A Twin-Sibling Study and Meta-Analysis on the

Heritability of Maximal Oxygen Uptake

Nienke Schutte¹², Ineke Nederend¹², Meike Bartels¹², & Eco de Geus¹²

¹ Department of Biological Psychology, VU University Amsterdam, the Netherlands

² EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands

Introduction

Maximal oxygen uptake ($ৈ{VO}_{2max}$) is defined as the highest rate of oxygen consumption during maximal intensity exercise performed until exhaustion and is considered a good index of endurance capacity. Direct measurement of oxygen consumption during the climax of a graded maximal exercise test is the golden standard to measure \notenangle{VO}_{2max} . \notenangle{VO}_{2max} can also be obtained using a submaximal exercise protocol, by extrapolating the $\notenangle{HR}/\notenangle{VO}_{2}$ curve to the predicted \notenangle{HR}_{max} .

This study aims to determine the relative contribution of genetic factors to the large individual differences in $arangle O_{2max}$ in childhood and adolescence.

Methods

In a sample of adolescent twins and siblings (N = 479), HR and VO_2 were recorded during the climax of a graded maximal exercise test on a cycle ergometer. In addition, VO_{2max} was predicted in two graded submaximal exercise tests on a cycle ergometer and a treadmill, using extrapolation of the HR/ VO_2 curve to the predicted HR_{max}. Finally, a sample size weighted meta-analysis was performed on twin correlations obtained from all twin studies (including the current study) to arrive at a more robust estimate for the heritability of this crucial trait in exercise physiology.

Results

Heritability estimates ranged from 60% to 67% for VO_{2max} in mL/min and 47% to 55% for VO_{2max} in mL/min/kg (Figure 1).

Eight studies, including the current study, were meta-analyzed and resulted in a weighted heritability estimate of 60% (mL/min) and 64% (mL/min/kg) for VO_{2max} (Figure 2).

Conclusions

The results of the current study, together with the results of the meta-analysis, confirm that innate factors determine more than half of the individual differences in the \dot{VO}_{2max} from childhood to young adulthood.

VU University Medical Center Amsterdam

