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A genome-wide association study of neighborhood characteristics and family income finds heritability,
identifies single nucleotide polymorphisms and shows genetic correlates of these traits with numerous other
health and cognitive traits. Different mechanisms behind genetic correlations imply different interpretations
of association and causality.
Hairless dogs have imperfect teeth;

long-haired and coarse-haired

animals are apt to have, as is

asserted, long or many horns;

pigeons with feathered feet have

skin between their outer toes;

pigeons with short beaks have

small feet, and those with long

beaks large feet. Hence if man

goes on selecting, and thus

augmenting any peculiarity, he

will almost certainly modify

unintentionally other parts of the

structure, owing to the mysterious

laws of correlation

— Charles Darwin, The Origin of

Species, 1859

There hardly is a human trait for which a

twin study has not been carried out [1] and

the same now holds true for genome-wide

association studies (GWAS). With the

advent of the genomic era and affordable

dense genotyping, GWAS results in

humans are available for ‘OMIC’ traits and

biomarkers (telomere length, gene

expression, metabolites), brain structure

and function, visible characteristics,

numerous somatic and mental diseases

and disorders, and traits like personality,

temperament, entrepreneurship,

educational attainment and subjective

wellbeing. In this endeavor the UK

Biobank plays a highly prominent role.

The UK Biobank is a large repository of

over 500,000 participants with survey and

physical measures and blood, urine and

saliva samples who are followed through

health-related records (http://www.

ukbiobank.ac.uk/). In this issue of Current

Biology, Hill et al. [2] report a genome-

wide association analysis of social

deprivation and household income, which
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both index socio-economic status, in

112,151 participants from UK Biobank.

The study represents a milestone as

it is the first genome-wide analysis of a

cluster of variables that are not measured

at the level of the individual, but at a

family or neighborhood level. The study

looked at 7 million single nucleotide

polymorphisms (SNPs), household

income and the Townsend deprivation

index (a neighborhood level variable,

which reflects the deprecation of

a neighborhood as a function of

unemployment, car and home ownership,

and household overcrowding). Based

on all SNPs, the heritability for social

deprivation was estimated at 21% and for

household income at 11%; thus, both

variables were found to be heritable. We

note that while the estimated heritabilities

are not especially high, this does not have

a direct bearing on the question of

whether a trait is directly or indirectly

influenced by the genome. Traits such as

gene expression levels or epigenetic

regulation of the genome are heritable

traits [3,4] and their heritability often does

not exceed the heritability reported for

socio-economic status in this study.

Partitioned heritability analyses

revealed that the genetic effects on socio-

economic status are abundantly located

in evolutionarily conserved regions of

the genome, and in the case of social

deprivation in genomic regions likely to

affect the central nervous system. As the

authors clearly convey, there is no reason

to believe the relationship between

genotype and socio-economic status

reflects a direct effect of the genome on

the phenotype. Rather it is likely that

heritable traits mediate the relationship

between genome and outcome. This

implies that the SNPs significantly
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associated with the two measures of

socio-economic status are not ‘SNPs for

socio-economic status’. Rather, it is likely

that their effects are mediated through

multiple other heritable phenotypes.

Beyond genome-wide evidence

of genetic effects, which establishes

genomic influence but does not pinpoint

any specific genomic locations or genes,

Hill et al. [2] obtain evidence that two loci

associate with socio-economic status at a

significance level which is genome-wide

significant.

Next, in a series of bivariate genetic

analyses, which make use of publically

available results from GWAS meta-

analyses for other traits, Hill et al. [2]

estimate negative genetic correlations

between socio-economic status and

disease (obesity, type 2 diabetes),

mental health (major depressive disorder,

ADHD), addictive behaviors and

personality (neuroticism). They estimate

positive genetic correlations between

socio-economic status and (childhood) IQ

and longevity. These correlations offer

some suggestion of the mediating

phenotypes that give rise to the observed

heritability of measures of social

economic status.

Given that the estimation of genetic

correlations no longer requires two traits

to be measured within a single sample

[5,6], genetic correlations between all

traits subjected to genome-wide analyses

can be estimated. Proliferation of

genetic correlations suggests a careful

consideration of the etiology of genetic

correlations is in order. We consider the

tantalizing possibility of leveraging the

genome to distinguish causation from

correlation and the implications of the

detection of causal relations and genetic

correlations between different traits. Hill
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et al., for example, correlate the

Townsend index (an interpersonal

measures reflecting one’s relative

position in society) with body mass index

(a personal measure) and HOMA-B and

HOMA-IR (biomarkers related to b-cell

function and insulin resistance). We

discuss possibilities and pitfalls which

may arise when correlating measures

from the molecular to the individual and

societal levels.

When the influence of the genome

on complex outcomes such as socio-

economic status reflects genetic effects

of other heritable traits, one prediction

that follows is that there must be a genetic

correlation between these other traits

and socio-economic status. As evident

from Darwin’s quote from The Origin of

Species, the causes and consequences

of genetic correlation have always been of

interest to geneticists. The concept of

genetic correlation (re)appeared in the

genetics literature in 1943, when Hazel

considered pleiotropic effects of genes,

linkage or non-random mating as causes

for genetic correlations between traits,

with the last two effects expected to

be less important than pleiotropy [7].

Pleiotropy is defined as the phenomenon

in which a single locus affects two ormore

distinct phenotypic traits [8]. Pleiotropic

effects of a gene, or of sets of genes,

can be investigated by application of

multivariate methods, which originally

were mainly limited to plant and animal

genetics [9]. Some of the earliest

applications of multivariate genetic

techniques to human data, which were

seminal for twin studies, date back to the

1960s [10]. These methods relied on data

from close relatives and twin pairs rather

than on measured SNP effects.

Pleiotropy is not the only process that

leads to genetic correlations. Others

include statistical or methodological

artifacts, a shared etiology between

variables and direct causal relationships

between traits, for example, a causal

effect of body mass index on social

deprivation, or a causal effect of social

deprivation on brain development. These

last two examples are of immediate and

broad interest to the research community

and policymakers.

Substantial work on disentangling

causes of (genetic) correlation has been

done in the field of psychiatry and

psychiatric genetics. Neale and Kendler
[11] proposed a taxonomy of causes of

co-morbidity and their work generalizes

as a framework for causes of genetic

correlation. They distinguish causes of

comorbidity as due to chance, population

stratification, non-random sampling,

shared genetic or environmental factors,

and causal processes. Hill et al. show

that the UK Biobank is a reasonable

representation of the UK population by

comparison to national census data.

If there is evidence for non-random

sampling, non-participation sometimes

can be predicted from polygenic risk

scores [12,13]. Recent techniques further

accurately distinguish population

stratification from true genetic signal [14].

In genetics the need to stringently control

for multiple testing is generally adhered

to, and replication of findings is broadly

viewed as a prerequisite for publication.

Hill et al. [2], for example, replicate their

results in the Social Science Genetic

Association Consortium and in the

Scottish Family Health Study. These

safeguards reduce the amount of

chance findings. Other causes of genetic

correlation include overlap in trait

definitions, or alternative trait models. As

illustrated by Neale and Kendler [11], the

definitions of anxiety and depression

share symptoms, ensuring any genetic

effects on the shared symptoms is likely

to induce a genetic correlation. A shared

definition can extend beyond psychiatric

symptoms; e.g. when a disease diagnosis

is based on a biomarker crossing a

threshold, this will induce a correlation

between disease and biomarker. A

genetic correlation will arise even if the

biomarker merely serves as a convenient

disease indicator and can be elevated in

both diseased and non-diseased

subjects.

An epidemiologically relevant cause

of genetic correlation is direct causation.

If a heritable trait causally influences

another trait this must lead to a genetic

correlation between them [15]. Recently

the discussion of causal relations

between molecular measures (gene

transcripts, metabolites, epigenetic

markers) and complex traits received

abundant attention [16–18]. Mendelian

Randomization can distinguish, given

some assumptions, causation from

correlation [19,20]. However, Mendelian

Randomization studies of socio-

economic status, which is influenced by
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many SNPs of small effect, requires

large sample sizes. Traits with strong

SNP effects (e.g. metabolites, gene

transcripts, molecular and cellular

measures) can be tested as causal traits

in much smaller samples. The field of

complex trait genetics should strive to

mitigate this asymmetry. Doing so would

allow GWAS results to function as a

common, and unbiased, unit of analysis

throughout biology, neuroscience,

psychology and, as evident from the work

of Hill et al. [2], also sociology and

economy.

This conclusion brings us to a

consideration of the ‘levels of explanation’

in the study of complex traits and

diseases. Trait and disease etiology are

studied at the societal level in sociology

and economics, at the level of the

group or individual in psychology, at

individual levels in behavioral andmedical

neuroscience, biology and medicine,

at the cellular level in biology and

neuroscience, and at the molecular level

in bio-chemistry, neuroscience, and

physics. At all these levels causal

relations between variables may exist,

and in many cases causal processes

could span different levels of explanation

and such causal effects may be

reciprocal. Contemporary complex trait

genetics is quickly becoming a potent

facilitator of interdisciplinary study, as

exemplified in the Hill et al. study, its

domain of application ranging beyond the

individual. The success of this enterprise

entirely depends on broad dissemination

of the full summary statistics of GWA

studies.

While post-hoc analysis of genetic

correlation and causation based on

summary statistics obtained from GWAS

are valuable, the work by Hill et al. alludes

to potential gains that can be made when

raw genotype data are available. It is

evident that people vary in terms of socio-

economic status within and between

neighborhoods. Hill et al. [2] applied

genome-wide analysis to socio-economic

status differences between individuals

(household income) and between

neighborhoods (Townsend deprivation

index). An exciting next step that

we envision is to subject individual

differences within neighborhoods

(relative to the neighborhood mean) and

differences between neighborhoods to

genome-wide analyses in a single model,
R1177–R1196, November 21, 2016 R1195
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testing whether the same genes influence

differences in socio-economic status

within and between neighborhoods.

Within- and between-neighborhood

genetic effects on socio-economic

status might each have unique genetic

correlates. To study the between-

neighborhood genetic effects on socio-

economic status, concurrently with the

within-neighborhood genetic effect on

socio-economic status, we conceptualize

a neighborhood level polymorphism (the

allele count for the reference allele for all

subjects in a given neighborhood), and

the within-neighborhood genetic effects

as the individual deviance from this

neighborhood-level polymorphism.

Variables subjected to genetic analysis

can frequently be viewed as nested in

neighborhood, subject, tissue or time.

Broad access to large collections of

genotyped and densely phenotyped

subjects could help resolve genetic

correlations and causation at multiple

explanatory levels.
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