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Abstract: The field of DNA methylation research is rapidly evolving, focusing on disease and
phenotype changes over time using methylation measurements from diverse tissue sources and
multiple array platforms. Consequently, identifying the extent of longitudinal, inter-tissue, and
inter-platform variation in DNA methylation is crucial for future advancement. DNA methylation
was measured in 375 individuals, with 197 of those having 2 blood sample measurements ~10 years
apart. Whole-blood samples were measured on Illumina Infinium 450K and EPIC methylation arrays,
and buccal samples from a subset of 58 participants were measured on EPIC array. The data were
analyzed with the aims to examine the correlation between methylation levels in longitudinal blood
samples in 197 individuals, examine the correlation between methylation levels in the blood and
buccal samples in 58 individuals, and examine the correlation between blood methylation profiles
assessed on the EPIC and 450K arrays in 83 individuals. We identified 136,833, 7674, and 96,891 CpGs
significantly and strongly correlated (>0.50) longitudinally, across blood and buccal samples as well
as array platforms, respectively. A total of 3674 of these CpGs were shared across all three sets.
Analysis of these shared CpGs identified previously found associations with aging, ancestry, and
7016 mQTLs as well.

Keywords: DNA methylation; epigenetics; Illumina microarrays; tissue comparison; platform
comparison; longitudinal design

1. Introduction

Epigenetic mechanisms provide a molecular link from an individual’s environmental
exposures to their expressed phenotype through the modification of gene expression. Epi-
genetic marks are mitotically, and sometimes meiotically, heritable elements that regulate
gene expression without modifying the underlying DNA sequence [1]. DNA methylation,
one of the most studied epigenetic mechanisms, is the addition of a methyl group onto
cytosine nucleotides at the C5 position forming 5-methylcytosine, typically next to a gua-
nine (forming a CpG site), and this modification can regulate gene expression and mediate
downstream effects of genetic variants [2]. DNA methylation has become of particular
interest in epigenetic research as it is the easiest to assess from a genome-wide perspective
in large numbers of individuals due to the scalability of the laboratory practices required
to investigate it, typically by array-based assays. DNA methylation can be utilized to
quantitate cellular differences, environmental influences on a particular trait, and changes
in cell senescence that occur during aging [2,3]. The availability of easily accessible tissue
samples (whole blood, buccal, saliva, etc.) with these scalable technologies allows for
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the implementation of large-scale epigenome-wide association studies (EWASs), which
may lead to the development of biomarker assays that can serve as risk indicators for
disorders and disease, monitor treatment effects, and predict treatment outcomes. Though
the increase in DNA methylation research has been substantial, there are many questions
that remain regarding the reliability, application, and extrapolation of this information
across tissue, over time, and across measurement platforms.

Studies investigating DNA methylation in relation to individual age and mortality
have led to some of the biggest breakthroughs in the field over the past decade. Previous re-
search investigating DNA methylation in relation to chronological age identified one of the
strongest, measurable associations that can accurately predict an individual’s chronological
age [4]. Since an initial study by Horvath et al. in 2013, additional studies investigating
DNA methylation in groups of individuals of differing ages have identified even more asso-
ciations with DNA methylation [5–7]. There is a multitude of studies that have investigated
the association of age and DNA methylation, but there are remarkably few longitudinal
projects, i.e., with the inclusion of the same individuals over time for the investigation of
CpGs. Likely, this is partly due to the time consumption inherent to such study designs [4].
Understanding the stability (or lack thereof) of the entire DNA methylation profile via
individual CpG measurements over time will quantify the susceptibility to a change in the
methylome and offer a starting point to further investigate these CpGs longitudinally.

The epigenetic mechanisms that drive cellular differentiation have been studied ex-
tensively [8]. Large efforts have been put forth to quantitate and identify the similarities
and differences in DNA methylation across tissues [9]. For example, Slieker et al., using an
Illumina 450K array, reported CpGs with correlated methylation levels between blood and
16 different tissues, including the brain, buccal, liver, kidney, subcutaneous fat, monocytes,
and T-helper cells [10]. In this comparison, they included 96 blood/buccal samples and
were able to find 4857 differentially methylated positions (DMPs), of which 126 were also
identified in the 426 DMPs found in whole blood, showing modest overlap between the two
sample types [10]. Hannon et al. compared DMPs in DNA derived from whole blood to
DMPs in DNA isolated from targeted regions in the brain, which has resulted in the creation
of a number of online resources that allow researchers to compare methylation levels on
a per-CpG basis between two tissue sources [11]. A previous study conducted by Braun
et al. compared the methylation levels of samples from multiple tissue sources (which
included whole blood and buccal) in 27 individuals and calculated an overall correlation of
DNA methylation across subjects of 0.81 comparing the methylation levels of whole-blood
and buccal samples [12]. Adding to the previous findings in this field can improve the
understanding of extrapolating findings across different tissues.

The Illumina Infinium 450K methylation array was introduced just over a decade ago
in 2012 and has been one of the most widely utilized tools to investigate DNA methyla-
tion [13,14]. Subsequently, the Illumina Infinium EPIC methylation array was released as
the successor to the 450K array in 2016, covering over 90% of the CpGs on the 450K array
while also interrogating another ~400,000 CpGs [15]. Additionally, further iterations of
the EPIC array (such as version 2) have been released recently, which aim to improve its
coverage and remove under-performing probes [16]. Due to the continual rollout of these
platforms, the EPIC array was created to be compatible with data collected on the 450K
array to allow for large, retrospective studies and meta-analyses combining data sets from
both. Previous work comparing data from samples measured on 450K and EPIC showed
strong concordance for genome-wide methylation status (r = 0.99) [17]. However, recent
publications by Sugden et al. and Olstad et al. demonstrated that correlations of methyla-
tion levels on a CpG-specific basis across these two platforms varied widely, suggesting
that some CpGs are more reliably measured than others [18,19].

Here, we examined CpG-specific longitudinal (~10 years) methylation correlations,
cross-tissue methylation correlations from whole-blood and buccal samples, and methy-
lation correlations measured across the two major Illumina platforms (Illumina 450K–
Illumina EPIC v1, San Diego, CA, USA) in samples taken from 375 participants in two age
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groups of roughly equal size (and sex): the first group of ~19 years of age, on average, at
the first assessment consisted of twins and siblings, and the second group of ~45 years of
age, on average, consisted of their parents. All blood and buccal samples were collected by
the Netherlands Twin Register in the 1990s and 2000s.

2. Results

For each of the three comparisons (Table 1), we obtained the correlation between
DNA methylation levels at individual CpGs. Correlations greater than 0.5 were considered
strong. The total number of CpGs investigated in each set of data (Table 1) was utilized for
the multiple testing correcting via a Bonferroni correction.

Table 1. Study populations and CPGs included for each experiment.

Experiment Individuals Males Females CpGs

Longitudinal 197 95 102 759,263
Tissue 58 21 37 759,263

Platform 83 36 47 386,805

2.1. Longitudinal Comparison

Our gee analysis over approximately 10 years (mean, 9.98 years; median, 9.83 years;
range, 2.8–15 years) across all CpGs yielded a mean correlation of 0.250 and median of
0.204. At 136,833 CpGs, DNA methylation level was strongly and significantly correlated
over time (18%, Table 2). When restricting to the 10% most variable CpGs in this analysis
(75,926), 28,919 (38.1%) were identified to have significant, strong correlations over time.
The mean correlation of the 10% most variable was r = 0.50, with the median being r = 0.53.
Supplementary Table S1 contains a list of the 136,833 CpGs and additional information
regarding them.

Table 2. Strong (>0.50) and significant CpGs of each experiment.

Experiment Significant and Strongly Correlated CpGs

Longitudinal 136,833
Tissue 7674

Platform 96,891
Overlapping 3674

2.2. Cross-Tissue Comparison

Our gee analysis across all 759,263 CpGs on the EPIC array yielded a mean correlation
of 0.071 and a median of 0.067. We identified 7674 CpGs with strong (r > 0.50) and significant
correlations (1%, Table 2). Next, we investigated the overlap of the 10% most variable
CpGs in whole-blood and buccal samples. The overlap of variable CpGs in blood and
buccal samples was modest: 22,459 (out of 75,926 possible, 29.6%). The most variable
CpGs in blood were also among the top 10% most variable CpGs in buccal samples. When
restricting to these shared 10% most variable CpGs that overlap in this analysis (22,459),
1691 (7.5%) were identified to have a significant, moderate correlation across blood and
buccal samples. The mean correlation of the shared 10% most variable was r = 0.27, with
the median being r = 0.14. A list of the 7674 CpGs and Supplementary Materials regarding
them can be found in Supplementary Table S2.

2.3. Cross-Platform Comparison

Our gee analysis across all 386,805 CpGs that overlap across the EPIC and 450K plat-
forms yielded a mean correlation of 0.287 and a median of 0.197. We identified 96,891 CpGs
with strongly and significantly correlated methylation levels across platforms (25%, Table 2).
Next, we investigated the overlap of the 10% most variable CpGs between the two array
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platforms and identified that 31,546 of the potential 38,681 CpGs (81.6%) were of the 10%
most variable for both arrays. When restricting to the 10% most variable CpGs shared by
both the EPIC and 450K array in this analysis (31,546), 24,518 (77.7%) were identified to
have a significant, strong correlation across array platforms. The mean correlation of the
10% most variable was r = 0.83, with the median being r = 0.86. Supplementary Table S3
contains a list of the 96,891 CpGs and their Supplementary Materials.

Next, we compared our cross-platform results with results from a previously published
study that investigated the correlation between repeated measures of 350 blood samples
on the 450K and EPIC v1 array (Sugden et al.) [18]. Utilizing a similar threshold of 0.5
to maintain consistency, we found that Sugden et al. identified 79,007 CPGs with an ICC
(intra-class correlation) value above this threshold [18]. Of these, 56,930 (72.1%) were also
identified in our data to have a significant, strong correlation across platforms [18]. When
comparing in the group of shared highly correlated/reliable CpGs, our gee estimates and
the ICCs generated by Sugden et al. closely resemble one another (r = 0.544, correlation
comparing the gee estimates and ICCs) [18]. This similarity is even greater when comparing
across all 386,805 CpGs (r = 0.810) [18]. Supplementary Figure S1 shows the relationship of
these two measurements for the 386,805 CpGs that overlap.

2.4. Overlap of Reliable CpGs Significantly and Strongly Correlated across Time and Tissue

Investigating our three sets of results from the longitudinal, across-tissue, and across-
platform analyses, we identified 3674 CpGs with correlations >0.50 that also reached
significance. These CpGs yielded a mean correlation of 0.87 and a median of 0.89. A list of
the 3674 CpGs and additional information regarding them can be found in Supplementary
Table S4. Figure 1 visualizes the overlap of the CpGs identified in each analysis. Supple-
mentary Figures S2 and S3 provide additional information on the overlap of significant and
strongly correlated CpGs for each of the three analyses.
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Figure 1. Venn diagram showing the overlap of strongly correlated (r > 0.50) and significant CpGs
across the three experiments.

2.5. EWAS Atlas and BBMRI mQTL Database Query

A query of the EWAS Atlas database providing the 3674 CpGs that were identified to
overlap between all three experiments highlighted several phenotypes that are associated
with hundreds of these CpGs (Table 3) [20]. The EWAS Atlas database can be accessed
via https://ngdc.cncb.ac.cn/ewas/atlas/index (accessed on 5 April 2023). Most notably,
ancestry, gender, and aging were previously associated with 328, 195, and 191 of these CpGs,
respectively [20]. Figure 2 highlights the genomic locations with the greatest associations
with these 3674 CpGs.

https://ngdc.cncb.ac.cn/ewas/atlas/index


Int. J. Mol. Sci. 2023, 24, 14640 5 of 16

Table 3. Shown here are the 10 traits that are most significantly and abundantly associated with the
3674 overlapping CpGs identified through the query of the EWAS Atlas database [20]. The column
“Background” indicates the total number of CpGs that were identified in previous studies to associate
with that particular trait and are represented in the EWAS Atlas [20].

Trait Odds Ratio p-Value CpGs Identified Background

Ancestry 8.887 0 328 10,618
Kabuki syndrome (KS) 25.596 3.18 × 10−306 162 1891
Respiratory allergies (RAs) 78.282 3.43 × 10−296 109 485
Alzheimer’s disease (AD) 19.434 4.39 × 10−160 94 1392
Gestational diabetes
mellitus 6.541 1.50 × 10−135 156 6599

Ankylosing spondylitis 60.141 1.25 × 10−105 41 222
Childhood stress 26.544 2.17 × 10−98 50 550
Primary Sjögren’s
syndrome (pSS) 7.565 3.88 × 10−96 97 3526

Klinefelter syndrome 64.282 3.79 × 10−92 35 179
Leukoaraiosis (LA) 25.757 1.50 × 10−91 47 531
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Figure 2. Results and figures from the query of the EWAS Atlas [20]. This is a bar plot showing the
genomic locations that are associated with the identified overlapping 3674 CpGs (blue bars indicate
positive enrichment and black bars indicate negative enrichment).

A query of the BBMRI mQTL database with the CpGs with a significant, strong
estimate identified in each of the three analyses, along with the 3674 overlapping CpGs,
was performed [21]. The BBMRI database can be accessed via https://bbmri.researchlumc.
nl/atlas (accessed on 16 February 2023). In all four comparisons, we identified an increased
prevalence of CpGs associated with a known mQTL compared to the standard genome-
wide prevalence rate put forth by Bonder et al. [21]. The results are summarized in
Table 4. The group of 3674 overlapping CpGs used to query BBMRI yielded 1989 CpGs
associated with 7016 mQTLs (mean = 3.5 mQTLs per associated CpG, median = 3) [21].
The longitudinal CpGs used to query BBMRI totaled 69,570, with 42,881 of those CpGs
associated with 121,253 mQTLs (mean = 2.8 mQTLs per associated CpG, median = 2) [21].
The cross-tissue CpGs used to query BBMRI totaled 4408, with 2181 CpGs associated with
7402 mQTLs (mean = 3.4 mQTLs per associated CpG, median = 3) [21]. The platform CpGs
used to query BBMRI totaled 96,891, with 61,503 CpGs associated with 165,484 mQTLs
(mean = 2.7 mQTLs per associated CpG, median = 2) [21].

https://bbmri.researchlumc.nl/atlas
https://bbmri.researchlumc.nl/atlas
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Table 4. Summary of mQTL investigation of identified CpGs in each experiment.

CpGs mQTL
Associations

Cis/Trans-mQTL
Breakdown

CpGs with At Least
1 Association

CpGs Cis/Trans-mQTL
Breakdown

Bonder et al. [21] 405,709 299,853 272,037/27,816 145,792 (35.9%) 142,126 (35.0%)/10,141 (2.5%)
Longitudinal 69,570 121,253 107,601/13,652 42,881 (61.6%) 41,609 (59.8%)/4662 (6.7%)
Tissue 4408 7402 6613/789 2181 (49.5%) 2119 (48.1%)/168 (3.8%)
Platform 96,891 165,484 146,330/19,154 61,503 (63.5%) 59,561 (61.5%)/6849 (7.1%)
Overlapping 3674 7016 6235/781 1989 (54.1%) 1932 (52.6%)/163 (4.4%)

2.6. Investigation of Individual CpGs of Interest

To make a more nuanced investigation of these data, we investigated the correlations
of standard beta values for two specific CpGs: cg05575921 (gene AHRR) and cg16867657
(gene ELOVL2), which are known to be associated with smoking status and chronological
age, respectively. Cg05575921 showed correlations of 0.82, 0.52, and 0.96 when assessed
longitudinally, between blood and buccal samples as well as across platforms, respec-
tively. Cg16867657 showed correlations of 0.92, 0.51, and 0.91 when assessed longitudinally,
between blood and buccal samples as well as across platforms, respectively. These compar-
isons are highlighted in Figures 3 and 4.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 17 
 

 

  
(A) (B) 

 
(C) 

Figure 3. ScaĴer plots showing the relationship of beta values for the CpG cg05575921 (AHRR). (A) 
Between timepoints, (B) between blood and buccal samples, and (C) between measurements of dif-
fering platforms (EPIC vs. 450K). Smoking status is indicated by the color of the circle; grey indicates 
non-smokers and red indicates smokers. 

Figure 3. Scatter plots showing the relationship of beta values for the CpG cg05575921 (AHRR).
(A) Between timepoints, (B) between blood and buccal samples, and (C) between measurements
of differing platforms (EPIC vs. 450K). Smoking status is indicated by the color of the circle; grey
indicates non-smokers and red indicates smokers.
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(A) Between timepoints, (B) between blood and buccal samples, and (C) between measurements
of differing platforms (EPIC vs. 450K). Each point represents one individual, and the shading of
that point from light to dark indicates the individual’s relative age within the group (from young to
old, respectively).

3. Discussion

The collective knowledge of epigenetics has expanded rapidly over the past two
decades. With this rapid expansion, the need has risen dramatically to assess the validity of
expanding, combining, and extrapolating results across tissues, biological age, and measure-
ment platforms. Here, we validate previous findings, expand on the current understanding
of the biological influences of DNA methylation data captured via Illumina microarrays,
and offer explanations of these influences and accompanying recommendations.

3.1. Longitudinal Comparison

In total, we identified 136,833 CpGs that showed a strong, significant correlation in
longitudinal samples collected, on average, 10 years apart. Changes in DNA methylation
as one ages have been proven to have moderate to strong correlations with chronological
age [22]. Further, combining this association with the age of several hundred of these
CpGs has yielded some of the strongest measures of biological function by DNA methy-
lation [23]. Many of the previously generated epigenetic clocks are calculated by only a
few hundred CpG sites [22,23]. Though this involvement with time is present, a large
portion of measurable CpG sites appear quite stable over time, as shown here (at least
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relative from individual to individual). Previous findings have shown that, while DNA
methylation is dynamic and is influenced by aging, methylation profiles typically remain
fairly stable (when compared to other individuals) over short periods of time, and it ap-
pears difficult to modify the relationship between DNA methylation and aging, though
not impossible, as recent findings have suggested [7,24,25]. This stability is also captured
here, showing that a large portion of CpGs correlate extremely well over time. Of those
CpGs that did not reach the threshold of 0.50 utilized here, many still show modest positive
correlations. Further, we identified that the CpGs showing the largest variance in beta
value also generally showed a much greater correlation compared to the genome-wide
average. This indicates that the CpGs that correlate well over time, while relatively stable,
show significant inter-individual variability, and this variability appears to be driven by
influences outside of the aging process. We should note that CpGs with a strong correlation
across time points can still show changes with age, though these changes are consistent
when compared to other individuals. For example, an individual with a higher level at
time point 1 (compared to other individuals) will also tend to have a high level at time
point 2 (compared to other individuals).

3.2. Cross-Tissue Comparison

We identified 7674 CpGs with a strong and significant correlation across blood and
buccal samples (r > 0.50). Tissue-specific differences in DNA methylation are some of the
most known and well characterized [10,11,26,27]. Even though epigenetic processes are
a large driver of cellular differentiation, we still identified thousands of CpGs across the
genome that proved to be consistently methylated in the same individual (relative to other
individuals), regardless of the sample source (whole blood vs. buccal). That being said,
we found, comparatively, a significant reduction in the amount of correlated CpGs in this
assessment versus our assessments longitudinally and across platforms, which was to be
expected. Further, a significant majority of the CpGs identified across sample sources largely
overlapped with CpGs that correlated strongly over time (Figure 1). When assessing the
variability of each CpG in both whole-blood and buccal samples independently, we found
that they shared 29% of these CpGs, indicating that while some sample variation appears
consistent across specimen sources, a large majority of it is unique to the source. The
7674 CpGs found to be related between these two sample types could provide significant
value to future studies looking to investigate the utilization and comparison of whole-blood
and buccal samples as surrogate tissues for investigating various diseases and phenotypes.
Further, the identification of these 7674 CpGs could allow for studies aimed at combining
DNA methylation data from whole-blood and buccal samples utilizing strictly these CpGs.
Both cg05575921 and cg16867657, two CpGs previously identified to be associated with
smoking and aging, for example, fall into this category of CpGs with strong correlations
across whole-blood and buccal samples.

3.3. Cross-Platform Comparison

Here, we identified 96,981 CpGs (of the 386,805 CpGs included) to have a significant
and strong correlation value when compared across the EPIC and 450K arrays (25%).
Similar to previous findings, we found that a large majority of CpGs do not correlate
well when comparing arrays. Interestingly, however, a similar phenomenon has been
shown in replicate samples assessed twice on the same platform (for example, the same
sample assessed twice on the EPIC array), demonstrating that the results are not specific to
comparing the two different platforms [18]. Though a majority of CpGs did not achieve a
strong estimate, a large portion resulted in low to moderate positive estimates.

Importantly, similar to previous findings, we identified that the per-CpG correlation
level is heavily influenced by individual CpG variability [28,29]. Our data showed that the
shared 10% most variable CpGs had an average estimate of r = 0.83, and the 96,981 CpGs
identified to have a strong, significant estimate had a greater average standard deviation in
beta value than that of the genome-wide average (0.05 vs. 0.03, respectively). This indicates
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to us that the array, while highly accurate, cannot potentially provide the level of nuance
and sensitivity at these loci necessary to discern the minute differences in methylation
level that may or may not be present. Further, in EWAS analyses where statistical power is
often an issue, researchers may consider restricting their analysis to the set of CpGs with
the largest variability and reliability. Restricting to this set of CpGs may also benefit the
construction of more accurate epigenetic scores.

To further compare our findings to previous results, we performed a comparison
of the strong, significant CpGs we identified to the CpGs identified by Sugden et al.
to have an intra-class correlation coefficient (ICC) > 0.50 [18]. Generally, overall, with
386,805 overlapping CpGs, our estimate values coincide nicely with the ICCs calculated by
Sugden et al. (r = 0.810) [18]. We identified a comparable number of strongly correlated
(r > 0.5) CpGs (96,981 in our study; 79,007 by Sugden et al.) calculated to meet the threshold
of 0.50 [18]. Lastly, the average correlation across all genome-wide CpGs was similar
(r = 0.287 in our study; mean ICC = 0.212 by Sugden et al.) [18].

3.4. Interrogation of the Overlapping CpGs

When cross-comparing our findings of the previously described experiments above,
we identified 3674 CpGs that show significant, strongly correlated methylation levels. These
overlapping CpGs are particularly interesting because they show some form of stability
over time and between cells of different types even though these are two of the largest
known influencers of DNA. The fact that the CpGs identified here demonstrate dynamic
differences in methylation status between individuals but also relative stability in relation
to cell type and age, their presence may hint at another physiological mechanism driving
their methylation status (such as genetic variation).

3.5. EWAS Atlas and BBMRI

As previously stated, two of the largest known contributors to differences in DNA
methylation in humans are the cell type and age of the individual [30,31]. Here, we
have identified 3674 CpGs that are consistent across array platforms, highly dynamic
in their methylation status between individuals, and consistent in individuals as they
age and in multiple cell types. This begs the question of what is driving the variable
methylation status of these loci. We first queried the EWAS Atlas database with these
overlapping CpGs and identified several phenotypes and measurable traits that have been
previously associated with hundreds of CpGs [20]. Most notably, the trait that associated
with the largest amount of CpGs was ancestry (328 CpGs) [20]. Ancestry associating most
abundantly with these CpGs indicates genetics as a potential driver of these dynamically
methylated CpGs. The previous literature has identified a multitude of CpGs driven
by mQTLs, indicating that a large portion of measurable CpGs is influenced by genetic
variants (~35% of measurable genome-wide CpGs) [21]. After comparing our list of CpGs
to a known list of identified mQTLs via the BBMRI mQTL database built off of the results
of Bonder et al., we saw that 1989 of 3674 had previously been identified to be influenced
by at least one mQTL [21]. Compared to the level of general genome-wide association to
mQTLs, this group of overlapping CpGs shows a greater prevalence of mQTLs (54.1% vs.
35.9%), as well as a greater amount of mQTL associations per CpG [21]. This increased
prevalence of mQTL association indicates that genetic variants contribute greatly to these
CpGs that show stability over time and across whole-blood and buccal samples.

Additionally, we queried the BBMRI mQTL database with each of the three CpG
groups identified to strongly, significantly correlate longitudinally, across whole-blood and
buccal samples, and across platforms [21]. The group of CpGs that correlated across plat-
forms showed the greatest prevalence of mQTL association of all groups tested with 63.5%
of the CpGs being previously identified to associate with at least one mQTL, indicating that
genetic variants play a major role in the dynamic methylation of these CpGs that replicate
well across the arrays [21]. This also likely reflects that mQTL meta-analyses are better
powered to detect mQTL associations for CpGs that are reliably measured.
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3.6. Individual CpG Assessment

There are certain specific CpGs that have been previously identified to be strongly
linked to certain traits and molecular processes. To highlight some examples, we inves-
tigated two of these CpGs—cg05575921 and cg16867657—which have been shown to be
significantly associated with phenotypes of smoking, biological age, and others [32,33].
When investigating these two CpGs across our three assessments, both appeared to replicate
very well across platforms (r = 0.96 and r = 0.91, respectively). Further, both CpGs showed
strong correlations across whole-blood and buccal samples and longitudinally over a period
of 10 years (r = 0.82 and r = 0.92, respectively). For cg05575921, it has been previously
documented that smoking status contributes to the hypomethylation of these loci, which
are also shown here (Figure 3). Variability in time spent smoking and changes in smoking
behavior likely contribute to some of the increased variability (and reduced correlation)
seen in individuals over time as well. This reliability in measurement, combined with the
stability of the CpGs between tissues and over time, likely contributes to the clarity of their
previously discovered associations. The consistency of their measurement provides added
clarity that allows their relationships with a phenotype to be more easily distinguishable.

3.7. Limitations

There are limitations to address in this study. First, the individuals included in this
study are all from a European population based in the Netherlands. Additional studies
utilizing additional cohorts should be completed to investigate these findings in individ-
uals of different backgrounds. Additionally, though we identified significant findings, it
would be ideal to perform these same analyses on a larger scale with more individuals.
Typically, studies of DNA methylation increase in reliability and reproducibility with large
sample populations.

4. Materials and Methods
4.1. Overview

Participants were from twin families of European descent from the Netherlands.
Participants ranged in age from 19 to 57 years old. First, a whole-blood sample was collected
from 425 individuals from twin families from the Netherlands in the mid-1990s [34]. During
enrollment into a second study, whole-blood and buccal samples were then collected
simultaneously in the late 2000s in 233 of these same individuals through the Netherlands
Twin Register [35].

DNA was extracted at the time of sample collection or immediately prior to the assess-
ment of methylation. A pilot study was conducted in 2018, as part of which EPIC array
data were generated for 80 samples that had been previously measured on a 450K array.
The remaining samples were then simultaneously measured on an Illumina Infinium EPIC
Methylation array. A total of 83 of the whole-blood samples that were collected at the
second timepoint were also assessed on an Illumina Infinium 450K methylation array [36].
In total, 657 samples from 375 participants were assessed for genome-wide methylation.
A total of 643 samples from 373 individuals passed all quality control metrics. Correla-
tion analyses were performed on 394 samples (197 pairs) for the longitudinal assessment,
116 samples (58 pairs) for the cross-tissue assessment, and 166 samples (83 pairs) for the
cross-platform comparison. All individuals were also genotyped.

The study was approved by the Central Ethics Committee on Research Involving
Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review
Board certified by the U.S. Office of Human Research Protections (IRB number: IRB00002991;
Federal-wide Assurance: FWA00017598; IRB/institute codes: NTR 03-180).

4.2. Sample Collection

The procedures of whole-blood and buccal sample collection have been previously
described [34,36]. Briefly, for buccal sample collection, 16 cotton mouth swabs were individ-
ually rubbed against the inside of the individual’s cheek and placed in 15 mL conical tubes.
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The tubes contained 0.5 mL STE buffer (100 mM sodium chloride, 10 mM Tris hydrochloride
(pH 8.0), and 10 mM ethylenediaminetetraacetic acid) with proteinase K (0.1 mg/mL) and
sodium dodecyl sulfate (SDS) (0.5%) per swab. Individuals were requested to not eat or
drink 1 h prior to sample collection.

4.3. DNA Extraction

The genomic material analyzed in this study was extracted and assessed for DNA
quantity, quality, purity, and individual identity. The DNA analyzed in this study was
extracted from whole-blood and buccal samples using a Zymo Quick DNA mini-prep Kit
(Zymo Research, Irvine, CA, USA). Genomic material was quantified via an Invitrogen
Qubit Broad-Range Fluorescent Assay (Carlsbad, CA, USA), and sample purity was as-
sessed using standard absorbance metrics via a SpectraMax microplate reader (Molecular
Devices, San Jose, CA, USA).

4.4. Genotyping

Genotype data were generated using an Illumina Infinium Global Screening Array
(GSA) on blood samples for all individuals [37]. Genotype data quality assessment and sam-
ple call-rate generation were performed utilizing Illumina GenomeStudio 2.0 software [38].
Sample sex-check confirmation and a test of sample heterogeneity were performed using
PLINK v1.90. Identity-by-descent (IBD) sharing and familial relationship assessment was
performed utilizing bioinformatic software PLINK v1.90. Briefly, IBD sharing functions by
comparing the amount (or proportion) of shared alleles between two individuals across all
SNPs being measured [39]. The assumed relationships (generated via genotype data) were
then compared to the documented familial relationships in our sample manifest to confirm
sample identities. In total, 20 samples were omitted for analysis via the EPIC methylation
array because of identity mismatch based on genotype data.

4.5. DNA Methylation Assessment

DNA bisulfite conversion was performed utilizing a Zymo EZ-96 DNA Methylation
Kit [40]. DNA methylation was assessed using an Illumina Infinium EPIC DNA Methyla-
tion Array on all 657 samples at the Avera Institute for Human Genetics [40]. The samples
were fully randomized across arrays and run on an Illumina Infinium EPIC methylation
array. Additionally, DNA methylation was assessed earlier on 83 of the same samples using
an Illumina Infinium HumanMethylation450 array at the human genomics facility (Huge-F),
Rotterdam, the Netherlands. Details including quality control of the HumanMethylation450
array data have been described previously [36].

4.6. DNA Methylation Data Quality Control

Assessment of DNA methylation data quality of the EPIC array data was performed
using two bioinformatic tools. First, DNA methylation data were preliminarily assessed
using Illumina GenomeStudio 1.0 software. Here, a relative assessment of independent
and dependent sample controls was performed. Additionally, CpG detection percentage
was also quantified for each sample.

Second, methylation data quality control and normalization were performed using a
quality control pipeline developed and outlined by the Biobank-based Integrative Omics
Study (BIOS) Consortium. Sample quality was first assessed using the R package Methy-
lAid (v1.34.0), with default thresholds [41]. Array probe filtering and sample normalization
were performed using the R package DNAmArray (v2.0.0). Sample normalization was
performed with functional normalization (Fortin et al., 2014) as implemented in DNA-
mArray [42]. The R package omicsPrint (v1.20.0) was utilized to identify genotypes based
on methylation probes to verify sample relationships [43]. Both the function getSex from
DNAmArray and the R package meffil (v 1.3.4) were used to identify and confirm sample
sex based on X chromosome methylation pattern (Supplementary Figure S4) [44].
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Samples were only kept for further analysis if they passed all five quality criteria
defined by the MethylAid thresholds. MethylAid quality control plots are provided in
Supplementary Figure S5. In total, 10 low-performing samples were identified (1.5%) and
omitted for not reaching at least one of the thresholds. Of the remaining 647 samples, all
samples had matching predicted sexes compared to the assumed sex of the sample. Finally,
4 samples were omitted due to incorrect sample relationships identified via omicsPrint,
leaving the total number of included samples at 643 (Supplementary Figure S6).

The first four control probe principal components were included in the functional
normalization process. A scree plot of the PCs generated from the control probe data is
shown in Supplementary Figure S7. Next, the following probe filters were applied: Probes
were set to missing (NA) in a sample if they had an intensity value of exactly zero, detection
p-value > 0.01, or bead count < 3. DNAmArray will also remove any probes that show a
success rate below 0.95 across all samples.

Finally, previous studies performed by Zhou et al., in 2017 identified polymorphic and
cross-reactive probes that are included on Illumina methylation array platforms. Generally,
they recommend an omission of approximately 100,000 probes on the EPIC methylation
array. This removal process was carried out using the probemasking() function via DNA-
mArray [45].

Following these steps, a total of 759,263 methylation sites were included in this study
out of the total of 865,859 possible CpGs. Only autosomal methylation sites were considered
for downstream analyses, which left a total of 742,442 CpGs included in the final analyses.
Supplementary Figure S8 shows the distribution of these CpGs based on their beta value in
the form of a density plot.

4.7. Statistical Analyses

PCA was performed with DNAmArray prior to and after normalization, and the corre-
lation of the first ten PCs with technical and biological variables (e.g., age, sex, epithelial cell
proportion) was computed to check for batch effects and biological correlates of variation
in genome-wide methylation patterns. These analyses indicated that normalization success-
fully reduced variation related to technical factors such as 96-well plate position and the
location of the sample on the EPIC array, and that biological factors (cellular composition
of samples and sex) are the most important drivers of variation in genome-wide methy-
lation levels (as illustrated by their strong correlation with PC1 and PC2; Supplementary
Figure S9). We did not adjust for cell composition estimates as the main objective was
to assess how similar DNA methylation profiles are across measurements by different
platforms (EPIC vs. 450K), across two distinct peripheral tissues (blood vs. buccal), and
across two time points. The platform comparison (450K versus EPIC) was not affected by
cellular composition because the 2 arrays were run on the exact same DNA sample. Several
factors can contribute to the resemblance of DNA methylation profiles across the other two
comparisons. We only adjusted for technical covariates (sample plate and array row) to rule
out technical batch effects as a contributor, and regard all biological sources of variation
including cellular composition as factors that may affect the similarity of DNA methylation
profiles across tissues and over time. Our approach (not adjusting for any factors other than
technical variation) is in line with what previous similar studies have performed [10,11].

4.8. Methylation Data Annotation

Genomic annotations were gathered from the EPIC manifest file that is provided by
Illumina (MethylationEPIC_v-1-0_B5.csv): locations of CpG islands, ENCODE DNase I
Hypersensitive sites (DHSs), ENCODE transcription factor binding sites (TFBSs), open
chromatin, FANTOM4 and FANTOM5 enhancers, etc.

4.9. DNA Methylation Data Analysis

For each of the three major experiments performed here (longitudinal, cross-tissue,
cross-platform), we computed the correlation between methylation levels at individual
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genome-wide CpGs. First, for each comparison, methylation beta values were corrected for
sample plate and array row, and residuals were used as input for the correlation analyses
(z-score). Due to the related nature of the samples utilized in this study (twin families),
correlation analyses were computed utilizing a generalized estimating equations (GEE)
model (via the R package “gee” (v4.13-25)) that corrected for the correlation structure in
families. The following settings were utilized: Gaussian link function, 100 iterations, and the
“exchangeable” option to correct for the familial structure. Residualized methylation levels
were standardized (z-score), which makes the regression coefficient from gee equivalent to
a correlation coefficient. Bonferroni correction was applied to correct for multiple testing
and identify significant CpGs (0.05/total number of CpGs tested). A threshold of 0.50 was
utilized to identify CpGs with a strong positive correlation.

As an additional measure to ensure the validity of the gee results, we also generated
Pearson’s correlations for each CpG, which were strongly correlated with the correlations
obtained in gee (longitudinal r = 0.998, cross-tissue r = 0.914, cross-platform r = 0.996;
Supplementary Figure S10).

For the cross-platform experiment, we wanted to investigate the similarity of our
findings to those previously reported by Sugden et al. [18]. We applied an identical
threshold of 0.50 to their reported intra-class correlation coefficients (ICCs) to identify CpGs
to compare against our results [18].

We reported results for genome-wide CpGs and for the 10% most variable CpGs
in blood samples and buccal samples. Finally, we identified CpGs that showed strong,
significant (after Bonferroni correction, i.e., alpha = 0.05/# of CpGs) correlations in all three
comparisons. These CpGs were included in two subsequent investigations. First, a query
of the EWAS Atlas database was performed using these overlapping CpGs to identify
meaningful associations with various phenotypes, pathways, and genomic locations [20].
Second, a query of the BBMRI-omics atlas for associated mQTLs (previously reported
by Bonder et al., 2017) was performed with these overlapping CpGs to investigate their
previously identified genetic relationships [21].

5. Conclusions

Over the past decade, the amount of research performed utilizing array-based tech-
nologies to study DNA methylation has grown rapidly, in part because of the advances
in technology that enable assessments on an epidemiological scale. This also enables the
next phase of studies, namely, longitudinal and meta-analysis projects. We contribute
one of the first studies with new information on the stability of these measurable CpGs
both longitudinally and across whole-blood and buccal samples. Our analyses identified
over 7000 CpGs that showed strong correlations across blood and buccal samples. These
correlated CpGs were more often associated with mQTLs, indicating that the effects of
genetic variation are one of the factors that influence those areas of the methylome where
inter-individual differences are conserved across samples of differing tissue sources. Fur-
ther, we also provided a list of CpGs with strong longitudinal correlations in blood samples
from adults over more than 10 years. We believe these CpGs to be informative indicators
of longitudinally stable inter-individual differences. Finally, we provided a list of CpGs
that were consistently measured across the Illumina 450K and EPIC platforms, which
serves as a valuable asset for researchers considering performing analyses combining data
from multiple Illumina array platforms. Subsetting to a selective list of CpGs with strong
correlations across 450K and EPIC platforms (like the ones identified here or in Sugden
et al.) is likely to improve the replicability of results and reduce multiple testing [18]. This
information can be incorporated into future studies in order to achieve increased power.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241914640/s1.
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