kind of transformation.

For this type of transformation, transforming y and simultaneously redefining the covariance matrix does not
change the likelihood. The parameters of the normal likelihood are contained in the expressions (y – µ)’V-1(y – µ)
and the determinant | V |. For family data, these expressions reduce to similar expressions for each family. That
is, for k families

(y – µ)’ V-1 (y – µ) = Σk (yk – µk)’ Vk
-1 (yk – µk) and | V | = �k | Vk |

Now apply the Helmert transformation to the data for each family, which may contain a different number of off-
spring. Dropping the subscript k, we get for each family z = Hy, with µz = Hµ, Vz = HVH’ and | Vz | = | H | | V | | H’ |.
Because H’ is the inverse of H, | H | = 1 / | H’ | and therefore | Vz | = | V |. For the other expression we get

(z – Hµ)’ (HVH’)-1 (z – Hµ) = (z – Hµ)’HV-1H’(z – Hµ) = (y – µ)’V-1(y – µ)

So this transformation leaves the likelihood unchanged.


