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The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to
100 female live births) for populations of European descent. The sex ratio is considered to be affected by numer-
ous biological and environmental factors and to have a heritable component. The aim of this study was to in-
vestigate the presence of common allele modest effects at autosomal and chromosome X variants that could
explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS)
meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of
European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms
(SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants
within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed
under the demographic model for European populations with a fixed sex ratio and a random mating scheme
to assess the probability of detecting significant allele frequency differences. We do not detect any genome-
wide significant (P < 5 3 1028) common SNP differences between men and women in this well-powered
meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale in-
vestigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to
the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic associ-
ation study design, for example when using mixed controls for sex-biased traits.

INTRODUCTION

The male-to-female sex ratio at birth is very constant across
world populations, ranging between 1.02 and 1.08 (102–108

male to 100 female live births), with an average of 1.06 for
populations of European descent (1–3). The sex ratio at
birth is mainly determined by factors influencing the
primary sex ratio, which is the sex ratio at conception, and

Human Molecular Genetics, 2012, Vol. 21, No. 21 4807

 by guest on O
ctober 17, 2012

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


those influencing the survival of the embryo (4). Frequently
reported primary sex ratio-determining factors include motility
and survival time of X-bearing and Y-bearing sperm. A
proportion of prenatal mortality can be attributable to im-
munological interaction between mother and embryo (4).
Interestingly, more males are being born in spite of the fact
that there is higher mortality of males than females during
intrauterine life (4,5). In addition, the sex ratio is considered
to be affected by numerous other biological (endogenous)
and environmental (exogenous) factors, albeit their influence
is generally thought to be of a small effect (1,6). These
factors include gonadotropins and/or testosterone concentra-
tion at the time of conception, ovulation induction, parental
age, parity, birth order, coital rates, infertility, parental
illness, maternal malnutrition, smoking, exposure to certain
chemicals, stress, war, socioeconomic status and many
others (1,6–8). The variation in sex ratio was also observed
in many animal and plant species (9). Studies of parasitoid
wasps, particularly Nasonia vitropennis, identified several
quantitative trait loci (QTL) associated with the sex ratio,
pointing to a genetic contribution (9). In addition, many
authors suggest that the human sex ratio also has a heritable
component. Paternal effects have been proposed to play a
role in the sex ratio, for example, men with more brothers
tend to have more sons whereas men with more sisters tend
to have more daughters (5,10,11). Based on population genet-
ics modelling, Gellatly et al. (11) suggested that the sex ratio
is determined by common inheritance of polymorphic auto-
somal genes that exert their effect through the male reproduct-
ive system. Another study of reproductive fitness in the
Hutterite population suggested that genetic variants, both auto-
somal and X-linked, influence natural fertility in humans (12).
Research of human births in two-child families observed that
sexes of offspring do not follow a binomial model of inherit-
ance where probability of having a boy equals probability of
having a girl (13). This study also pointed to the lack of inde-
pendence among sexes of children of the same parents (13). A
couple of possible genetic mechanisms underlying this obser-
vation such as Y- and X-linked immunological incompatibil-
ities between mother and embryo have been proposed (13,14).

In the present study, we test whether common variant genetic
effects partly underlie the observed male-to-female sex ratio at
birth. To address this, we investigate the presence of autosomal
and chromosome X variant differences between men and
women across 114 863 individuals through large-scale genome-
wide association study (GWAS) meta-analysis. We also
conduct a forward-time simulation study to assess the probabil-
ity of observing significant allele frequency differences at auto-
somal markers between men and women. Our study has high
power to detect loci with modest to small effect sizes.

RESULTS

GWAS meta-analysis results

Initial meta-analysis results pointed to an excess of associa-
tions compared with the null distribution (Fig. 1A). We exam-
ined all genome-wide significant SNPs with effective sample
size .10 000 to check for false positives due to genotyping
error or other artefacts. We investigated three main diagnostic

metrics: poor cluster plots in men or women (Supplementary
Material, Fig. S1), sequence similarity on chromosome Y
and exact Hardy–Weinberg equilibrium (HWE), P , 1.0 ×
1026 for men or women. Autosomal SNPs that lie in
genomic regions that have sequence similarity on the Y
chromosome may be incorrectly genotyped/called in men,
but not in women, which may give rise to false-positive asso-
ciations. This can be traced through several quality control
(QC) checks in men: excess of heterozygosity, deviation
from HWE and poor cluster plots in men and not in women.
Some/all of these factors were observed for SNPs designated
for exclusion from follow-up (all with highly significant asso-
ciation P-values). We excluded SNPs from the pseudoautoso-
mal chromosome X boundary regions (within 55 kb on the
short arm of chromosome X and 115 kb on the long arm
that lie next to the non-pseudoautosomal regions) to guard

Figure 1. QQ plots for 2 623 828 directly genotyped and imputed SNPs: (A)
for all examined SNPs; (B) after exclusion of poorly genotyped/called SNPs.
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against genotyping error in men (for example, caused by the
presence of truncated copies of genes and/or mappings to mul-
tiple places across the genome). After exclusion of all poorly
genotyped/called SNPs, we detect a single genome-wide sig-
nificant association at a non-pseudoautosomal chromosome
X variant (rs12689384, P ¼ 2.66 × 10213), which is an intron-
ic variant within RBMX2. As this SNP was imputed in all
studies driving the association, we checked cluster plots of
all directly typed variants 500 kb upstream and downstream
of the associated SNP in all studies, excluded SNPs with
poor clustering, re-imputed the region and re-run the
meta-analysis. The significance of rs12689384 dropped by
five orders of magnitude (allele G, OR ¼ 1.18, 95% CI
[1.11–1.25], P ¼ 3.27 × 1028) but remained nominally
genome-wide significant. However, there are several factors
that reduce the credibility of this finding. First, 12 studies in
total contributed summary statistics for this variant (for a
total of 33 259 individuals), out of which six WTCCC1
studies drive the association (Supplementary Material,
Table S1). This SNP is imputed in all WTCCC1 studies. Sec-
ondly, as shown in the regional association plot (Supplemen-
tary Material, Fig. S2), this SNP lacks support for
association from neighbouring variants. The next most statis-
tically strong association in the region is modest (P ¼
1.99 × 1024) and observed at an SNP (rs2294956) which is
in perfect linkage disequilibrium with rs12689384 (r2¼ 1,
D’ ¼ 1) based on HapMap CEU, on which imputation was
based. This second SNP (rs2294956) is also imputed in the
WTCCC1 studies, but in fact the meta-analysis includes data
from over twice the sample size (31 studies, 67 162 indivi-
duals, Supplementary Material, Table S1). All studies contrib-
uting directly typed data for this variant (46 066 individuals
with directly typed data) show no evidence for association,
indicating that the signal observed at the imputed variant
may be an artefact. We have therefore not considered this
single associated SNP any further.

The distribution of association P-values after meta-analysis
QC was consistent with the null (Fig. 1B). Our study has 80%
power to detect OR of 1.13 (at a ¼ 5 × 1028) for SNPs with
minor allele frequency (MAF) .5%, assuming an additive
model. We did not further examine SNPs with P-values
above the genome-wide significance threshold since our
study had sufficient power to detect associations of loci with
small-to-modest effect sizes.

Simulation study results

Association analysis of 1 337 699 autosomal common and 135
988 autosomal low-frequency variants in the simulated case–
control set matching the empirical study did not identify any
differences in allele frequencies between men and women
(a ¼ 5 × 1028). Quantile–quantile (QQ) plots for simulated
common and low-frequency variants are shown in Supplemen-
tary Material, Figure S3.

DISCUSSION

This large-scale investigation across 114 863 individuals iden-
tified no detectable contribution from common genetic

variants to the observed skew in sex ratio at birth. This
study combined the data from 51 cohorts and has excellent
power to detect small-to-modest effect sizes at common loci.
The sample sizes contributing to the analysis of chromosome
X SNPs were lower due to limited overlap of directly typed
SNPs across platforms (in the absence of imputed data
across all studies). However, power remains high at over
80% to detect small-to-modest effect sizes. From the pheno-
typic aspect, sex is a well-characterized trait representing an
additional strength of this study, which is unlikely to suffer
from phenotype misclassification.

Our results, within the power constraints of our study, indi-
cate that sex-specific selection against particular autosomal
genetic variants is not a plausible explanation for the observed
male-to-female sex ratio at birth and argue against the hypoth-
esis that incompatible genotypes at common variants between
the autosomes and sex chromosomes could lead to miscar-
riage, thus generating sex-specific genetic differences. We per-
formed forward-time simulations of 1.3 million independent
autosomal, common, neutral loci, conditioning on the
male-to-female sex ratio at birth, in a cohort matching the ori-
ginal study sample. The lack of any significant allele fre-
quency differences between men and women was in keeping
with the findings of the GWAS meta-analysis for autosomal
SNPs. We also tested the effects of low-frequency variants
in the simulated data, and found no evidence for association
with the observed sex ratio at birth. However, we cannot
rule out the effects of rare, structural or chromosome Y var-
iants since these were not analysed in our study.

Sex chromosome loci may be relevant for the sex ratio
determination due to their expression in the reproductive
system, their role in spermatogenesis, sperm morphogenesis
and movement and male–female fertility in general (15,16).
Therefore, we performed a comprehensive chromosome X ana-
lysis involving two main chromosome X regions: pseudoautoso-
mal and non-pseudoautosomal. There are two pseudoautosomal
regions (PAR1 and PAR2), which are homologous on X and Y
chromosomes, and for which men and women carry two
alleles per SNP, whereas for the non-pseudoautosomal region
men carry only one allele per SNP. We investigated allele
frequency differences between men and women in both chromo-
some X regions and we observed the association of one non-
pseudoautosomal SNP (rs12689384) just below the genome-wide
significance level. For various reasons expanded in the Results
section, we believe that this variant may be an imputation artefact
and have thus not taken it forward to further studies.

The investigated dataset consisted of more women (61 094)
than men (53 769). Our meta-analysis incorporated summary
statistics deriving from 51 collaborating studies and the vast
majority of these studies (36 studies) are population based.
The main difference in the sex ratio is driven by these popu-
lation based studies and the reasons for having fewer men
can be heterogeneous and study specific. Most likely the
main reasons are the generally recognized lower male re-
sponse to take part in epidemiological population-based
studies (17) and/or sex differences in longevity where
women have a higher expected lifespan (18). Fifteen of the
51 contributing studies are disease- rather than population-
based and the sex ratio in these studies approximately corre-
sponds to the disease sex ratio in the population. We were

Human Molecular Genetics, 2012, Vol. 21, No. 21 4809
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driven by the rationale that the sex ratio at birth is constant
throughout time and across all world populations, meaning
that common variants are more likely to underlie the observed
sex ratio at birth. Therefore, in the case of a higher male death
rate, we would still have enough power to detect common
variant differences due to a very large sample set. However,
there are scenarios where this sampling difference between
men and women might cause bias, for example there may be
a genetic variant that is influencing both the sex ratio and lon-
gevity in men. In that case, higher male death rate would cause
the removal of this specific genetic variant, thus masking the
signal.

Our results have important implications for genetic associ-
ation study design, for example regarding the selection of
control sets for sex-biased traits such as prostate cancer in
men or anorexia nervosa in women. The use of single-sex con-
trols for sex-specific diseases generally decreases the sample
size and power of a study. Our findings demonstrate that
mixed sex controls can be used as an appropriate set in
studies of sex-specific traits, when focusing on common loci.
As one additional implication for genetic association study
analyses, our study stresses the importance of careful pre-
and post-analysis QC. QQ plots of our initial meta-analysis
results showed high deviation from the null, yet, after QC
we observe no inflation of signal. A robust and thorough QC
pipeline is necessary to verify any positive association
signals, especially in meta-analyses where many studies con-
tribute data that were genotyped (and phenotyped) in many
different settings.

We conclude that common genetic variants do not play a
role in defining male-to-female sex ratio at birth. In this
large-scale meta-analysis of �115 000 individuals, we found
no allele frequency differences at common loci between men
and women. Simulated data of autosomal neutral variants
support these findings. Our results can be useful in informing
GWAS study design, especially when using mixed controls for
sex-biased traits.

MATERIALS AND METHODS

Study samples

We conducted genome-wide meta-analysis across 51 studies,
comprising overall 114 863 individuals (61 094 women and
53 769 men) of European ancestry. The characteristics of
samples from contributing studies are presented in Supple-
mentary Material, Table S2.

Ethics statement

Each study obtained ethical approval from their respective
research ethics committee and all participants gave signed
informed consent in accordance with the Declaration of Helsinki.

Genotyping, imputation and QC

All samples were genotyped using commercially available
Illumina (Illumina, Inc., San Diego, CA, USA) or Affymetrix
(Affymetrix, Inc., Santa Clara, CA, USA) platforms. Imput-
ation of missing genotypes was based on HapMap Phase II

genotypes for the European population (CEU). QC of directly
typed and imputed variants was conducted separately in each
study. Study-specific information on genotyping platforms,
imputation methods and QC metrics is presented in Supple-
mentary Material, Table S3. QC checks included tests for
relatedness among samples within individual studies.

Genome-wide association analysis of autosomal variants

Case–control association analysis of autosomal SNPs was
conducted under the additive model, for directly typed and
imputed variants, within each study. Women were coded as
cases and men as controls. Association analyses of imputed
variants took genotype uncertainty into account, with the ex-
ception of the QIMR study which conducted analysis on best-
guess genotypes. Where necessary, the first three genotype-
based principal components were used as covariates. Studies
with related individuals additionally adjusted analyses for
family relatedness using linear mixed models. Study-specific
association analysis software is presented in Supplementary
Material, Table S3.

Chromosome X analysis

Each contributing study performed two separate chromosome
X analyses, including pseudoautosomal and non-
pseudoautosomal regions. Association analyses were per-
formed, as per autosomes, under the additive model. Overall,
42 studies performed analysis of pseudoautosomal region, 11
of these imputed data using HapMap Phase II, all others
used directly typed variants only. For non-pseudoautosomal
region, 46 studies performed association analysis, 12 of
these used HapMap Phase II imputed data whereas others
used directly typed variants only. Study-specific chromosome
X imputation/association analysis software is presented in
Supplementary Material, Table S3.

GWAS meta-analysis

We performed fixed and random effects meta-analysis to syn-
thesize summary statistics results across contributing studies
to identify autosomal and chromosome X common SNP differ-
ences between men and women. For meta-analysis purposes,
we used GWAMA (19). Prior to meta-analysis, we excluded
SNPs with MAF lower than 0.05 and SNPs with low imput-
ation accuracy scores. Specifically, we used a cut-off of
rsq_hat , 0.3 for genotypes imputed with MACH (20),
BEAGLE (21) and PLINK (22) software and a cut-off of
proper info score ,0.5 for IMPUTE (23) software. Overall,
2 623 828 directly genotyped and imputed SNPs passed QC
criteria and were included in the meta-analysis. The genomic
control (GC) inflation factor (lambda) was calculated and
applied to correct the results for each study separately prior
to the meta-analysis. The meta-analysis results were also cor-
rected for overall lambda GC. The average GC inflation factor
across studies was 1.005 for directly genotyped SNPs, 0.97 for
imputed SNPs and 1.007 overall, suggesting little population
stratification. To determine the effective number of individuals
for each study, we calculated effective number of cases
(N_eff_case) and multiplied it by 2. N_eff_case was derived
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using the formula N_eff_case ¼ 2 × N_case × N_ctrl/
(N_case + N_ctrl), where N_case and N_ctrl is the number
of cases (women) and controls (men), respectively. We inves-
tigated evidence of heterogeneity using the I2 statistic (24).
Genome-wide significance was set to 5 × 1028. We created
QQ plots to visualize meta-analysis association results. The
power of our study was determined using QUANTO (25).

Simulation study

To exclude the possibility that our null results for autosomal
variants are due to either sampling bias or data quality and
to examine the probability of having false positives within
the power constraints of our study, we sought a theoretical cor-
roboration of our empirical results by conducting association
analysis in an ‘ideal’ unbiased simulated dataset. Simulated
genetic data were produced by means of forward-time simula-
tion (26–28) under a model of a single population with two
bottlenecks according to Schaffner et al. (29) with two excep-
tions: recent exponential growth of population size (instead
of instantaneous changes) and final effective population size
of 106 (instead of 105), as this has been shown to be the
case for the European population (30). Demographic model
parameters are given in Supplementary Material, Table S4.
The generation time was assumed to be 25 years, and the mu-
tation rate per site per generation was 1.5 × 1028 (29). We
applied a fixed sex ratio and a random mating scheme (i.e.
parents are randomly selected irrespective of their genotype)
validated by different genetic and demographic models (27).
We set a probability of having a male offspring to 0.5122,
which corresponds to a male-to-female ratio of 1.05. Simula-
tions were run for 17 000 generations after which we randomly
sampled women and men matching the original study for
sample size (women ¼ 61 094; men ¼ 53 769).

We simulated unlinked, neutral, autosomal common var-
iants with initial MAF of 0.02 in the founder population
(27,31). The total number of simulated loci was 56 502 900,
out of which 2.4% were common (MAF . 0.05). We per-
formed allele-based chi-squared association tests on the 1
337 699 common loci. This figure matches the estimated
number of independent SNPs in HapMap CEU samples of
around 1 million (32). We additionally performed allele-based
Fishers exact association tests on 135 988 low-frequency var-
iants (MAF 0.01–0.05). Supplementary Material, Figure S4
shows the MAF spectrum for simulated data compared with
the 1000 Genomes Project Pilot 3 CEU (2n ¼ 60) data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Finska Läkaresällskapet, the European Science Foundation
(EuroSTRESS), the Wellcome Trust (Grant No. 89061/Z/09/
Z and 089062/Z/09/Z), Samfundet Folkhälsan, Finska Läkare-
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