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Abstract Prior searches for genetic variants (GVs) im-

plicated in initiation of cannabis use have been limited to

common single nucleotide polymorphisms (SNPs) typed in

HapMap samples. Denser SNPs are now available with the

completion of the 1000 Genomes and the Genome of the

Netherlands projects. More densely distributed SNPs are

expected to track the causal variants better. Therefore we

extend the search for variants implicated in early stages of

cannabis use to previously untagged common and low-fre-

quency variants. We run heritability, SNP and gene-based

analyses of initiation and age at onset. This is the first gen-

ome-wide study of age at onset to date. Using GCTA and a

sample of distantly related individuals from the Netherlands

Twin Register, we estimated that the currently measured

(and tagged) SNPs collectively explain 25 % of the variance

in initiation (SE = 0.088; P = 0.0016). Chromosomes 4

and 18, previously linked with cannabis use and other ad-

diction phenotypes, account for the largest amount of vari-

ance in initiation (6.8 %, SE = 0.025, P = 0.002 and 3.6 %,

SE = 0.01, P = 0.012, respectively). No individual SNP- or

gene-based test reached genomewide significance in the

initiation or age at onset analyses. Our study detected asso-

ciation signal in the currentlymeasured SNPs. A comparison

with prior SNP-heritability estimates suggests that at least

part of the signal is likely coming from previously untyped

common and low frequency variants. Our results do not rule

out the contribution of rare variants of larger effect—a

plausible source of the difference between the twin-based

heritability estimate and that from GCTA. The causal vari-

ants are likely of very small effect (i.e.,\1 % explained

variance) and are uniformly distributed over the genome in

proportion to chromosomes’ length. Similar to other com-

plex traits and diseases, detecting such small effects is to be

expected in sufficiently large samples.

Keywords Cannabis � Initiation � Age at onset �
Heritability

Introduction

Cannabis is among the drugs with the highest frequency of

(ab)use. About 1 in 5 Europeans aged 15–64 reported to

have experimented with cannabis. In the United States the

prevalence in ages 16–34 was estimated at 51.6 % (Euro-

pean Monitoring Centre for Drugs and Drug Addiction,

2012). Regular cannabis use has been associated with

health problems, including mood and anxiety disorders

(e.g., Cheung et al. 2010) and chronic bronchitis (Hall

2015; Joshi et al. 2014). Early onset and regular use during

adolescence has possible effects on cognitive functioning

(e.g., Crean et al. 2011) and predicts diminished educa-

tional (Horwood et al. 2010; Lynskey and Hall 2000) and

professional attainment (Fergusson and Boden 2008;

Volkow et al. 2014). Furthermore, recent evidence suggests

that high-potency cannabis use elevates the risk of devel-

oping psychotic disorders (Di Forti et al. 2015, 2014).

Namely, the odds of showing psychotic symptoms in in-

dividuals who declared to have ever used high-potency
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cannabis are about three times larger than in individuals

who declared to have never used cannabis during their

lifetime. The risk of showing psychotic symptoms is fur-

ther elevated if high-potency cannabis is used daily (i.e.,

OR = 5.4; P = 0.002; Di Forti et al. 2015). About 9 % of

those who initiate cannabis use progress to regular use and

abuse (e.g., Volkow et al. 2014; Budney et al. 2007). Given

the possible adverse effects on health and lifetime out-

comes and given its possible role in triggering first-episode

of psychosis, it is important to understand the causes of

individual differences in the liability to initiate cannabis

use.

Twin and family studies have shown that both genetic

and environmental factors (both shared by, and specific to,

family members) have an important role in the initiation of

cannabis use (Kendler and Prescott 1998; van den Bree

et al. 1998; Vink et al. 2010). A meta-analysis of twin

studies (Verweij et al. 2010) showed that additive genetic

factors explain nearly half the variance in liability to ini-

tiate cannabis use (i.e., 48 and 40 % of the variance, in

females and males, respectively), while the remaining

variance is accounted for—almost equally—by shared and

unshared environmental factors (both about 30 %).

Among the several attempts to identify genes that ex-

plain the heritability of initiation, a linkage study (Agra-

wal et al. 2008a) failed to identify statistically significant

associated genomic regions, although it did identify sev-

eral suggestive regions on chromosomes 18 and 1. Like-

wise, a meta-analysis by Verweij et al. (Verweij et al.

2013) combining the results of two genomewide asso-

ciation studies (GWAS) comprising about 10 000 indi-

viduals failed to detect common single nucleotide

polymorphisms (SNPs) associated with initiation. It

should be noted, however, that the association analysis by

Verweij and colleagues was limited to common (i.e.,

minor allele frequency (MAF)[ 5 %) HapMap SNPs

(Consortium 2010). With the recent completion of large

sequencing projects such as the 1000 Genomes (1000G)

(Consortium 2012) and the Genome of the Netherlands

(Boomsma et al. 2014; The Genome of the Netherlands

2014), more detailed genotypic information has become

available in large GWAS samples. Given the availability

of denser SNPs, which are expected to be in high linkage

disequilibrium (LD) with the causal variants, we aim to

extend the search for genetic variants (GVs) implicated in

initiation to previously untagged common GVs, and to

other (than common) GVs, such as low-frequency variants

(1 %\MAF\ 5 %). Such low frequency variants have

not typically passed the quality control checks. However,

the quality of imputation has been improved by recent

advances in imputation techniques (Howie et al. 2012).

This opens the door to including such GVs into a gen-

ome-wide association study.

Furthermore, to date, the approach for finding genes

underlying the heritability of cannabis initiation was to

focus on the ‘ever/never used’ dichotomy at the expense of

the age at which one initiates (i.e., age at onset). Yet, age at

onset is a complex trait (Visscher et al. 2001), subject to the

influences of both environmental and genetic factors

(Lynskey et al. 2003), and may serve as an important proxy

for heavy use. Initiation of cannabis use before age 18 is

predictive of both experimentation with other drugs

(Agrawal et al. 2006; Lynskey et al. 2006), and of escalated

drug use (e.g., Lynskey et al. 2003). Among those initiating

in adolescence the risk of progression to symptoms of

abuse and dependence is higher relative to the general

population (i.e., 17 vs. 9 %, respectively; Volkow et al.

2014). Given its relevance as a predictor for escalated use,

our second aim is to perform a genomewide search for GVs

that give rise to individual differences in age at onset. To

model age at onset as a function of genotype we will apply

statistical methods based on survival analysis. This ap-

proach utilizes all available information on the age at onset

among initiateds and takes into account the censored nature

of the observations collected in those who did not initiate at

the time they were last seen (i.e., they might initiate at a

later time point). The approach is expected to show supe-

rior power relative to an analysis of the ‘‘ever-never’’ di-

chotomy or an analysis restricted to those who initiated

(see e.g. Kiefer et al. 2013). To our knowledge, a geno-

mewide survival analysis of age at onset of cannabis use

has not yet been reported.

The outline of the paper is as follows. First, we estimate

the amount of variance in initiation of cannabis use ex-

plained collectively by the currently measured SNPs. The

purpose of such analysis is to obtain an indication of the

total signal in the measured (and tagged) SNPs without

identifying individual SNPs. Second, we conduct SNP-

based association analyses of initiation and age at onset.

Our primary focus is on identifying genes tagged by the

SNPs, relevant to our traits. Therefore, next, we incorpo-

rate these SNP-based results in two gene-based analyses.

These analyses are exploratory, i.e., conducted

genomewide.

All analyses are performed in a sample of Dutch

families from the Netherlands Twin Register (NTR). To

maximize statistical power, imputation of genotypes in the

NTR sample was based on two alternative reference pan-

els: the 1000G Phase 1 project reference panel (Consortium

2012) and the reference panel generated by the Genome of

the Netherlands (GoNL) project (Boomsma et al. 2014;

The Genome of the Netherlands 2014). The GoNL refer-

ence panel was derived by sequencing the whole genome

of 250 trio-Dutch families and matches therefore the

ancestral background of our sample. The GoNL panel is

expected to facilitate imputation of variants which are
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specific to the Dutch population (Boomsma et al. 2014).

Furthermore, the use of the GoNL panel is expected to

result in higher imputation accuracy relative to the 1000G

panel, especially for low frequency GVs (MAF\ 5 %)

(The Genome of the Netherlands 2014). Such increased

accuracy is expected to increase the statistical power to

capture the signal in the measured GVs.

Materials and methods

Phenotypes

The phenotypic data were obtained in the longitudinal

surveys on lifestyle, health, and personality of the NTR

(e.g., Boomsma et al. 2002, 2006). The study protocols

were approved by the Central Ethics Committee on Re-

search Involving Human Subjects of the VU University

Medical Center, Amsterdam. All participants provided in-

formed consent. The study in young twins was approved

also by the Central Committee on Research Involving

Human Subjects. More details regarding the phenotyping

in the NTR study can be found elsewhere (van Beijster-

veldt et al. 2013; Willemsen et al. 2013).

Initiation of Cannabis use (‘ever/never’)

Initiation was assessed by a multiple choice question (i.e.,

‘‘At which age did you experiment with cannabis for the

first time?’’) in the NTR surveys 1993, 1995, 2000, and by

an open-ended question (‘‘Have you ever tried hashish or

cannabis? If yes, at which age?’’) in survey 2009. These

surveys were sent to all adult twin families and were re-

turned by 23 597 individuals. In addition, data collection in

adolescent twins and sibs which took place since 1987 in

age-specific surveys (around age 14 and age 16), included a

multiple choice question (‘‘Have you ever used soft drugs

such as hashish or cannabis?’’) assessing frequency of use

(on an eight-category scale ranging from ‘never’ to ‘more

than 40 times’) in the whole life, in the last 12 months and

in the last 4 weeks. This question was completed by 16 556

participants. The phenotypic data obtained from subjects

who reported at more than one time point were checked for

consistency, and unreliable measures were discarded. Due

to inconsistencies, 284 self-reported measures were drop-

ped. Next, the measurements were collapsed into a di-

chotomous phenotype (i.e., ever/never used cannabis).

Furthermore, we included in the analysis only family

members for whom both phenotypes and genotypes were

available, i.e., N = 6744 participants. Of these, 5387 in-

dividuals reported never to have used cannabis, whereas

the remaining 1357 individuals had initiated cannabis use.

The age at the time of the last survey ranged from 10.5 to

94 years (mean age = 39.09, SD = 17.45). The par-

ticipants were clustered within 3479 families varying in

size from 1 to 9 family members (i.e., parents, siblings,

spouses). More than half of the sample (60.9 %) consisted

of females.

Age at onset

A subset of the genotyped NTR sample (N = 5148) had

declared never to have used cannabis, or declared an age at

onset older than 10 years of age in survey 2009 (which

included an open ended question on age at onset, see

above). Among them, 852 (16.6 %) had initiated cannabis

use, whereas 4296 observations had not initiated at the time

of data collection (i.e., censored observations). The par-

ticipants were clustered within 2992 families of sizes

varying from 1 to 8 members. Females represented 62.3 %

of the sample and the age ranged between 16 and 99 years

(mean age = 46.93, SD = 17.54).

Genotypes

Genotyping was performed based on buccal or blood DNA

samples collected in different research projects (see e.g.,

Willemsen et al. 2010). Imputation was performed based

on the 1000G GIANT phase1 panel as a first reference set,

and on the GONL version 4 as a second reference set (see

Supplementary Methods for details). As best guess geno-

types (computed using Beagle, Browning and Yu 2009)

were used in the analyses, we applied stringent post im-

putation quality thresholds on the imputation quality

measure (i.e., we retained only SNPs with an imputation

quality score above 0.8) and for the Hardy–Weinberg

equilibrium test (a = 1 9 10-4). Both the imputation

quality and Hardy–Weinberg equilibrium (i.e., based on the

summed genotype probability counts) were assessed in the

phenotyped sample using SNPTEST (Marchini, 2007). The

GoNL- and the 1000G-based imputed datasets contained

*6 million well imputed SNPs (i.e., with a mean impu-

tation quality score above 0.96 in both datasets). The as-

sociation and survival analyses were carried-out by varying

the reference panel used for imputation, while including

the same phenotyped sample (i.e., 6744 and 5148 par-

ticipants, respectively). The analyses included no

monozygotic twin pairs, because genotypic data were

available for only 1 twin of a pair in the GoNL dataset.

Statistical analyses

Estimating the heritability of initiation

We used the Genome-wide Complex Trait Analysis

(GCTA) software (Yang et al. 2011) to estimate the amount
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of variance in initiation explained collectively by the SNPs.

The aim of this analysis is to obtain an indication of the

total signal in the SNPs, without identifying individual

SNPs. Genetic similarity among the phenotyped indi-

viduals was computed based on best guess genotypes at 5

928 887 loci observed or imputed using the GoNL refer-

ence panel. The analyzed SNPs had a MAF larger than

1 %, imputation quality greater than 0.8 and showed no

significant deviation from Hardy–Weinberg equilibrium

given a = 1 9 10-4. The sample with observed initiation

status (N = 6744 related individuals of Dutch ancestry)

and the relevant covariates included in the genomewide

SNP-based analysis (see below) were also used in the

GCTA analysis. Furthermore, one of a pair of closely ge-

netically related individuals (i.e., with an estimated genetic

relatedness larger than 0.025) was dropped, which left for

the analysis 3616 distantly related individuals. We speci-

fied the prevalence as equal to 22 %, value chosen in line

with the prevalence of cannabis use estimated in Europeans

(European Monitoring Centre for Drugs and Drug Addic-

tion, 2012). Heritability of age at onset was not estimated

as GCTA cannot handle survival data. We also investigated

the relationship between chromosome length and the

amount of variance explained in the trait. Consistent with

the model of a polygenic trait, we expect—on average—

the longer chromosomes to explain a larger amount of the

variance. We tested this in a linear regression (one-tailed

test) where we regressed the estimated proportion of vari-

ance explained by each chromosome on the chromosome

length.

Power analysis

We performed a Monte Carlo power analysis to obtain an

indication on the size of the genetic effects detectable in

our sample. To this end, we simulated 10 000 samples

consisting of 3690 families of various configurations re-

flecting the unbalanced structure of families included in the

analyses, i.e., families consisting of singletons, two parents

or families comprising sibships sizes 1–6 with 0, 1 or 2

parents. Genotypes in Hardy–Weinberg equilibrium were

generated at a locus with a MAF of 0.5 and explaining 1.5

and 1 % variance in the phenotype. The normally dis-

tributed phenotype was simulated conditional on the locus

and then dichotomized using a cut-off point corresponding

to a z-score of 0.85 to mimic the 20 % prevalence of ini-

tiation observed in the NTR sample. The correlations be-

tween spouses, full siblings and parent-offspring estimated

in our sample equaled 0.39, 0.35 and 0.15, respectively. An

a = 1 9 10-8 was used to assess the power to detect as-

sociation. To model association we used a generalized

equations estimation (GEE) procedure with an exchange-

able working correlation matrix and a sandwich correction

to correct the standard errors for misspecification of the

background model (Minica et al. 2014).

Empirical power analysis showed that our sample af-

fords 45.3 and 87.4 % power to detect GVs explaining 1

and 1.5 % phenotypic variance, respectively (genomewide

alpha = 1 9 10-8). Relative to the logistic model, the

survival model is expected to show superior power espe-

cially for locating low frequency causal GVs (see e.g., van

der Net et al. 2008). However, the above power computa-

tions are informative also for the age at onset phenotype

given the large overlap among the samples included in the

two analyses and the slightly lower size of the sample we

used in the survival analysis.

SNP-based association analysis of initiation

To test association, initiation was regressed on the best

guess genotype and covariates. The covariates were sex,

age at the last survey, the birth cohort (i.e., two birth

cohorts containing individuals born between 1951 and

1970 and 1971–1999, respectively, and the 1915–1950

birth cohort as the reference category), 3 principal com-

ponents to correct for Dutch population substructure

(Abdellaoui et al. 2013), and sample specific covariates to

account for batch and for chip effects. A GEE (Carey

et al. 2012) logistic model was employed. To model the

familial relatedness, we used an exchangeable working

correlation matrix. This accounts for the familial corre-

lations by means of a single correlation among the family

members. The effect of possible misspecification of the

familial covariances on the standard errors was corrected

by means of a sandwich correction (Minica et al. 2014;

Dobson 2002). The sandwich-corrected GEE approach

was implemented by using the R-package gee (Carey

et al. 2012), accessed from Plink (Purcell et al. 2007)

which communicates with R (Team 2013) via the Rserve

package (Urbanek 2013).

SNP-based survival analysis of age at onset

A Cox proportional hazards regression model was

employed to model age at onset as a function of genotype

and—as above—of other relevant covariates (i.e., birth

cohort, sex, three PCs and study specific covariates). We

included this approach as it utilizes all available infor-

mation on the age of initiation among those who have

initiated. It is expected to show superior power relative to

an analysis of the ‘‘ever-never’’ dichotomy or an analysis

restricted to those who initiated (see e.g. Kiefer et al.

2013). The Cox proportional hazard regression analysis

was performed genomewide by accessing the survival

R-package (Therneau 2014) from Plink. In fitting the
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model, we used the cluster option to get sandwich cor-

rected standard errors that are robust to possible mis-

specification of the familial covariance matrix.

Gene-based analyses of initiation and age at onset

Gene-based tests of association with initiation and age at

onset were carried out by using the gene-based association

test that employs the extended Simes procedure (GATES)

implemented in the Knowledge Based Mining System for

Genome-wide Genetic Studies software (Li et al. 2011).

Specifically, the Simes test extension was employed to

combine the P-values of SNPs belonging to the same gene.

SNPs were assigned to genes (or to genes’ vicinity, i.e.,

within a region extended 5 kb at both the 50 and at the 30

ends) according to the Human Genome version 19 refer-

ences. The LD structure was derived based on the GoNL

haplotypes and incorporated into the gene-based test as to

account for the correlatedness among SNPs within a gene.

Lacking prior significant genetic association information

related to the cannabis use phenotypes, SNPs were as-

signed equal weights in the estimation process and the

gene-based tests were conducted genomewide for both

phenotypes. There were 22 764 genes tested for association

with our phenotypes, hence for the gene-based tests the

chosen alpha level equaled 0.01/22 746 (i.e.,

*4.3 9 10-7).

Results

Estimating heritability based on genetic relatedness

Results indicate that 25 % [standard error (SE) = 0.088] of

the variance on the observed scale in initiation is explained

by the SNPs. This amount of variance explained collec-

tively by the SNPs is significantly greater than zero [i.e.,

likelihood ratio test (LRT) (degrees of freedom =

1) = 8.60, P = 0.0016]. The chromosome-by-chromo-

some heritability analysis indicated that the largest amount

of variance in the trait is explained by chromosome 4 (i.e.,

the estimate on the observed scale equaled 6.8 %,

SE = 0.025, LRT(1) = 7.93, P = 0.002). Chromosome 18

accounted for about 3.6 % (SE = 0.01) of the variance on

the observed scale in initiation (LRT(1) = 4.99,

P = 0.012).

We also investigated the relationship between chromo-

some length and the amount of variance explained (see

Supplemental Table S1 for details). We found that chro-

mosome length is significantly associated with proportion

of variance explained (one-tailed t test(20) = 1.731,

P\ 0.05). On average longer chromosomes explain a

larger percent of variance (Fig. 1).

As shown in Fig. 1, the linear trend is present,

notwithstanding the low power to detect variance compo-

nents attributable to individual chromosomes. The figure

demonstrates a trend that is likely to be stronger with in-

creasing sample size. Some parameter estimates hit the

lower bound of zero, but this is due to sampling fluctuation

(as we illustrate in a small simulation study described in the

Supplementary notes). Similar results were reported for

other complex traits like intelligence (see e.g., Davies et al.

2011).

SNP- and gene-based analyses of initiation

SNP-based P-values were obtained in two association

analyses of initiation conducted in a sample comprising

6744 participants. Two alternative reference panels—the

1000G and the GoNL, respectively—were used to impute

genotypes in our sample. Owing to a better imputation

quality (The Genome of the Netherlands 2014), the asso-

ciation signals in the GoNL imputed genotype data were

slightly stronger than those obtained based on the 1000G

imputed SNPs.1 Consequently we took forward these re-

sults for the gene-based tests. The P-values for the 5 896

100 GoNL SNPs showed no inflation i.e., the lambda in-

flation factor equaled 1.019, where a value of 1 indicates no

deviation from the expectation of the observed test statistic

due to effects of population stratification. The quantile–

quantile plot is given in Supplemental Figure S2. The most

strongly associated SNP was the low frequency GoNL SNP

rs35917943 (MAF\ 5 %; P = 1.6 9 10-7). The region

harboring this SNP is displayed in Supplemental Figure S3

(Pruim et al. 2010). Supplemental Table S2 contains the

top SNPs associated with initiation at P\ 1 9 10-5.

Table 1 contains the five genes showing the strongest as-

sociation signal with initiation along with their functions

(according to gene ontology (GO) annotations Ashburner

et al. 2000).

None of these genes had an association P-value below

our chosen genomewide level of significance of a =

4.3 9 10-7. The three genes with the lowest P-values are

Zinc Finger Protein 181 (ZNF181, P = 3.7 9 10-6), the

non-coding RNA–microRNA 643 (MIR643, P =

3 9 10-5) and the Zinc Finger Protein 766 gene (ZNF766,

1.1 9 10-4), all located on chromosome 19.

1 We include for a comparison the Manhattan plots of the association

results based on data imputed using the two alternative reference

panels (see Supplemental Figure S1). They illustrate the gains in

power—in terms of improved association signals - conferred by a

population specific reference panel relative to the 1000 Genomes.

These results are likely informative for groups contemplating the use

of alternative panels to impute GWAS samples.
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SNP- and gene-based analyses of age at onset

We conducted two genomewide survival analyses of age at

onset in a sample comprising 5148 participants. Similar to

the previous analysis, the association signals attained with

the genotypes imputed based on the GoNL reference panel

were used as input for the gene-based analysis, as these

signals were stronger relative to those observed in the

1000G imputed sample (see for a comparison the Man-

hattan plots, Supplemental Figure S4). As we observed a

slight inflation, we corrected the SNP-based P-values (ge-

nomic control k = 1.1171) to prevent potential false

positives. Supplemental Figure S5 contains the lambda

corrected quantile–quantile plots. The SNP with the

strongest association signal was the low-frequency

rs142324060 (lambda-corrected P = 7.6 9 10-8;

MAF\ 5 %). The region around the top SNP associated

with initiation—rs142324060 on chromosome 5 is dis-

played in Supplemental Figure S6. The Supplemental

Table S3 contains the top SNPs associated with age at

onset (P\ 1 9 10-5).

Table 2 includes the top five genes with the lowest

P-values obtained in the gene-based analysis alongwith their

functions (according to GO annotations).

In our exploratory gene-based analysis none of the genes

reached the genomewide significance threshold of

a = 4.3 9 10-7. The genes showing the strongest asso-

ciation with our phenotype were Gem (nuclear organelle)

associated protein 5 (GEMIN5) on chromosome 5

(P = 4.7 9 10-4) and the uncharacterized LOC101927911

on chromosome 17 (P = 4.7 9 10-4), followed by the

Metallothionein 4 (MT4) on chromosome 16 (P =

5.2 9 10-4). The SNP with the strongest association sig-

nal—the rs142324060 (lambda-corrected P = 7.6 9 10-8)

was not assigned to a gene in the GATES analysis.

Discussion

The aim of the study was to explore the contribution of

GVs to initiation of cannabis use and age at onset. Using

GCTA and a sample of distantly related individuals from

the NTR, we estimated that the genomewide SNPs col-

lectively explain 25 % (SE = 0.088; P = 0.0016) of the

variance in initiation. Although lower than the twin-based

heritability estimate (i.e., of about 44 % (95 % CI

[16 %,74 %], Vink et al. 2010), our estimate provides an

indication of the total signal in the currently measured (and

tagged) SNPs, confirming that initiation of cannabis use is

a heritable trait. The remaining variance (up to 44 %) may,

in part, be attributable to rare variants, weakly correlated

with the measured SNPs (Visscher et al. 2010). Our esti-

mate is larger than that reported by Verweij and colleagues,

namely 6 % (95 % CI [0 %, 26 %], P-value = ns). A

possible reason for this difference is that we use more

densely distributed SNPs. In addition to the common SNPs

overlapping with the HapMap SNPs used by Verweij and

colleagues (about 2.4 million common SNPs with

MAF[ 5 %), we included into analysis previously un-

tagged common GVs, and other (than common) GVs, such

as low-frequency variants (about 6 million SNPs having

MAF[ 1 %). More densely distributed SNPs are expected

to be in higher LD with the causal variants, and so, to

provide a more accurate heritability estimate (Visscher

et al. 2010).

The chromosome-by-chromosome analyses showed

that, on average, longer chromosomes account for a larger

amount of variance in initiation. This result lends support

to the conclusion that initiation is highly polygenic. The

largest amount of variance is explained by chromosome 4

(6.8 %; P = 0.002), followed by chromosome 18 (3.6 %;

P = 0.012). Regions on both chromosome 4 and 18 have

been reported to play a role in cannabis use and other

addiction phenotypes. For instance, regions on chromo-

some 4 harboring the GABRA cluster of genes were

identified in a linkage study by Agrawal et al. (Agrawal

et al. 2008b) as plausibly associated with a cannabis abuse

and dependence phenotype. Another linkage study (Pre-

scott et al. 2006) provided strong evidence for a large re-

gion on chromosome 4 to be involved in alcohol

dependence (P = 2.1 9 10-6), the same region being also

Fig. 1 Percent of variance in initiation of cannabis use explained per

chromosome relative to chromosome length. The chromosome

number is shown in circles
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Table 1 Top five genes showing the strongest association with initiation of cannabis use

Gene name (Gene ID) Chr Start

position

Number of

SNPs

assigned to

gene

Key SNPs

position (rs

number)

Gene

feature

Key SNPs

P-value

Gene

P-value

Molecular function

according to gene

ontology annotation

Zinc finger protein 181

(ZNF181)

19 35225479 2 35221228

(rs35487050)

Upstream 1.6 9 10-7 3.7 9 10-6 Nucleic acid binding;

metal ion binding

microRNA 643 (MIR643) 19 52785049 10 52787471

(rs2434422)

Intronic 3.7 9 10-6 3 9 10-5 –

52788044

(rs321908)

Intronic 8.5 9 10-6 –

Zinc finger protein 766

(ZNF766)

19 52772823 41 52787471

(rs2434422)

Intronic 3.7 9 10-6 1.1 9 10-4 Nucleic acid binding;

metal ion binding

52788044

(rs321908)

Intronic 8.5 9 10-6 –

52770905

(rs57523152)

Upstream 3.3 9 10-5 –

52790542

(rs139570481)

Intronic 2.3 9 10-4 –

52792311

(rs147711278)

Intronic 3.4 9 10-4 –

52775301

(rs2089275)

Intronic 1 9 10-2 –

Phosphatidylinositol-specific

phospholipase C, X domain

containing 2 (PLCXD2)

3 111393522 60 111416310

(rs1355767)

Intronic 1.1 9 10-6 1.1 9 10-4 Phosphoric diester

hydrolase activity

111399209

(rs7651713)

Intronic 1.2 9 10-6 –

111460129

(rs57628489)

Intronic 1.3 9 10-2 –

111430969

(rs16858448)

Intronic 1.5 9 10-2 –

111438443

(rs12637233)

Intronic 1.5 9 10-2 –

111479048

(rs7643067)

Intronic 1.6 9 10-2 –

111470751

(rs74571144)

Intronic 1.6 9 10-2 –

111463864

(rs75923425)

Intronic 1.6 9 10-2 –

111453629

(rs4682300)

Intronic 1.8 9 10-2 –

111530499

(rs138770435)

Intronic 2.7 9 10-2 –

111482694

(rs139568104)

Intronic 3 9 10-2 –

111443003

(rs9854875)

Intronic 3.2 9 10-2 –

111449944

(rs7624162)

Intronic 3.2 9 10-2 –

111514564

(rs11715999)

Intronic 4 9 10-2 –
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reported by Uhl et al. to be associated with illicit drug

abuse (Uhl et al. 2002). Regions on chromosome 18 were

suggested to harbor GVs potentially associated with ini-

tiation of cannabis use (Agrawal et al. 2008a), metham-

phetamine abuse (Lee et al. 2014) and alcohol dependence

(Prescott et al. 2006). However, when tested individually,

none of the GVs achieved an association P-value less than

the adapted (i.e., for multiple testing) alpha of 1 9 10-8.

We further explored how our results compare with

previously published ones. Using the SNP effect concor-

dance method (Nyholt 2014) and the NTR as a replication

sample, we checked whether there is an excess of SNPs

showing concordant effects in the meta-analysis by Ver-

weij et al. (2013) and in our analysis. Of the 2 110 385

HapMap SNPs tested in both samples, we selected for the

comparison 25 204 independent HapMap SNPs (r2[ 0.1)

that showed the most significant association P-values in the

meta-analysis sample. Although we compare summary

results for the same phenotype (cannabis initiation) such an

analysis is similar in scope to a search for significant

pleiotropic effects (genetic overlap): we aimed to single out

sets of SNPs showing concordant effects in the two sam-

ples beyond what is expected by chance. Concordance of

effects was assessed by exact binomial tests. We observed

no significant excess of SNPs with concordant effects in

the two datasets. It is possible that the effects of the causal

variants are too small to be accurately captured by the two

samples. It is also likely that the causal GVs were imper-

fectly tagged by the selected SNPs (e.g., because they have

a lower MAF than the selected SNPs), and this further

decreased the estimation precision in both samples.

None of the tested genes achieved genomewide sig-

nificance (P\*4.3 9 10-7). However, our results have

pinpointed several possible candidate genomic regions, likely

to have a bearing on the early stage of cannabis use. To name a

few, the ZNF181 and the ZNF766 genes, both located on

chromosome19, yielded the strongest association signal in the

gene-based analysis of initiation (i.e., P = 3.7 9 10-6,

1.1 9 10-4, respectively). According to the GO annotations,

ZNF181 and ZNF766 are functional genes belonging to the

zinc finger family of genes, being involved in nucleic acid

binding and metal ion binding. The most strongly associated

genes with age at onset were the protein coding genes

GEMIN5 (P = 4.7 9 10-4) on chromosome 5 and MT4 on

chromosome 16 (P = 5.2 9 10-4). GEMIN5 plays a role in

protein binding and snRNA binding, whereas MT4 is in-

volved in copper ion and zinc ion binding. The role these

genes play in initiation and age at onset has yet to be clarified,

as none have been previously reported to be associated with

cannabis use or other addiction phenotypes.

To our knowledge this is the first genomewide survival

analysis of age at onset of cannabis use to date. The survival

modeling approach appears to be appropriate and computa-

tionally tractable given the detailed genotypic data currently

available (an exampledataset and annotated scripts to run such

an analysis can be found at http://cameliaminica.nl/research.

php). Clearly, further research on the genetic basis of age at

onset would be of interest as the trait may serve as a proxy for

both heavy use and experimentation with other drugs.

Our study detected association signal in the measured

SNPs. A comparison with prior SNP-heritability estimates

suggests that at least part of the signal is likely coming from

previously untyped common and from low frequency vari-

ants. The lack of genomewide significant results for the

single variant and gene-based association tests suggests that

initiation is a polygenic trait characterized by variants of very

Table 1 continued

Gene name (Gene ID) Chr Start

position

Number of

SNPs

assigned to

gene

Key SNPs

position (rs

number)

Gene

feature

Key SNPs

P-value

Gene

P-value

Molecular function

according to gene

ontology annotation

Prefoldin-like chaperone

(URI1)

19 30433145 15 30511638

(rs57192507)

Downstream 2.2 9 10-5 1.8 9 10-4 Unfolded protein

binding

30465196

(rs7249169)

Intronic 2.7 9 10-5 –

30509036

(rs73924148)

Downstream 2.7 9 10-5 –

30442432

(rs77858500)

Intronic 3.1 9 10-5 –

30432202

(rs58563661)

Intronic 1.1 9 10-4 –

30418009

(rs61340893)

Intronic 2.9 9 10-2 –
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small effect (i.e.,\1 % explained phenotypic variance). The

causal variants are likely distributed over much of the gen-

ome, in proportion to the chromosomes’ length. Our results

do not rule out the contribution of rare variants of larger

effect imperfectly tracked by the measured SNPs—a plau-

sible source of the difference between the twin-based herit-

ability estimate and that from GCTA. Powerful analytic

strategies and very large samples combinedwith considering

the contribution of rare variants (MAF\ 1 %) will allow

one to further understand the causes of individual differences

in the liability to initiate cannabis use.
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Hottenga, René Pool, The Genome of the Netherlands Consortium,

Iryna Fedko, Hamdi Mbarek, Charlotte Huppertz, Meike Bartels,

Dorret I. Boomsma and Jacqueline M. Vink have no conflict of in-

terest to declare.

Human and Animal Rights and Informed Consent The study

protocols were approved by the Central Ethics Committee on Re-

search Involving Human Subjects of the VU University Medical

Center, Amsterdam. All participants provided informed consent. The

study in young twins was approved also by the Central Committee on

Research Involving Human Subjects.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Abdellaoui A, Hottenga J-J, de Knijff P, Nivard MG, Xiao X, Scheet

P, Brooks A, Ehli EA, Hu Y, Davies GE (2013) Population

structure, migration, and diversifying selection in the Nether-

lands. Eur J Hum Genet 21(11):1277–1285

Agrawal A, Grant JD, Waldron M, Duncan AE, Scherrer JF, Lynskey

MT, Madden PA, Bucholz KK, Heath AC (2006) Risk for

initiation of substance use as a function of age of onset of

cigarette, alcohol and cannabis use: findings in a Midwestern

female twin cohort. Prev Med 43(2):125–128

Agrawal A, Morley KI, Hansell NK, Pergadia ML, Montgomery GW,

Statham DJ, Todd RD, Madden PA, Heath AC, Whitfield J

(2008a) Autosomal linkage analysis for cannabis use behaviors

in Australian adults. Drug Alcohol Depend 98(3):185–190

Agrawal A, Pergadia ML, Saccone SF, Lynskey MT, Wang JC, Martin

NG, Statham D, Henders A, Campbell M, Garcia R (2008b) An

autosomal linkage scan for cannabis use disorders in the nicotine

addiction genetics project. Arch Gen Psychiatry 65(6):713–721

AshburnerM,BallCA,Blake JA,BotsteinD,ButlerH,Cherry JM,Davis

AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool

for the unification of biology. Nat Genet 25(1):25–29

Boomsma DI, Vink JM, Van Beijsterveldt TC, de Geus EJ, Beem AL,

Mulder EJ, Derks EM, Riese H, Willemsen GA, Bartels M

(2002) Netherlands Twin Register: a focus on longitudinal

research. Twin Res 5(05):401–406

Boomsma DI, De Geus EJ, Vink JM, Stubbe JH, Distel MA, Hottenga

J-J, Posthuma D, Van Beijsterveldt TC, Hudziak JJ, Bartels M

(2006) Netherlands Twin Register: from twins to twin families.

Twin Res Hum Genet 9(06):849–857

Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC,

Abdellaoui A, Ye K, Guryev V, Vermaat M, van Dijk F (2014)

The Genome of the Netherlands: design, and project goals. Eur J

Hum Genet 22(2):221–227

Browning BL, Yu Z (2009) Simultaneous genotype calling and

haplotype phasing improves genotype accuracy and reduces

false-positive associations for genome-wide association studies.

Am J Hum Genet 85(6):847–861

Budney AJ, Roffman R, Stephens RS, Walker D (2007) Marijuana

dependence and its treatment. Addict Sci Clin Pract 4(1):4

Carey VJ, Lumley T, Ripley B (2012) gee: Generalized Estimation

Equation solver, R package version 4.13-18, http://CRAN.R-

project.org/package=gee

Cheung JT, Mann RE, Ialomiteanu A, Stoduto G, Chan V, Ala-

Leppilampi K, Rehm J (2010) Anxiety and mood disorders and

cannabis use. Am J Drug Alcohol Abus 36(2):118–122

Consortium IH (2010) Integrating common and rare genetic variation

in diverse human populations. Nature 467(7311):52–58

Consortium TGP (2012) An integrated map of genetic variation from

1,092 human genomes. Nature 491(7422):56–65

Crean RD, Crane NA, Mason BJ (2011) An evidence based review of

acute and long-term effects of cannabis use on executive

cognitive functions. J Addict Med 5(1):1

Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, Ke X,

Le Hellard S, Christoforou A, Luciano M (2011) Genome-wide

association studies establish that human intelligence is highly

heritable and polygenic. Mol psychiatry 16(10):996–1005

Di Forti M, Sallis H, Allegri F, Trotta A, Ferraro L, Stilo SA, Marconi

A, La Cascia C, Reis Marques T, Pariante C, Dazzan P, Mondelli

V, Paparelli A, Kolliakou A, Prata D, Gaughran F, David AS,

Morgan C, Stahl D, Khondoker M, MacCabe JH, Murray RM

(2014) Daily Use, Especially of High-Potency Cannabis, Drives

the Earlier Onset of Psychosis in Cannabis Users. Schizophr Bull

40(6):1509–1517

Di Forti M, Marconi A, Carra E, Fraietta S, Trotta A, Bonomo M,

Bianconi F, Gardner-Sood P, O’Connor J, Russo M (2015)

Proportion of patients in south London with first-episode

psychosis attributable to use of high potency cannabis: a case-

control study. Lancet Psychiatry 2(3):233–238

Dobson A (2002) An introduction to generalized linear models.

Chapman & Hall/CRC, London

Fergusson DM, Boden JM (2008) Cannabis use and later life

outcomes. Addiction 103(6):969–976

Hall W (2015) What has research over the past two decades revealed

about the adverse health effects of recreational cannabis use?

Addiction 110(1):19–35

Horwood LJ, Fergusson DM, Hayatbakhsh MR, Najman JM, Coffey

C, Patton GC, Silins E, Hutchinson DM (2010) Cannabis use and

educational achievement: findings from three Australasian

cohort studies. Drug Alcohol Depend 110(3):247–253

Howie B, Fuchsberger C, StephensM,Marchini J, Abecasis GR (2012)

Fast and accurate genotype imputation in genome-wide asso-

ciation studies through pre-phasing. Nat Genet 44(8):955–959

Joshi M, Joshi A, Bartter T (2014) Marijuana and lung diseases. Curr

Opin Pulm Med 20(2):173–179

Kendler KS, Prescott CA (1998) Cannabis use, abuse, and depen-

dence in a population-based sample of female twins. Am J

Psychiatry 155(8):1016–1022

512 Behav Genet (2015) 45:503–513

123

http://www.geneticcluster.org
http://CRAN.R-project.org/package=gee
http://CRAN.R-project.org/package=gee


Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U,

Eriksson N (2013) Genome-wide analysis points to roles for

extracellular matrix remodeling, the visual cycle, and neuronal

development in myopia. PLoS Genet 9(2):e1003299

Lee BD, Park JM, Lee YM, Moon ES, Jeong HJ, Chung YI, Rim HD

(2014) A pilot study for discovering candidate genes of

chromosome 18q21 in methamphetamine abusers: case-control

association study. Clin Psychopharmacol Neurosci 12(1):54–64

Li MX, Gui HS, Kwan JS, Sham PC (2011) GATES: a rapid and

powerful gene-based association test using extended Simes

procedure. Am J Hum Genet 88(3):283–293

Lynskey M, Hall W (2000) The effects of adolescent cannabis use on

educational attainment: a review. Addiction 95(11):1621–1630

Lynskey MT, Heath AC, Bucholz KK, Slutske WS, Madden PA,

Nelson EC, Statham DJ, Martin NG (2003) Escalation of drug

use in early-onset cannabis users vs co-twin controls. JAMA

289(4):427–433

Lynskey MT, Vink JM, Boomsma DI (2006) Early onset cannabis use

and progression to other drug use in a sample of Dutch twins.

Behav Genet 36(2):195–200

Minica CC, Dolan CV, Kampert MM, Boomsma DI, Vink JM (2014)

Sandwich corrected standard errors in family-based genome-

wide association studies. Eur J Hum Genet 23(3):388–394.

doi:10.1038/ejhg.2014.94

Nyholt DR (2014) SECA: sNP effect concordance analysis using

genome-wide association summary results. Bioinformatics

30(14):2086–2088

Prescott C, Sullivan P, Kuo P,WebbB,Vittum J, PattersonD, Thiselton

D, Myers J, Devitt M, Halberstadt L (2006) Genomewide linkage

study in the Irish affected sib pair study of alcohol dependence:

evidence for a susceptibility region for symptoms of alcohol

dependence on chromosome 4. Mol psychiatry 11(6):603–611

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP,

Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom:

regional visualization of genome-wide association scan results.

Bioinformatics 26(18):2336–2337

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender

D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a

tool set for whole-genome association and population-based

linkage analyses. Am J Hum Genet 81(3):559–575

Team RC (2013) R: A language and environment for statistical

computing. R foundation for Statistical Computing

The Genome of the Netherlands C (2014) Whole-genome sequence

variation, population structure and demographic history of the

Dutch population. Nat Genet 46(8):818–825

Therneau TM (2014) A Package for Survival Analysis in S, R package

version 2.37-7, http://CRAN.R-project.org/package=survival

Uhl GR, Liu Q-R, Naiman D (2002) Substance abuse vulnerability loci:

converging genome scanning data. Trends Genet 18(8):420–425

Urbanek S (2013) Rserve: Binary R server, R package version 1.7-3,

http://CRAN.R-project.org/package=Rserve

van Beijsterveldt CE, Groen-Blokhuis M, Hottenga JJ, Franić S,
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