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Genetic risk factors often localize to noncoding regions of the 
genome with unknown effects on disease etiology1,2. Expression 
quantitative trait loci (eQTLs) help to explain the regulatory 
mechanisms underlying these genetic associations3–6. Knowledge 
of the context that determines the nature and strength of 
eQTLs may help identify cell types relevant to pathophysiology 
and the regulatory networks underlying disease7–17. Here we 
generated peripheral blood RNA–seq data from 2,116 unrelated 
individuals and systematically identified context-dependent 
eQTLs using a hypothesis-free strategy that does not require 
previous knowledge of the identity of the modifiers. Of the 
23,060 significant cis-regulated genes (false discovery rate 
(FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL 
effects. The majority of these effects were influenced by cell 
type composition. A set of 145 cis-eQTLs depended on type 
I interferon signaling. Others were modulated by specific 
transcription factors binding to the eQTL SNPs. 

We created the Biobank-Based Integrative Omics Study (BIOS) data 
set by sequencing whole peripheral blood mRNA in 2,116 healthy 
adults from four Dutch cohorts18–21 (Supplementary Table 1 and 

Supplementary Note; EGAD00001001623). We quantified gene and 
exon expression, as well as exon ratios (the proportion of expres-
sion of an exon relative to the total expression of all exons of a gene) 
and poly(A) ratios (the ratio of expression in upstream and down-
stream parts of 3′ UTRs separated by annotated polyadenylation 
(poly(A)) sites), and performed cis-eQTL mapping for all of these 
(Supplementary Note). We detected cis-eQTL effects for 66% of 
the protein-coding genes and 19% of the noncoding genes tested. In 
total, we identified eQTL effects for 23,060 different genes (FDR ≤ 
0.05). These eQTLs replicated well in earlier microarray-based data 
sets from blood samples22 and an RNA–seq data set based on lym-
phoblastoid cell lines (LCLs)23 (Supplementary Note), but they also 
substantially extended the list of genes that are known to be under 
genetic regulation (replication results are given in the Supplementary 
Note and Supplementary Table 2). In addition to detecting gene-level 
eQTLs, we identified 21,888 different genes with one or more exon-
level QTL effects and 9,777 and 2,322 genes where SNPs affected the 
inclusion rate of exons and the usage of poly(A) sites, respectively 
(Supplementary Table 3). All QTLs can be found using our QTL 
browser (http://genenetwork.nl/biosqtlbrowser). Multiple unlinked 
SNPs in the same locus may independently influence expression or 
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mRNA processing of the same gene24. This was observed for more than 
half of the cis-regulated genes (Fig. 1a and Supplementary Fig. 1).

The gene-level cis-eQTL SNPs were strongly enriched for DNase 
I footprints, various histone marks and binding sites for multiple 
transcription factors25 (Supplementary Table 4 and Supplementary 
Note), suggesting the likely detection of causal regulatory variants. 
Moreover, top eQTL SNPs were significantly enriched for general 
enhancers and ones specific to blood cell types (taken from ref. 26), 
but not for enhancers specific to non-blood tissues (Supplementary 
Table 5). Evidence for the functionality of exon ratio and poly(A) 
ratio QTLs in mRNA splicing and polyadenylation, respectively, is 
also presented in the Supplementary Note.

One-third (2,064, or 32.7%) of previously established genetic risk 
factors for disease or complex traits (derived from the National Human 
Genome Research Institute (NHGRI) genome-wide association study 
(GWAS) catalog and a set of reported Immunochip associations,  
P ≤ 5 × 10−8; Supplementary Table 6) were in strong linkage disequilib-
rium (LD; r2 ≥ 0.8) with a top eQTL SNP (Fig. 1b and Supplementary 
Table 7). As expected, eQTL effects were predominantly found for 
SNPs associated with hematological, lipid or immune-related traits. 
We observed highly significant enrichment of colocalization of eQTL 
and GWAS SNPs (r2 ≥ 0.8) for many immune disorders in comparison 
to the 10% overlap found for height, which we considered to repre-
sent a conservative background level (inflammatory bowel disease 
(IBD), 1.6 × 10−10; multiple sclerosis, 9.8 × 10−9; rheumatoid arthritis,  
1.5 × 10−5 ) (Fig. 1c and Supplementary Note). This indicates that 
our blood cis-eQTLs are highly informative for diseases such as IBD, 
multiple sclerosis and rheumatoid arthritis.

Effect sizes for eQTLs often depend on the cell type or tissue  
under investigation8–11,27,28 and may be modified by external and 
environmental factors14–17,29,30. We developed a hypothesis-free 

strategy to identify which of the observed eQTLs were dependent on 
intrinsic or extrinsic factors (context-dependent eQTLs) (Fig. 2a,b,  
Online Methods and Supplementary Fig. 2). Instead of using known 
factors, such as the percentage of neutrophils in blood in a gene-by-
environment interaction model13, we used the expression levels of 
other genes as interaction factors. We call these genes ‘proxy genes’, 
as they may reflect the abundance of a cell type or the activity of 
signaling pathways.

We identified 10 modules of in total 1,842 eQTLs independ-
ently affected by 10 largely uncorrelated proxy genes (Fig. 2c and 
Supplementary Table 8). eQTLs with context-dependent effects can 
be obtained from our BIOS eQTL browser. An example is shown 
in Figure 2b, where we found an eQTL effect of SNP rs1981760  
(a SNP associated with leprosy susceptibility) on NOD2 expression. 
Expression of the first top proxy gene, STX3, had a significant inter-
action with this eQTL. Samples with very low expression of STX3 
showed only a very weak eQTL effect on NOD2, whereas samples with 
very high STX3 expression showed a stronger eQTL effect. Further 
analysis demonstrated that STX3 expression was strongly correlated 
(Pearson r = 0.74) with the percentage of neutrophils in the blood, 
indicating that STX3 is a proxy for neutrophil levels in blood.

It can be challenging to understand what the proxy genes represent. 
We first assessed whether they are markers for specific cell types and 
correlated them with blood cell counts measured in our samples (for 
neutrophils, lymphocytes, eosinophils, basophils and monocytes) 
and baseline gene expression levels in purified blood cells from the 
BLUEPRINT consortium31 (Fig. 2c and Supplementary Fig. 3).  
Eight of the ten proxy genes likely represent the levels of specific 
cell types in blood (Supplementary Note). Analysis of eQTL gene 
expression in BLUEPRINT data (Supplementary Fig. 4a) and 
eQTL interactions with measured blood cell counts confirmed 
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Figure 1  Over 20,000 genes are regulated by cis-eQTLs overlapping with 33% of the entries in the NHGRI GWAS catalog. (a) Number of cis-regulated 
genes having one, two, three, four, and five or more independent eQTL effects (FDR ≤ 0.05). The number of eQTLs overlapping with SNPs in the GWAS 
catalog (r2 ≥ 0.8) appears in red. (b) Distribution of GWAS catalog variants over the different types of QTLs. Of the GWAS catalog SNPs, 8% affected 
exon-level QTLs or poly(A) ratio QTLs but did not affect overall gene expression levels. (c) Risk loci for autoimmune disorders and traits related to blood 
showed higher colocalization with eQTLs than those for anthropometric traits and diseases without an immune or hematological component. The x axis 
shows the percentage of GWAS hits colocalizing with eQTLs, and the y axis shows enrichment of overlap (calculated at the gene level), using genes 
associated with height as a conservative background.
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Figure 2  Identification of the strongest modifiers of eQTL effects. (a) Overview of the method used to annotate eQTLs as context dependent: each  
highly expressed gene (with at least one read in all samples) was tested for its ability to modify each of the 17,291 eQTLs affecting highly expressed 
genes. For each of the identified proxy genes, we determined the overall strength of the interaction effects with all eQTLs. We selected the strongest  
proxy gene and regressed its effects from the data. We did this for ten iterations, allowing the identification of ten independent proxy genes that affect 
the strength of eQTLs. (b) An example of a context-dependent eQTL effect is rs1981760, a strong eQTL for the NOD2 gene. This SNP is in strong LD  
(r2 = 0.99) with rs9302752, a variant associated with leprosy susceptibility. The leprosy risk allele (T) results in decreased expression of NOD2.  
In samples with low STX3A expression, only a weak eQTL effect is observed, whereas in samples with high STX3A expression a strong eQTL effect is 
observed. In accordance with these findings, using the STX3A gene as a covariate in an interaction model shows a very strong interaction effect. STX3A is 
the first proxy gene we identified, and its expression correlates strongly with neutrophil percentage (Pearson r = 0.72). Gene enrichment analysis of STX3A 
and other genes exhibiting similar interaction patterns shows involvement in antibacterial response. Furthermore, individuals carrying the leprosy risk  
allele have significantly weaker NOD2 upregulation in neutrophils than non-carriers. This is in line with earlier reports showing this eQTL to be stronger 
in FACS-sorted neutrophils than in monocytes27. Box plots show the median, the first and third quartiles, and 1.5 times the interquartile range. (c) We 
annotated each of our 10 proxy genes using the top 100 proxy genes from each module with similar effects and showed that, as expected, these top 
100 genes are strongly correlated in each module. These sets of the top 100 proxies were used for gene function enrichment analysis (for full results, 
see Supplementary Table 12) and are correlated to known cell proportions. We used BLUEPRINT expression data for sorted populations of blood cells to 
validate cell-type-specific expression in each module; n = 2,116 individuals were used in the analysis.
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the cell-type-dependent effects of neutrophils and eosinophils 
(Supplementary Fig. 5 and Supplementary Tables 9 and 10), 
but our unbiased analysis also identified effects for cell types for 
which actual cell counts were not available (erythroblasts, CD4+ 

T cells and natural killer (NK) cells/CD8+ T cells). Replication of 
our cell-type-dependent eQTLs in eQTL data sets from purified cell 
types supported these observations (Supplementary Fig. 4b,c and 
Supplementary Table 11).
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Figure 3  eQTLs modified by type I interferon signaling. (a) Expression-based clustering of genes positively correlated (blue) and negatively correlated 
(red) with the proxy gene SP140. Enrichment analysis of these two clusters showed distinct biology: the upregulated genes are enriched for type I 
interferon response and response to viruses, whereas the downregulated genes indicate an antibacterial inflammatory response. Type I interferon 
signaling is activated in a viral response, and type II interferon signaling is activated upon bacterial response37. The positively correlated genes are 
enriched for genes upregulated upon rhinovirus stimulation15 (Fisher’s exact P = 1.14 × 10−9), in line with their involvement in the type I interferon 
response. In contrast, the negatively correlated genes are enriched for genes upregulated upon stimulation with lipopolysaccharide (LPS) (Fisher’s exact 
P = 0.02) and interferon-γ (Fisher’s exact P = 8.72 × 10−4)14, supporting the antibacterial function of these genes. (b) The eQTLs affected by SP140 
expression can also be divided into genes positively and negatively correlated with SP140 expression. The significantly positively correlated eQTL genes 
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inflammatory pathways38. The eQTLs were enriched for binding sites for STAT1 (P = 4.82 × 10−4), STAT2 (P = 3.12 × 10−4) and STAT3 (P = 4.72 × 
10−5) (based on ENCODE ChIP–seq experiments) (Supplementary Table 13). Motif enrichment analysis39 on the 25-bp regions flanking the eQTL SNPs 
confirmed the enrichment of STAT-binding motifs (Wilcoxon rank-sum P = 9.61 × 10−5). (c) Interferome database annotation of the upregulated eQTL 
genes confirms their role in type I (and not type II or III) interferon signaling; n = 2,116 individuals were used in all eQTL analyses.
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Cell-type-specific eQTL genes were enriched in cell-type- 
specific signaling pathways (Fig. 2c and Supplementary Table 12). For  
example, the genes for which cis-eQTL effects were particularly strong 
in erythroblasts (represented by proxy gene TSPAN5) are enriched for 
erythrocyte-specific functions. They were also enriched in binding 
sites for transcription factors involved in erythrocyte development, 
on the basis of Encyclopedia of DNA Elements (ENCODE) ChIP–seq 
data (GATA1, TAL1, GATA2 and MAFK, each with an enrichment 
P value ≤1 × 10−5)32–34. A well-established cis-eQTL for SMIM1, an 
erythrocyte-specific gene encoding a protein that determines the Vel 
blood group4, was contained in the set of eQTLs affected by TSPAN5 
expression. For eQTLs affected by other proxy genes, we also identi-
fied specific transcription factors with established functions in the 
corresponding cell types (Supplementary Table 13).

In Supplementary Figure 6 and the Supplementary Note, we show 
examples of how eQTLs can be used to gain insights into five autoim-
mune disorders. Clustering of the eQTL genes based on coexpression 
identified sets of genes hinting at specific cell types and biological 
functions. For IBD, for instance, the clustering identified a T cell clus-
ter and a neutrophil cluster. Adding the cell-type-dependent eQTLs 
further corroborated the cell type annotations of the clusters. In total, 
we found 138 context-dependent eQTLs for GWAS-identified variants 
(Supplementary Table 14).

The identified interaction modules are not restricted to cell-type-
specific effects. One of the proxy genes, SP140, is not a proxy for cell 
type but is a proxy for type I interferon response, as demonstrated by 
pathway enrichment of genes that correlated positively with SP140 
expression levels (Supplementary Note). Genes that correlated nega-
tively with SP140 expression are involved in antibacterial response 
and inflammation (Fig. 3a). Likewise, the affected eQTL genes can 
be divided into two groups: those positively and those negatively cor-
related with SP140 expression (Fig. 3b). Gene annotations from the 
interferome database35 confirmed that the upregulated eQTL genes 
are indicative of type I, but not of type II, interferon response (Fig. 3c).  
In support of the modifying effects of viral cues on this set of eQTLs, 
eQTL genes that were recently reported as rhinovirus response QTLs15 
typically demonstrated higher SP140 interaction effects than other 
eQTL genes (Wilcoxon P = 0.02).

Each of the ten aforementioned proxy genes demonstrated effects 
on many (>120) eQTLs. However, some other factors may also exist 

that affect more limited numbers of eQTLs. To identify these factors, 
we first corrected the expression data for the ten proxy genes and their 
eQTL interaction effects and then ascertained for each gene-level 
eQTL whether the size of the eQTL effect was significantly depend-
ent on the expression of any other gene. This analysis resulted in the 
identification of an additional set of 901 context-dependent eQTLs 
(FDR ≤ 0.05) (Supplementary Table 15). Of these eQTL interactions, 
113 could also be detected in Geuvadis LCLs (FDR ≤ 0.05; 94% with 
the same direction of interaction) (Supplementary Table 16). These 
LCLs are homogeneous cell populations, so any interaction effect that 
replicates is unlikely to be due to cell-type-specific eQTL effects but 
rather reflects external stimulation or activation of core biological 
processes. A few of these context-dependent eQTLs enable inference 
of regulatory networks.

An example is the cis-eQTL (rs968567) effect on the lipid-biosynthe-
sis-related gene FADS2 that is modified by expression of the sterol reg-
ulatory element–binding transcription factor gene SREBF2 (P = 4.1 ×  
10−14, P value in Geuvadis = 0.002) (Fig. 4a,b). The eQTL SNP is in 
close proximity to an SREBF2-binding site (ENCODE ChIP–seq data; 
Fig. 4c), and it is therefore likely that the SNP modifies the affinity 
of the FADS2 promoter for SREBF2. SREBF2 showed a significant 
negative correlation with HDL cholesterol levels (Pearson r = −0.18, 
P = 5.1 × 10−6) and a positive correlation with lymphocyte percentage 
(Pearson r = 0.19, P = 1.6 × 10−6). Partial correlation analyses showed 
that the correlation with HDL cholesterol levels was independent of 
the correlation with lymphocyte percentage (Pearson r on residuals of 
HDL cholesterol after correcting for lymphocyte percentage = −0.17, 
P = 2.7 × 10−5), showing that the correlation with HDL cholesterol 
is not driven by cell type composition. We propose a model where 
extracellular (HDL) cholesterol levels modify SREBF2 binding to 
the FADS2 promoter, which in turn has effects on the expression of 
FADS2 and lipid desaturase activity in the cell. This SNP also increases 
risk for rheumatoid arthritis, blood metabolite levels and lipid levels; 
using our method, we now implicate altered binding of SREBF2 as a 
possible functional mechanism behind these associations.

Another example is a cis-eQTL effect on the MYBL2 gene, encoding 
a known transcription factor that controls cell division and a tumor 
suppressor36 (Fig. 5a–c). According to ENCODE ChIP–seq data, the 
top eQTL SNP, rs285205, is located in an EBF1-binding site (Fig. 5d). 
EBF1 is a known player in B cell differentiation and proliferation. 

44

0

S
R

E
B

F
2 

C
hI

P
–s

eq
 b

in
di

ng

FADS2 transcripts

rs968567

a c

b
61.57 61.58 61.59 61.60 61.61 61.62 61.63

FADS2 locus (11q12.2) (Mb)SREBF2

rs968567 (G/A)

rs968567

FADS2Sterol-binding 
factor

Genetic risk factor for rheumatoid arthritis, 
blood metabolite levels and lipid levels

Fatty acid desaturase 2

F
A

D
S

2 
ex

pr
es

si
on

SREBF2 expression

A/A

G/A

G/G

Interaction P = 4.1 × 10–14

Figure 4  FADS2 eQTL modulated by SREBF2 expression. (a) The eQTL SNP rs968567 is located in a SREBF2-binding site in the FADS2 promoter.  
(b) The eQTL is modulated by SREBF2 expression and is stronger in samples with low SREBF2 expression. The nominal P value for the interaction effect 
is given; n = 2,116 individuals were used in the eQTL analysis. (c) rs968567 is located in an ENCODE ChIP–seq peak of SREBF2 binding.



144	 VOLUME 49 | NUMBER 1 | JANUARY 2017  Nature Genetics

l e t t e r s

Although FCRLA expression was the strongest modifier of the eQTL, 
EBF1 expression was highly correlated with FCRLA expression and 
showed a significant interaction effect on the MYBL2 eQTL (P = 1.8 
× 10−14) (Fig. 5c). The eQTL SNP therefore likely affects the binding 
affinity of EBF1.

In conclusion, we greatly expanded the catalog of SNPs that have a 
known regulatory function. To gain a better understanding of the biol-
ogy behind these regulatory variants, we assessed the context depend-
ency of the eQTLs and determined 2,743 to be context dependent. 
With future increases in sample size, we expect that it will become 
possible to identify more unanticipated intrinsic factors and external 
stimuli that modify the downstream effects of genetic risk factors. As 
such, our approach complements perturbation experiments in gain-
ing better insight into regulatory networks and their stimuli, and it 
can easily be applied to other tissues. A caveat of our hypothesis-
free approach is that it is not always straightforward to understand 

which internal or external cues the proxy genes represent. Integration 
with other expression or transcription factor binding data, as we 
have done here, is therefore instrumental for the interpretation of  
context-dependent eQTLs.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5  A MYBL2 eQTL is modulated by the B cell proliferation gene EBF1. (a) Heat map of the coexpression of 109 proxy genes that modulate the 
eQTL effect on MYBL2 expression. Gene functional enrichment analyses on the genes in these clusters show that all are related to proliferation or 
cell cycle checkpoints. Interestingly, only one cluster increases the magnitude of the MYBL2 eQTL effect, in contrast to the other clusters, which all 
repress this eQTL. This eQTL-activating cluster is strongly enriched for ‘positive regulation of B cell proliferation’ (P = 1 × 10−7), and the strongest 
proxy gene in this cluster is FCRLA, which is known to be highly expressed in proliferating B cells residing in the germinal center of the lymph nodes 
(centroblasts)40,41. (b) Regulation of MYBL2 by the different cell cycle clusters is likely modulated via EBF1 and rs285205. In our analysis, we 
had initially only considered genes that were expressed in each of our individuals (Online Methods) and therefore had not studied low-abundance 
transcription factor genes. When also including these genes, we observed that this cluster of genes is strongly coexpressed with EBF1, a gene encoding 
a transcription factor that binds at the site of the eQTL SNP, suggesting that EBF1 might drive the eQTL interaction effect for MYBL2. EBF1 is a known 
player in B cell differentiation and proliferation, and its expression is positively correlated with expression of both MYBL2 (r = 0.11, P = 6.99 × 10−7) 
and FCRLA (r = 0.8, P ≤ 2.2 × 10−16). (c) Interaction plot showing that EBF1 expression modifies the eQTL effect of rs285205. The nominal P value is 
given. (d) ENCODE ChIP–seq data in LCLs show strong binding of EBF1 at rs285205; n = 2,116 individuals were used in all eQTL analyses.
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ONLINE METHODS
Cohort descriptions. The four cohorts used in our BIOS study are briefly 
described below. The age range of the individuals differed for the different 
biobanks (Supplementary Fig. 7). The number of samples per cohort used in 
our study can be found in Supplementary Table 1.

CODAM. The Cohort on Diabetes and Atherosclerosis Maastricht 
(CODAM)18 consists of a selection of 547 subjects from a larger population-
based cohort42. Inclusion of subjects into CODAM was based on a moderately 
increased risk of developing cardiometabolic diseases such as type 2 diabetes 
and/or cardiovascular disease. Subjects were included if they were of European 
descent, over 40 years of age and additionally met at least one of the following 
criteria: increased body mass index (BMI; >25), a positive family history of 
type 2 diabetes, a history of gestational diabetes and/or glycosuria, or use of 
antihypertensive medication.

LLD. The LifeLines-DEEP (LLD) cohort19 is a subcohort of the LifeLines 
cohort43 with additional molecular data on 1,500 participants. LifeLines is 
a multidisciplinary prospective population-based cohort study examining 
the health and health-related behaviors of 167,729 individuals living in the 
northern parts of the Netherlands using a unique three-generation design. It 
employs a broad range of investigative procedures assessing the biomedical, 
sociodemographic, behavioral, physical and psychological factors contribut-
ing to health and disease in the general population, with a special focus on 
multi-morbidity and complex genetics.

LLS. The aim of the Leiden Longevity Study (LLS)20 is to identify genetic 
factors influencing longevity and examine their interaction with the environ-
ment to develop interventions by which to increase health at older ages. To 
this end, long-lived siblings of European descent were recruited together with 
their offspring and their offspring’s partners, on the condition that at least two 
long-lived siblings were alive at the time of ascertainment. For men, the age 
criterion was 89 years or older; for women, the age criterion was 91 years or 
older. These criteria led to the ascertainment of 944 long-lived siblings from 
421 families, together with 1,671 of their offspring and 744 partners.

RS. The Rotterdam Study21 is a single-center, prospective population-based 
cohort study conducted in Rotterdam, the Netherlands. Subjects were included 
in different phases from the start of the study in 1998, with a total of 14,926 
men and women aged 45 years and over included as of late 2008. The main 
objective of the Rotterdam Study is to investigate the prevalence and incidence 
of and risk factors for chronic diseases to contribute to better prevention and 
treatment of such diseases in the elderly.

Ethical approval. The ethical approval for this study lies with the individual 
participating cohorts (CODAM, LLD, LLS and RS)18–21.

RNA data preparation and sequencing. Total RNA from whole blood was 
depleted of globin transcripts using the Ambion GLOBINclear kit and subse-
quently processed for sequencing using the Illumina TruSeq version 2 library 
preparation kit. Paired-end sequencing of 2 × 50-bp reads was performed using 
the Illumina HiSeq 2000 platform, pooling ten samples per lane and aiming 
for >15 million read pairs per sample. Finally, the read sets were generated for 
each sample using CASAVA, retaining only reads passing the Illumina Chastity 
Filter for further processing.

Preprocessing. The quality of the raw reads was checked using FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The adaptors 
identified by FastQC (v0.10.1) were clipped using cutadapt (v1.1), applying 
default settings (min overlap 3, min length 25). Sickle (v1.200) (https://github.
com/najoshi/sickle) was used to trim low-quality ends from the reads (min 
length 25, min quality 20).

Alignment. Read alignment was performed using STAR 2.3.0e (ref. 44). 
To avoid reference mapping bias, all Genome of the Netherlands (GoNL) 
SNPs with minor allele frequency (MAF) >0.01 in the reference genome were 
masked as N’s (ref. 45). Read pairs with at most eight mismatches, mapping 
to at most five positions, were used.

Alignment statistics. Mapping statistics from the BAM files were acquired 
through SAMtools flagstat (v0.1.19-44428cd). The 5′ and 3′ coverage bias, 
duplication rate and insert sizes were assessed using Picard tools (v1.86).

Expression quantification. We estimated expression on the gene, exon, exon 
ratio and poly(A) ratio levels using Ensembl v.71 annotation (which corre-
sponds to GENCODE v.16).

Overlapping exons (on either of the two strands) were merged into meta-
exons, and expression was quantified for the whole meta-exon. Custom scripts 
were developed for this purpose that use coverage per base from coverageBed 
and intersectBed from the BEDtools suite (v2.17.0)46 and R (v2.15.1). This 
resulted in base counts per exon or meta-exon.

Gene expression, as base count per gene, was calculated as the sum of 
the expression values for all exons of each gene (excluding meta-exons). 
Overlapping gene parts were counted separately from unique gene parts 
throughout this manuscript.

Expression of exons relative to their gene (exon ratio) was calculated by 
dividing the exon base counts by the summed base counts for all exons of the 
same gene. Meta-exons overlapping with multiple genes were discarded.

Overlapping 3′ UTRs for the same gene, as annotated in Ensembl, were 
merged by gene. A collection of poly(A) sites was retrieved from PolyA_DB, 
and the annotated 3′ ends of transcripts were obtained from Ensembl. These 
poly(A) sites were used to split the merged 3′ UTRs into bins. To avoid small 
bins, which tend to give noisy ratios, we applied some filtering to the poly(A) 
sites. Poly(A) sites located no more than 10 bp from the start or from the end 
of the 3′ UTR were discarded. Additionally, sites that were no more than 10 bp 
apart were merged (if the number of sites was even, the first site downstream 
was used). For all genes with at least two bins (corresponding to at least two 
potential poly(A) sites), we calculated the ratio of base counts for every two 
neighboring bins (poly(A) ratio).

Genotype data. Data generation. Genotype data were generated for each 
cohort individually. Details on the methods used can be found in the indi-
vidual papers (CODAM42, LLD19, LLS47 and RS21).

Imputation and quality control. The genotype data were harmonized to 
GoNL48 using Genotype Harmonizer49 and were subsequently imputed per 
cohort with IMPUTE2 (ref. 50) using the GoNL reference panel51 (v5). Quality 
control was also performed per cohort. We removed SNPs with an imputation 
info score below 0.5, a Hardy–Weinberg equilibrium P value smaller than  
1 × 10−4, a call rate below 95% or a MAF smaller than 0.05. In total, 9,333,740 
SNPs passed quality control in at least one data set.

Quality control. To identify low-quality samples, we applied several quality 
metrics and used a combination of them to decide whether to exclude a sample 
from further analyses.

Read counts. For each sample, the total number of mapped reads was used 
as a quality measure. Samples for which these counts were less than 70% were 
flagged and excluded from the analysis.

Exon and gene expression correlation. For each pair of samples, the Spearman cor-
relation of their expression was calculated on the gene and exon levels. From these 
values, the median Spearman correlation for each sample was calculated (D statis-
tic). Samples with D statistics lower than 0.85 were excluded from the analysis.

Genotype concordance. As an extra quality control step, we compared 
imputed genotypes to those derived from RNA–seq. Concordance is expected 
to be low in cases of poor-quality RNA–seq or imputed genotype data or in 
cases of sample mix-up.

RNA–seq genotypes were called using SAMtools mpileup52 (with the fol-
lowing parameters: -A -B -Q 0 -s -d10000000; calling only GoNL SNPs with 
MAF >0.01) and SNVMix2 (ref. 53). Only genotypes with posterior probabili-
ties higher than 0.8 were included. We determined the genotype concordance 
per sample as the genotype correlation of high-confidence SNPs (SNPs with 
a mean genotype correlation across all samples of no lower than 0.9). Outlier 
samples, for which the genotype concordance was less than 0.9, were flagged 
and excluded from the analysis.

Heterozygosity rate. A maximum heterozygosity rate of 0.52 was used to 
exclude contaminated RNA–seq samples. This rate was calculated using the 
same high-quality genotypes used for the genotype concordance calculations.

Mix-up mapping. Previously, we showed that sample mix-ups occur fre-
quently in genomics data sets, introducing noise into subsequent analyses54.  
We checked the data for mix-ups using this published method and flagged 
possibly mixed samples.

QTL mapping. We used our previously described pipeline22 to perform eQTL 
mapping. We mapped QTLs using Spearman rank correlation on imputed 
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genotype dosages in each cohort and then ran a meta-analysis combining the 
results by weighted z-score method. To control the FDR at 0.05, we created a 
null distribution by permuting sample labels for the expression data, repeating 
this process ten times.

Expression data normalization. Expression data on the gene and exon levels 
were first normalized using trimmed mean of M (TMM) values55. Expression 
values were then log2 transformed, probe and sample means were centered 
to zero, and their standard deviation was scaled to one. To correct for batch 
effects, principal-component analysis (PCA) was run on the sample Spearman 
correlation matrix and the first 25 principal components were removed22. 
We observed that removing these principal components resulted in detection 
of the highest number of eQTLs. To verify that none of these 25 principal 
components were under genetic control, we ran separate QTL mapping on 
each principal component and ensured that there were no SNPs associated 
with them.

Exon ratio and poly(A) ratio expression data were not normalized, as ratios 
are not dependent on library size and we used non-parametric statistics.

Cis-QTL mapping. To run cis-QTL mapping, we tested genes (or exons, 
exon ratios or poly(A) ratios) and SNPs located within 250 kb of a 
gene (or exon) center. Only SNPs with MAF ≥0.05, call rate ≥0.95 and  
Hardy–Weinberg equilibrium P value ≥0.001 were included. We identified 
independent QTL effects by stepwise regression: we found secondary QTLs 
by regressing out the primary QTLs and identified tertiary QTLs by regress-
ing out primary and secondary QTLs. This procedure was repeated until 
no more independent effects were found. We acknowledge that it might be 
possible that some of the identified independent effects might actually tag 
untyped variants.

Set of background SNPs for functional enrichment analyses. To assess the 
functional enrichment of expression SNPs (eSNPs) for each QTL, we created 
a list of background SNPs that we compared to the real set. For each eQTL 
SNP, we selected the variants within a 50,000-bp window with a MAF differing  
by no more than 0.05 from that of the eQTL SNP and LD r2 ≤0.5. From the 
variants that met these criteria, we selected the one that was physically closest 
to the eQTL SNP as the background SNP.

Replication of cis-eQTLs. The first replication data set comprised Geuvadis 
RNA–seq data from LCLs23. For replication, we obtained raw RNA–seq reads 
from 373 European samples and processed them using the same alignment 
and quality control pipeline as we used on the BIOS data. For eQTL mapping, 
we regressed out the first 20 principal components from the expression data 
(because of the smaller sample size of the Geuvadis data set). To replicate BIOS 
eQTLs in Geuvadis, we took all significant eQTLs (the top SNP for each gene) 
from BIOS and ran eQTL mapping in Geuvadis, testing only these eQTLs. 
We then checked how many eQTLs out of all those tested were replicated and 
for how many of the replicated eQTLs the allelic direction was opposite. We 
performed the same analysis in the other direction, testing how many of the 
Geuvadis eQTLs were replicated in the BIOS data.

The second data set for replication comprised a meta-analysis of 5,311 
peripheral blood samples analyzed by microarray22. As raw data were not 
available for this data set, we used all significant eQTLs (FDR < 0.05) identified 
in the meta-analysis, mapped the microarray probes to genes and exons using 
Ensembl v71 gene annotation, and then tested these SNP–gene and SNP–exon 
combinations in the BIOS data.

GWAS annotation. To annotate eQTLs with known disease or trait associa-
tions, we used a set of 6,321 SNPs derived from the NHGRI GWAS catalog and 
a set of reported Immunochip associations, each with reported P ≤ 5 × 10−8  
(Supplementary Table 6).

Interaction analysis. For an overview of the method used for the interaction 
analysis, see Supplementary Figure 2. The interaction analysis was performed 
using the following linear model 

Y I G P P G≈ + + + ×b b b1 2 3

where Y is the eQTL gene expression, G is the eQTL SNP genotype, P is the 
proxy gene, P × G is the interaction term between the proxy gene and the 
genotype, I is the intercept, and β1, β2 and β3 are regression coefficients.

As a linear model is parametric and thus more sensitive to outliers and non-
normal distributions than our non-parametric eQTL model, we performed 
stricter quality control. We found that several metrics introduced outliers in 
our data that confounded the linear regression analyses. These metrics were 
the percentage of coding bases, the median 3′ bias, the percentage of uniquely 
mapped reads and the percentage of mRNA bases (Supplementary Fig. 8). 
On the basis of these metrics, we removed 75 samples and used the remaining 
2,041 samples in the interaction analyses. We confined the interaction analysis 
to genes with at least one mapped read in all samples; this criterion was used 
for both the proxy genes and the eQTL genes. As a result, we tested 29,750 
genes as potential proxies and 17,291 eQTL effects.

Normalization for the expression of eQTL genes is different from that 
for the expression of proxy genes. The gene expression data for eQTL genes 
were corrected using covariates for the source biobank, the first 25 principal 
components, sex, the median 3′ bias, the median 5′ bias, GC content and the 
percentage of intronic bases. To detect biologically meaningful interaction 
effects, we also regressed out the interaction effects for sex, the median 3′ 
bias, the median 5′ bias, GC content and the percentage of intronic bases. 
The expression data used in the interaction term were processed in a similar 
manner, with the exception that we did not correct for principal components, 
as this would have removed correlations with cell type, and we did not correct 
for interactions with technical covariates.

We excluded interactions where the eQTL SNP showed a significant eQTL 
effect on the tested proxy gene, as we wanted to exclude cases in which the gene 
giving the interaction effect was in the same locus as the tested eQTL gene.

We then performed an iterative interaction analysis by regressing the top 
covariate in a stepwise manner. After the first round of interaction analysis, 
we identified the covariate having the highest chi2sum 
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∈
∑

where e is an eQTL from the set of all eQTLs (E) and ze
2  is the squared inter-

action z score of the current covariate with the eQTL e, over all interaction z 
scores. We regressed out this covariate from the covariate and gene expression 
data and repeated the interaction analysis. This procedure was repeated ten 
times. For each top covariate, we identified a set of covariates (module) with a 
similar interaction pattern by taking the top 100 covariates having the highest 
chi2sum difference between the current interaction analysis step and the pre-
vious step (effectively identifying coexpressed genes). These covariates were 
mostly highly coexpressed with the top covariate in the module (Fig. 2c).

To determine the significance level of interactions, we permuted genotype 
sample labels and ran the interaction analysis. This enabled us to determine 
which eQTLs significantly interacted with the top covariate of the module 
with FDR ≤ 0.05.

We ran interaction analysis at the exon and exon ratio levels in a similar 
manner as for the gene level. The implementation and manual for our method 
can be found at https://github.com/molgenis/systemsgenetics/wiki/Discovery-
of-hidden-confounders-of-QTLs.

Interaction module functions. To find the prevalent cell type for each mod-
ule, we used several sources of information. Some of the BIOS biobanks had 
cell counts available, making it possible to correlate the top 100 covariates of 
each module with cell type percentages.

As an additional source of evidence, we used expression profiles for iso-
lated populations of 17 of the major cell types in blood generated by the 
BLUEPRINT consortium31.

To determine the putative function of each module, we performed pathway 
enrichment analysis using GeneNetwork56,57 on the top 100 covariates in the 
module and on all eQTL genes having a significant interaction with the top 
covariate of the module.

To gain more insight into the function of the modules we identified, we 
overlapped the interaction results with those from several previous studies of 
stimulated cells and response QTLs (reQTLs), including a study of peripheral 
blood mononuclear cells infected with rhinovirus15 and a study of monocytes 
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treated with LPS (collected at 2 and 24 h after treatment) and interferon14. To 
investigate whether each interaction module represented an antiviral or antibac-
terial response, we checked for enrichment of the differentially expressed genes 
reported for each stimulation (with −1 < log(fold change) < 1) within the top 100 
covariates for each interaction module by performing a one-tailed Fisher’s exact 
test to determine the significance. We also determined whether the reported 
reQTLs showed significantly stronger interaction with the top covariate of each 
module by performing a Wilcoxon rank-sum test on interaction z scores.

We checked whether there was enrichment of binding for particular tran-
scription factors using ChIP–seq data from ENCODE58. First, we determined 
which transcription factors overlapped with the eQTL SNP or a variant in very 
strong LD (r2 ≥ 0.99). Then, using a Fisher’s exact test, we determined whether 
there was any enrichment in overlap between the genes assigned to a module 
and the genes not significantly assigned to this module.

Using interaction modules to better understand disease mechanisms. We 
extracted the genes regulated by any type of top QTL variant in strong LD  
(r2 ≥ 0.8) with top GWAS hits. Coexpression was assessed for these genes in our 
data, and Cytoscape 3.2.1 (ref. 59) was used to create network plots. Assignment 
to specific clusters was performed using the R implementation of Affinity 
Propagation60,61. Cell-type-specific expression levels were based on the RNA–seq 
data generated by the BLUEPRINT consortium31 and were plotted using gplots. 
We performed gene function enrichment analysis using GeneNetwork56.

Cell-type-specific eQTL mapping. Cell-type-specific eQTLs were identi-
fied using the same method we used for the gene-based interaction analyses. 
However, here we used cell type percentages instead of the expression of other 
genes. As not all cohorts measured cell counts, we estimated counts for cohorts 
without this information. RNA–seq and cell count data for 628 samples from 
the LLD cohort and 650 samples from the LLS cohort were used to build 
prediction models for cell count using an in-house predictor for neutrophils, 
lymphocytes, monocytes, eosinophils and basophils. We evaluated this method 
using cross-validation (Supplementary Fig. 9). The models were applied to 
RNA–seq data for 185 samples from the CODAM cohort and 14 samples from 
the LLS cohort to predict cell counts for the five cell types. In addition, the pre-
diction models were applied to estimate cell counts for neutrophils, eosinophils 
and basophils, using RNA–seq data from 652 samples from the RS cohort in 
which cell counts for lymphocytes and monocytes were available.

BLUEPRINT tissue-specific expression data analysis. BLUEPRINT data was 
downloaded from their ftp site (ftp://ftp.ebi.ac.uk/pub/databases/blueprint). 
All RNA–seq data from venous blood, myeloid cell and erythroblast samples 
were downloaded. Read counts were obtained according to the gene quan-
tification performed by the Center for Genomic Regulation. Subsequently, 
TMM normalization55 was performed. Averaged normalized log-transformed 
counts per million per cell type were used to draw heat maps. For each module, 
we extracted corresponding genes on the basis of their Ensembl gene identi-
fiers (for meta-exons, we used the first Ensembl identifier; three noncoding 
RNAs could not be extracted from the BLUEPRINT data). Furthermore, the  
R package pheatmap (1.0.7) was used to generate heat maps.

Data availability. Raw RNA–seq data can be obtained from the  
European Genome-phenome Archive (EGA; accession EGAD00001001623). 
Genotype data are available from the respective biobanks: LLS (http://www.
leidenlangleven.nl/en/home; e-mail: m.beekman@lumc.nl), LifeLines (https://
lifelines.nl/lifelines-research/access-to-lifelines; e-mail: llscience@umcg.nl), 
CODAM (e-mail: m.vangreevenbroek@maastrichtuniversity.nl) and RS 
(http://www.erasmusmc.nl/epi/research/The-Rotterdam-Study/?lang=en;  
e-mail: m.a.ikram@erasmusmc.nl). eQTL results can be accessed via our web 
browser (http://genenetwork.nl/biosqtlbrowser/).
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