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The power to detect a quantitative trait locus (QTL) in sib-pair data is investigated. We
assume that we have at our disposal 3 or 4 related phenotypic measures in a sample of
sib-pairs. Individual differences in these phenotypes are due to a common QTL and
specific (i.e., unique to each phenotype) nonshared environmental and specific polygenic
additive effects. In addition, models are considered that include common nonshared en-
vironmental effects and/or common polygenic additive effects. We calculate the power
to detect the QTL in a genetic covariance structure analysis of the multivariate data, of
the mean phenotypic data, and of factor scores. The use of factor scores is shown to be
universally more powerful than the use of multivariate or mean phenotypic data. We also
investigate the effect of using a single sample of sib-pairs to both calculate the factor
score regression matrix and to carry out the QTL analysis. The use of a single sample
to both these ends results in a loss of power compared to the theoretical, expected power.
The gain in power attributable to the use of factor scores, however, outweighs this ob-
served loss in power. The advantages of using factor scores in selecting sib-pairs are
discussed.

INTRODUCTION

In linkage analysis of non-Mendelian, complex,
traits the detection of loci that explain a small to
medium amount of the genetic variance remains
problematic. Nonparametric linkage methods such
as identity-by-descent (IBD) mapping in sibling
pairs were developed to analyze complex traits
without having to specify a mode of inheritance at
a single locus. The application of nonparametric
methods, however, comes at the cost of a loss of
power to localize genes that influence complex
qualitative and quantitative traits (e.g., Blackwelder
and Elston, 1982).
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In a recent overview Allison and Schork
(1997) discuss several approaches that have been
proposed to increase power in linkage analysis of
complex traits. These include multipoint analysis
using highly polymorphic markers (Fulker, Cherny,
and Cardon, 1995), analysis of the complete bivar-
iate trait distribution in sib-pairs (Fulker and
Cherny, 1996) instead of difference scores as orig-
inally proposed by Haseman and Elston (1972), se-
lection of extreme discordant and concordant
sib-pairs for genotyping (Carey and Williamson,
1991; Eaves and Meyer, 1994; Risen and Zhang,
1995) and multivariate approaches incorporating
multiple indicators of the QTL (Amos et al., 1990;
Boomsma, 1996).

In this paper we address the question how
multivariate genetic analysis can be employed to
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increase the power to detect a quantitative trait lo-
cus (QTL) that influences a complex trait, using
IBD mapping in sibling pairs. Specifically, we ex-
plore power to detect a QTL as a function of QTL
effect (i.e., amount of variance explained by the
locus), allele frequencies at the marker locus and
number of measured phenotypes. We also explore
how the causes of covariance between multiple
phenotypes affect the power to detect the QTL ef-
fect. The covariance among the multivariate phe-
notypes, that we consider, is due to a QTL common
to all phenotypes, and to common additive poly-
genie and/or nonshared environmental influences.
The environmental influences are common to the
phenotypes, but not shared by the sibs. They are
sometimes designated specific environmental influ-
ences, or El, for short.

Analyses were carried out with MX (Neale,
1997), using a structural equation modeling ap-
proach. The application of structural equation mod-
eling (SEM) in the genetic analysis of complex
traits involves the specification of the phenotype as
a function of unobserved, or latent, variables. The
phenotype may be univariate or multivariate. The
latent variables are genetic and environmental fac-
tors. It is possible to test whether correlated mul-
tiple variables, measured in the same group of
genetically related subjects, are indicators of the
same underlying latent genetic factor, and/or the
same environmental factors (Martin and Eaves,
1977). Measured environmental variables or DNA
marker data can be incorporated into the structural
equation model. The incorporation of marker data
allows one to test whether the phenotypic covari-
ance is due to a QTL influencing all measures
(Eaves, Neale and Maes, 1996). A common QTL,
influencing multiple phenotypic measures, gener-
ally is easier to detect in multivariate than in uni-
variate analyses. It is well established that in SEM
power can be influenced by manipulating the num-
ber of indicator variables of the latent trait of in-
terest. Although discussions of power usually
address the influence of sample size, adding an-
other measured indicator of the latent trait to the
model can in some circumstances have the same
effect as doubling the sample size (Matsueda and
Bielby, 1986).

To investigate the power to detect a common
QTL in multivariate data, we considered four series
of multivariate phenotypes. The covariances be-
tween variables were due to different combinations

Fig. 1. Path diagram for the multivariate QTL model.

of a common QTL, common polygenic back-
ground, and environmental influences. Several dif-
ferent approaches were used to analyze the
multivariate data: fitting the complete multivariate
model to the data (Eaves, Neale and Maes, 1996),
analyzing the mean phenotype in a standard uni-
variate QTL analysis, and analyzing individual ge-
netic factor scores (Boomsma, Molenaar and
Orlebeke, 1990).

METHOD

Four sets of analyses were carried out on p
related phenotypes, where p = 3, or p = 4, to de-
termine the increase in power that can be achieved
by analyzing multivariate, rather than univariate,
phenotypes. The model that was used to simulate
the multivariate data sets in sibling pairs is depicted
in Fig. 1. We considered multivariate phenotypes
whose variation may be caused by: a) a QTL that
is common to all phenotypes, b) additive polygenic
influences (Gc) common to all phenotypes, c) non-
shared environmental influences (Ec) common to all
phenotypes, d) specific additive genetic influences,
that is, genetic influences specific to a given phe-
notype (Gs), and e) specific, nonshared environ-
mental influences (Es). The covariance between
phenotypes is a function of the loadings of the phe-
notypes on the common factors Q, Gc and Ec. We
considered 4 models that vary with respect to these
influences:

1) the QTL is the only source of covariation be-
tween measures;
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Table I. Percentages of Variance for Phenotypes in 3- and 4-Variate Models

Model 1
QTL factor
genetic specific
genetic factor
environmental specific
environmental factor

Model 2
QTL factor
genetic specific
genetic factor
environmental specific
environmental factor

Model 3
QTL factor
genetic specific
genetic factor
environmental specific
environmental factor

Model 4
QTL factor
genetic specific
genetic factor
environmental specific
environmental factor

28.5
28.5
00.0
42.8
00.0

28.5
14.2
14.2
42.8
00.0

28.5
28.5
00.0
28.5
14.2

28.5
14.2
14.2
28.5
14.2

3 phenotype model
14.3
42.8
00.0
42.8
00.0

3 phenotype model
14.2
28.5
14.2
42.8
00.0

3 phenotype model
14.2
42.8
00.0
28.5
14.2

3 phenotype model
14.2
28.5
14.2
28.5
14.2

07.1
50.0
00.0
42.8
00.0

07.1
35.7
14.2
42.8
00.0

07.1
50.0
00.0
28.5
14.2

07.1
35.7
14.2
28.5
14.2

28.5
28.5
00.0
42.8
00.0

28.5
14.2
14.2
42.8
00.0

28.5
28.5
00.0
28.5
14.2

28.5
14.2
14.2
28.5
14.2

4 phenotype model
14.2
42.8
00.0
42.8
00.0

07.1
50.0
00.0
42.8
00.0

4 phenotype model
14.2
28.5
14.2
42.8
00.0

07.1
35.7
14.2
42.8
00.0

4 phenotype model
14.2
42.8
00.0
28.5
14.2

07.1
50.0
00.0
28.5
14.2

4 phenotype model
14.2
28.5
14.2
28.5
14.2

07.1
35.7
14.2
28.5
14.2

21.4
35.7
00.0
42.8
00.0

21.4
21.4
14.2
42.8
00.0

21.4
35.7
00.0
28.5
14.2

21.4
21.4
14.2
28.5
14.2

2) the covariation among the measures is due to Q
and Gc;

3) the covariation is due to Q and Ec; and
4) the covariation is due to Q, Gc, and Ec.

The parameter values that were used to simulate
the data according to these 4 models are summa-
rized in Table I. The total heritability for each var-
iable was 57%, but the heritability due to the QTL
varied from phenotype to phenotype. In the 3- and
4-variate data sets the QTL accounted for 28.5,
14.2 and 7.1% of the total phenotypic variance of
the first three variables, respectively. In the 4-var-
iate data set, 21.4% of the variance in the fourth
variable was accounted for by the QTL. Environ-
mental factors (common plus specific) accounted
for 43% of the total variance in all variables. The
phenotypic correlations between the measures, im-
plied by the parameter values in Table I, are given
in Table II.

Multi-group structural equation models were
fitted to covariance matrices of the sib-pairs to es-
timate the common and specific genetic and envi-
ronmental effects. As we are working with data of
sib-pairs, or DZ twins, the input covariance matri-
ces are of the order 2p. For each model that we
consider, we compute the total number of sib-pairs

required to detect the QTL with a power of 80%
and an a of .001. The distribution of the total num-
ber of subjects over the IBD groups and the number
of IBD groups specified in the analyses both de-
pend on the informativeness of the marker. The ex-
pected proportion of alleles shared IBD, p,
determines the correlation between the QTL effects
in sibling 1 and sibling 2 (Fulker and Cherny,
1996; Eaves, Neale, and Maes, 1996). IBD status
at the QTL is established on the basis of parental
and offspring genotypic data relating to a single
marker at 0 centimorgans (cM) distance from the

Table II. Phenotypic Correlation Matrices (Last Row of
Each Correlation Matrix Is Absent in the Case of 3

Phenotypes)

Model 1
1

.202

.143

.247

1
.101
.175

Model 3
1

.345

.286

.390

1
.244
.318

1
.124

1
.266

1

1

Model 2
1

.345

.286

.390
Model 4
1

.487

.428

.533

1
.244
.318

1
.386
.461

1
.267

1
.409

1

1
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QTL. The number of equi-frequent alleles at the
marker locus was set to 8, 12, 16, or I. In the first
3 cases, a five group analysis was carried out, with
values of P within each group equaling 0, .25, .5,
.75, and 1.0 (Haseman and Elston, 1972, Table 2).
The proportion of sibling pairs in each of these
groups depends on the number of alleles at the
marker locus, as is shown in Table III. The deri-
vation of Table 3 is given in Appendix I. As the
number of marker alleles increases, the proportion
of sibling pairs in the intermediate groups, where
P= .25 and P = .75, approaches zero. In the in-
finite allele case, a three-group analysis is carried
out. In each group, the correlation between com-
mon polygenic influences (Gc) and between specific
polygenic influences (Gs) in sib 1 and sib 2 are 0.5.

Power calculations were carried out by fitting
the known model to the 2p X 2p (exact, or popu-
lation) covariance matrices. Model fitting was car-
ried out with and without the QTL effect. Power
calculations were based on the noncentral chi-
square distribution (e.g., Hewitt and Heath, 1988;
see Neale and Cardon, 1992, p. 190, for an outline
of the procedure). Model fitting and power calcu-
lations were carried out using the MX program
(Neale, 1997). Throughout models were fitted by
minimizing the multi-group log-likelihood ratio
function. We report the number of subjects required
to reject the alternative model excluding the QTL
with an a of 0.001 and a power (1 - B) of .80.
We also report the noncentrality parameters so that
the reader may calculate their own estimates of
power for different a levels and sample sizes (see
Hewitt and Heath, 1988). Calculations were carried
out for the following cases: The complete multi-
variate model, a univariate analysis in which the
phenotype is the mean (unweighted linear combi-
nation) of the p phenotypes, and univariate analyses
in which the phenotype is a weighed linear com-
bination of the p phenotypes. The weights used
were obtained from the factor score regression ma-
trix (Boomsma, Molenaar and Orlebeke, 1990).

Two approaches to obtain the factor scores were
explored: one employing the phenotypic data from
the subject and his or her sibling and one in which
only the data from the single subject were used (see
below).

Let Si denote the multivariate (2p X 2p) pop-
ulation covariance matrix in group i (i = 1,. . ., 3,
or i = 1,. . ., 5) and let w denote a (2 X 2p) matrix
of weights. Covariance (2 X 2) matrices of sib-
lings' mean phenotypic scores or of siblings' ge-
netic factor scores are calculated as wSiwt. The
univariate mean phenotypic covariance matrix is
calculated by specifying:

The factor score regression matrix (w) is
obtained after a standard genetic covariance struc-
ture analysis of the pooled phenotypic covariance
matrices (i.e., pooled over the different IBD
groups). The absence of environmental influences
shared by sibs must be assumed in the absence of
MZ data, or can be tested when MZ data are avail-
able. In the genetic covariance structure analysis of
the pooled phenotypic covariance matrix, we in-
clude a single common genetic factor that accounts
for both the effects of the common QTL and the
common polygenic effects, if present. The pheno-
typic covariance matrix (2p X 2p) is modeled as:
E = AVAt. The matrix V is the covariance matrix
of the latent genetic and environmental factor
scores. The matrix A contains the factor loadings
of the phenotypic variables on the latent variables.
The dimensions of V and A depend on the number
of observed (p) and latent (k) factors in the anal-
ysis. If we consider one common genetic and one
common nonshared environmental factor for each
sibling and genetic and environmental factors spe-
cific to each phenotype, then k = 2 + 2p. The A
matrix thus is of the order 2p X 2k and V is 2k X
2k. As we are considering sib-pairs, S can be par-
titioned as follows:

Table III. Distribution of P Given Number of Equi-Frequent
Marker Alleles, M

P

0, 1
.25, .75
.5

probability
(M-1)* (M2-M-1)/(4M3)
(M-1)/M2

(M3-2M2 + 4M- 1 )/(2M3)

M=
PIC=

8
.861
.188
.109
.405

12
.910
.208
.076
.430

16
.933
.219
.059
.445

I

1.00
.250
.000
.500

in the 3-variate case, and in the 4-variate case:
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where S11(S22) is the (p X p) sib 1 (sib 2)
phenotypic covariance matrix, A11 (p X k) = A22,
and V11 (k X k) = V22 and 0 is a (p X k) matrix
of zeros. The factors in the model are standardized
and uncorrelated within the individual members of
the sib-pair, so that V11 = V22 = I. The sib1-sib2
cross-correlation matrix, V21, contains the expected
correlations among the factors. These equal zero in
the case of environmental factors (which are all
nonshared here), or .5 in the case of additive ge-
netic factors. The factor score regression matrix (2k
X 2p) is calculated as VAtS-1. The regression ma-
trix contains the weights that are used to obtain
linear combinations of the observed variables that
approximate the latent variables. The rows in
VAtS-1 that yield weights for the common genetic
factor scores for sib 1 and sib 2 are inserted into
w (2 X 2p) and the expected (population) covari-
ance matrix of genetic factor scores is calculated
as wSiWt for each group defined by its P value.
Again using the sibl-sib2 partitioning we may
write w (2 X 2p) as follows:

where w11 (1 X p) = w22. When w21 (1 X p) =
w12 does not equal zero, the phenotypic scores of
sibl are involved in the calculation of the factor
scores of sib2, and vice versa. To obtain an indi-
cation of the information that this procedure pro-
vides, we also analyze the covariance matrices
calculated using factor score weights after setting
sub-matrices w21 and w12 to equal zero. We call
these factor scores individual factor scores, or fac-
tor scores 2 in Table IV.

RESULTS

If a univariate QTL analysis of the phenotypes
were carried out, the number of sib-pairs required
to detect a QTL accounting for 28.5%, 21.4%,
14.2% and 7.1% of the phenotypic variance would
equal 1288, 2307, 5218 and 20938, respectively (a
= 0.001, 1 - P = 0.80, and PIC = 1). Table IV
contains the number of sibling pairs required to de-
tect the common QTL in multivariate data. The
number of sib pairs is given for each of the four
models considered (covariance due to Q, to Q and
Gc, to Q and Ec, and to Q, Gc and Ec). Either the

Table IV. Number of Sibling Pairs Required to Achieve Power of .80 (a = .001) for the Four Models" Considered

M=
PIC=
Model 1

multivariate
mean phenotype
factor scores 1
factor scores 2

Model 2
multivariate
mean phenotype
factor scores 1
factor scores 2

Model 3
multivariate
mean phenotype
factor scores 1
factor scores 2

Model 4
multivariate
mean phenotype
factor scores 1
factor scores 2

8
.861

907
859
683
720

1191
1207
978
997

1369
1454
993

1086

1618
1910
1327
1414

12
.910

16
.933

3-variate
857
813
647
681

837
793
631
664

3-variate
1127
1142
925
943

1100
1114
903
920

3-variate
1296
1376
940

1027

1264
1343
917

1003
3-variate

1531
1808
1256
1338

1494
1764
1226
1306

I

1.00

776
736
586
616

1021
1035
838
854

1174
1248
852
931

1388
1639
1139
1213

8
.861

604
504
431
447

886
786
673
680

1081
1005
738
800

1365
1401
1024
1086

12
.910

16
.933

4-variate
571
477
408
422

557
465
398
412

4-variate
838
744
636
643

817
726
621
627

4-variate
1023
950
698
757

998
928
681
739

4-variate
1292
1326
969

1027

1260
1294
946

1003

00

1.00

516
431
369
382

758
674
576
582

926
861
633
686

1170
1202
879
931

a Model 1: covariance due to Q; model 2: covariance due to Q and G; model 3: covariance due to Q and E; model 4: covariance
due to Q, G and E. Factor scores 1 refers to genetic factor scores based on familial phenotypic information; factor scores 2 refers
to factor scores based on individual phenotypic information.
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full multivariate model or a univariate model was
fitted. In the univariate models, either the mean
(unweighted) phenotypes, or (weighted) genetic
factor scores were analyzed. Results are given for
p = 3 and p = 4 phenotypes and for different PIC
values at the marker locus (associated with 8, 12,
16, or I marker alleles). It is clear from Table IV
that the power to detect the common QTL is
greatest when the QTL is the only source of co-
variation between phenotypes. For example, the
full multivariate analysis for the case of p = 4 and
PIC = .86 requires 604 sib-pairs when the QTL is
the only factor common to all four phenotypes. If,
in addition to a common QTL, there is also covar-
iance among the phenotypes that can be ascribed
to Gc or Ec, the required number of pairs equals
886 and 1081, respectively. When the additional
covariance is due to both G and E, the required
number of sib pairs is 1365. The noncentrality
parameters that correspond to the entries in Table
IV are given in Appendix II.

Table IV shows that the presence of an extra
phenotype is clearly beneficial, as it results in a
considerable increase in power in all cases. A fur-
ther systematic result is the gain in power that is
achieved by analyzing factor scores instead of the
full multivariate data. The explanation for this find-
ing is provided by the difference in the degrees of
freedom for the full multivariate tests (df = 3 or
df = 4) versus the univariate tests (df = 1) in the
case of factor scores. A surprising finding is the
difference in power observed when analyzing the
mean phenotype and the multivariate phenotypes.
In all models, except model 1, the analysis of the
mean phenotype is characterized by greater power,
although in models 2 and 3 the differences are quite
small. The analysis of genetic factor scores, cal-
culated at the familial level (factor scores 1) and at
the individual level (factor scores 2), perform better
than either the multivariate analysis or the analysis
of the mean phenotype. The first method, which
uses all available phenotypic information in the
construction of the genetic factor scores (both from
the subject and the sib) is optimal and performs
better in a linkage analysis than the second method
which only uses the phenotypic data from the sub-
ject himself. However, as we discuss below, in se-
lection of subjects for genotyping the question
arises whether we want to construct factor scores
that include information from sibs.

Figure 2 depicts the plot of PIC values and the
required number of sib-pairs for the 32 cases that
were considered. From this figure it is clear that the
relationship between PIC values and the required
N is perfectly linear in all cases, although the slope
depends on the exact model and the number of phe-
notypes in the analysis.

Results Relating to Factor Scores Based on
Simulated Data

The results of the power calculations clearly
indicate that it is beneficial to use genetic factor
scores when analyzing QTL effects in multivariate
sibling data. A complication in calculating factor
scores is that the weight matrix w is calculated in
the same sample as the actual factor scores, i.e., the
information that is used to calculate w and the in-
formation used to test the presence of a QTL are
not independent. One way around this problem
would be to split the sample into two halves and
to calculate w in each subsample. One could then
use the w matrix calculated in sample 1 to calculate
factor scores in sample 2 and vice versa. This pro-
cedure has the drawback that the weights will be
subject to greater sampling fluctuation than the
weights calculated in the whole sample.

We investigated the effect of calculating both
w and the genetic factor scores in one and the same
sample. To this end, two models were considered:
model 4 (covariance between phenotypes due to Q,
Gc and Ec) with 4 phenotypes and a second 4-phe-
notype model with less variable and smaller QTL
effects. For the first model, we simulated pheno-
typic data for 4000 samples consisting of 1000 sib
pairs and genotypic marker data for these sib pairs
and their parents. The marker, which is 0 cM from
the QTL, has 12 equi-frequent alleles. The bi-al-
lelic QTL is codominant with equi-frequent alleles.

Data simulations and analyses were carried
out using our own programs. The power calcula-
tions presented above are based on 5-group or 3-
group covariance structure analyses, but in the
present simulations, we maximize the raw-data log-
likelihood (see Fulker and Cherny, 1996; Eq. 12).
These two approaches produce the same results in
the present situation. In addition to the genetic fac-
tor scores based on the exact weight matrix w,
henceforth wx, and the calculated matrix w, hence-



A Comparison of Power to Detect a QTL in Sib-Pair Data 335

Fig. 2. Number of subjects required, as a function of PIC, to achieve a power of .80 given an a of .001 for the models described
in Table IV. Plots are shown for the analysis of multivariate data (mv), mean phenotypic data (mean), factor scores based on
familial phenotypic information (fsl) and factor scores based on individual phenotypic information (fs2).
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forth wc, we also analyze the mean phenotypic
scores for reasons of comparison.

Table V contains the results of the 4000 rep-
lications. Both the analysis of the mean phenotype
and the analysis of factor scores using wx produced
results that are in good agreement with the ex-
pected results. The effects of using wc, instead of
wx, are limited to the power to detect the QTL. We
expect a power of .82, but observe a value of .76.
That is, given an a = 0.001, in 76%, instead of the
expected 82%, of the analyses the QTL is detected.
With respect to the parameter estimates, we ob-
serve a negligible overestimation of the variance
due to polygenic effects (.704 vs. .689), and neg-
ligible underestimation of the QTL effect (.296 vs.
310). The analysis of the mean phenotype produced
results that are in line with expectation. The ob-
served and expected power are the same, but con-
siderably lower than the power observed when
analyzing factor scores.

The probability of failure to detect the pres-
ence of the QTL is clearly affected by the use of
wc, instead of wx, in calculating the factor scores.
In the present case, the QTL effect on the 4 phe-
notypes is variable, ranging from 28.5% to 7.1%.
In order to further assess the effect of using wc, we
carried out a second simulation. The model used in
this second simulation is characterized by a QTL
effect accounting for 10% of the variance of each
of the four phenotypes and a background genetic
variance of 40% (20% due to a common genetic
factor and 20% due to genetic factors specific to
each phenotype). The environmental effect of 50%
was equally divided over common and specific fac-
tors. The correlation among the 4 phenotypes thus
is 0.55. We carried out 1500 replications, each in-
volving 4629 sib-pairs. Results are given in Table
VI. In the present simulation, involving a larger
sample size and a smaller and much more uniform
QTL effect, we observed no bias in parameter es-
timates and a very slight difference in power. The
expected power given 4629 sib pairs equals .80.
The observed power using wc equals .78.

An additional complication in using the same
data to calculate the factor score regression matrix
and to fit the QTL effect is that the false positive
error rate may be affected. To investigate this pos-
sibility, we simulated data without a QTL effect.
Parameter values were created by distributing the
QTL variance in model 4 (4 phenotypes) evenly
among the other sources of individual differences

Table VI. Results of Fitting Model 4 (4 Variables) to
Genetic Factor Scores using Exact and Calculated Weight

Matrix (w)

ncpa

expected x2

observed x2

expected power
observed power
expected %polyg
observed %polyg
expected %qtl
observed %qtl

exact w
17.073
18.073 (8.38)b

18.223 (9.10)
.80
.79
.843
.844
.156
.155

calculated w
17.073
18.073 (8.38)b

17.949 (9.09)
.80
.78
.843
.846
.156
.154

ancp = noncentrality parameter, a = .001
bSee footnote Table V. N replications 1500. 4629 subjects per

replication, 16 allele marker. Degrees of freedom associated
with the x2 test equal 1.

(specific and common genetic and environmental
effects). One thousand datasets each consisting of
1000 sibling pairs were simulated and analyzed.
Factor scores were calculated using the exact and
the estimated factor score regression matrix. Like-
lihood ratio tests were obtained by fitting the model
with and without the QTL effect to the factor
scores. As pointed out by Sham (1998), minus
twice the difference in loglikelihoods is distributed
as a .5:.5 mixture of 0 and a x2 (1) variate. We
therefore expect the average of the likelihood ratio
to equal .5 instead of 1 (expected standard devia-

Table V. Results of Fitting Model 4 (4 Variables) to Mean
Scores and to Genetic Factor Scores using Exact and

Calculated Weight Matrix (w)

ncpa

expected x2

observed x2

expected power
observed power
expected

%polyg
observed

%polyg
expected %qtl
observed %qtl

mean phenotype
12.880
13.880 (7.31)b

13.944 (7.40)
.62
.62
.349

.349

.287

.287

exact w
17.616
18.616 (8.51)b

18.811 (8.91)
.82
.81
.689

.691

.310

.309

calculated w
17.616
18.616 (8.51)b

17.549 (8.72)
.82
.76
.689

.704

.310

.296

ancp = noncentrality parameter, a=.001 (see Appendix II).
b Mean of noncentral x2 equals ncp + df; standard deviation

of noncentral x2 equals [2(ncp+df)(1+(ncp/(ncp+df)))]5
(Abramowitz and Stegun, 1970). Number of replications is
4000, 1000 subjects per replication. 12 allele marker. Degrees
of freedom for the x2 test equal 1 .
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tion is sqrt (1.25) = 1.118). The mean loglikeli-
hood ratio, based on the 1000 replications, is found
to equal .538 (sd = 1.19) using the exact weights,
and .539 (sd = 1.229), using the estimated weights.
We also counted the number of times the loglike-
lihood ratio exceeded 3.84. In regular chi-square
testing, this is the value associated with an alpha
of .05. In view of the unusual null distribution, we
expect .025 (25/1000; instead of 50/1000) false
positives. We observe .031 using exact factor
scores weights and .029 using the estimated factor
scores regression weights. Neither of these values
differs significantly from the expected value of .025
(p. = .10 and .18, respectively). In conclusion, we
find that the false positive error rate does not seem
to be affected by the use of the same data to both
obtain factor scores regression weights and to
model the QTL effects.

DISCUSSION

The analyses presented in this paper illustrate
the increase in power that may be accomplished
when multivariate indicators of the QTL are used
instead of a single phenotypic measure. This gen-
eral result holds across different PIC values for the
marker locus and across different models for the
sources of covariance between the multivariate
measures.

Recent work (Cardon and Fulker, 1994; Eaves
and Meyer, 1994; Carey and Williamson, 1991;
Risch and Zhang, 1995, 1996; Gu, Todorov and
Rao, 1996; Dolan and Boomsma, 1998) has estab-
lished the value of selecting extreme scoring sib-
ling pairs, both concordant and discordant extreme
pairs, for linkage analysis of complex traits. Selec-
tion with multivariate data can be difficult, espe-
cially when the phenotypic correlations between
variables are not high, as was the case for some of
the simulated data sets we presented. If the multi-
variate data show a genetic factor structure with at
least one genetic factor common to all measures
(e.g., depression and anxiety [Kendler et al., 1987])
genetic factor scores may be constructed and selec-
tion carried out on these scores. In following this
procedure one does assume that the QTL effect is
embedded in the common genetic factor. The plau-
sibility of this assumption depends in part on the
nature of the phenotypes in the analysis. Once the
marker data are available, however, this assumption
may be tested.

In QTL studies involving sib-pair selection the
use of factor scores confers several advantages.
First, factor scores are one-dimensional and there-
fore easy to use in selection procedures. Second,
genetic factor scores are less affected by systematic
and unsystematic environmental effects than phe-
notypic scores. Extremely scoring subjects selected
on the basis of genetic factor scores are more likely
to be extreme because of their genetic constitution,
rather than irrelevant (i.e., from the perspective of
QTL detection) environmental influences. Third, as
linear combinations of several phenotypic scores,
factor scores tend to approximate the normal dis-
tribution more closely and tend not to be as sus-
ceptible to floor and ceiling effects. For instance,
floor effects may be a considerable problem in the
identification of individuals with low scores on pa-
per and pencil tests of depression. Fourth, the avail-
ability of genetic factor scores of the parents of the
siblings is useful in selection of sib pairs. As
pointed out by Zhang and Risch (1996), it is de-
sirable to select extremely concordant sib pairs
whose parents have intermediate scores and are
therefore more likely to be heterozygous. It is rea-
sonable to expect that intermediate genetic factor
scores will provide a better indication of parental
heterozygosity than phenotypic scores.

An interesting problem is whether factor
scores for selection and linkage analysis should be
computed using only the data of the individual sub-
ject, or whether phenotypic data of family members
(siblings or parents, for example) should be used
in addition. The use of phenotypic data of other
family members (weighted according to their ge-
netic and environmental relatedness) provides more
accurate estimates of genetic factor scores. The
greater accuracy results in more power to detect a
QTL, as is clear in Table IV (factor scores 1 vs.
factor scores 2). However, inclusion of information
from other family members in the construction of
genetic factor scores may lead to practical prob-
lems. When working with unbalanced pedigrees,
the reliability of factor scores based on all available
phenotypic data may be expected to vary with the
number of subjects in the pedigree. In addition, a
separate weight matrix has to be calculated for each
unique pedigree. The results shown in Table 4 in-
dicate that the loss of power incurred when work-
ing with individual genetic factor scores is not very
large. For practical purposes, therefore, we believe
that using factor scores, based on the phenotypic
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information of only the individual, is a feasible op-
tion.

It has sometimes been argued that in the con-
struction of factor scores, unit weighting should be
used instead of sample-based weights, although this
seems mainly an issue in small samples (e.g., Co-
hen, 1990). The results presented in Tables IV and
V include results of the analysis of the mean phe-
notypic scores (i.e., unit weighting of observa-
tions). It is clear that in this particular situation the
genetic factor scores perform substantially better
than the unweighted mean scores, especially when
covariances between measures are due to more than
only a pleiotropic QTL effect. This difference be-
tween mean scores and factor scores is amplified
when one of the variables does not load on the QTL
factor (Martin, Boomsma, and Machin, 1997).

Finally, our simulations have indicated that
the use of the same sample to calculate the factor
score regression matrix and to test the presence of
a QTL does have a slightly adverse effect on the
power. In both simulations the observed probability
to detect a QTL was somewhat lower that the the-
oretical probability. Still the gain in power attrib-
utable to the use of factor scores outweighs this
observed loss in power. The linkage analysis of the
data that were simulated without a QTL effect in-
dicated that the false positive error rate does not
seem to be affected by the use of the same data to
obtain factor score regression weights and to model
the QTL effect.

APPENDIX I: DERIVATION OF EXPECTED
P FREQUENCIES

Let M denote the number of alleles of the
marker. We assume equi-frequent alleles so that the
allele frequencies each equal q = 1/M. Given this
assumption, we reproduce Table 2 of Haseman and
Elston (1972).

Haseman and Elston (1972) derive their Table
2 on the basis of possible mating types and sib-pair
types which are defined independently of the actual
genotype. For example, mating type ii-ii and jj-jj
are identical (type I), as are ii-ij and kk-k1 (type
III), etc. The fifth column of Table AI contains the
number of possible mating types when genotype is
taken into consideration. For instance, if M = 4,

Table AI. Adapted from Haseman and Elston (1972, Table
2). Number of Mating sib-pair Types Given M Equifrequent

Marker Alleles

Mating
type
I:ii-ii

II:ii-jj

III:ii-ij

IV:ii-jk

V:ij-ij

VI:ij-ik

VII:ij-k1

sib-pair
type
I:ii-ii

V:ij-ij

I:ii-ii
III:ii-ij
V:ij-ij

V:(2)1

VI:ij-ik

I:(2)
II:ii-jj
IH:(2)
V:ij-ij

I: ii-ii
III:(2)
IV:ii-jk
V:(3)
VI:ij-ik
VI:ij-jk
VI:ik-jk

V:(4)
VI: (4)
VII: (2)

prob.

q4

2q4

q4
2q4

q4

q4
2q4

q4/4
q4/2
q4
q4

q4/2
q4
q4

q4/2
q4
q4
q4

q4/2
q4
q4

P

0.5

0.5

0.75
0.25
0.75

0.75
0.25

1
0
0.5
0.5

1
0.5
0
1
0
0.5
0.5

1
0.5
0

number of
mating sib-pair types
M

M*(M-1)/2

M*(M-1)
M*(M-1)
M*(M-1)

M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2

M*(M-1)/2
M*(M-1)/2
M*(M-1)/2
M*(M-1)/2

M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2
M*(M-1)*(M-2)/2

M*(M-1)/2*(M-2)*(M-3)/4
M*(M-1)/2*(M-2)*(M-3)/4
M*(M-1)/2*(M-2)*(M-3)/4

a A given mating type can give rise to several sib-pairs of the
same type. For instance, mating type IV gives rise to two sib-
pair types V, i.e., ij-ij and ik-ik.

there are 4 possible type I matings (ii-ii, jj-jj, kk-
kk, 11-11). The sum of the products of the elements
in the third column and the corresponding element
in the fifth column equals 1.0.

To obtain the probability of a sib pair having
P = 0, we calculate the sum of the products of the
elements in column 3 and those in column 5, where
TT = 0:

prob (IT = 0) = q4/2 * [M* (M-1)/2] +
2* [q4* M* (M-1) * (M-2)/2] +
2* [q4* M* (M-1)/2* (M-2) * (M-3)/4]

This can be simplified to M* q4* (M - 1) * (M2
- M- 1)/2, which in turn is written as (M — 1)
(M2 - M - 1)/(4M3), because q = 1/M. Calculat-
ing the probabilities associated with the other val-
ues of P in the same manner, we arrive at Table
III.
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APPENDIX II: NONCENTRAL CHI-SQUARES FOR N = 1000 SIB PAIRS FOR THE FOUR
MODELS CONSIDERED IN THE SIMULATIONS

M=
PIC=
Model 1
multivariate
mean phenotype
factor scores 1
factor scores 2
Model 2
Multivariate
mean phenotype
factor scores 1
facotr scores 2
Model 3
Multivariate
mean phenotype
factor scores 1
factor scores 2
Model 4
Multivariate
mean phenotype
factor scores 1
factor scores 2

8
.861

3-variate
23.75
19.87
24.99
23.71

3-variate
18.09
14.14
17.45
17.12
3-variate
15.73
11.74
17.19
15.72
3-variate
13.31
8.93

12.86
12.07

12
.910

25.14
21.00
26.38
25.07

19.11
14.95
18.45
18.10

16.62
12.40
18.16
16.62

14.07
9.44

13.59
12.76

16
.933

25.74
21.53
27.05
25.71

19.58
15.32
18.90
18.55

17.04
12.71
18.61
17.02

14.42
9.67

13.92
13.07

00

1.00

27.76
23.19
29.13
27.71

21.10
16.49
20.39
19.99

18.35
13.68
20.03
18.33

15.52
10.41
14.98
14.07

8
.861

4-variate
38.24
33.87
39.61
38.19

4-variate
26.07
21.72
25.36
25.11
4-variate
21.37
16.98
23.13
21.34
4-variate
16.92
12.18
16.67
15.72

12
.910

40.45
35.79
41.79
40.45

27.56
22.94
26.83
26.54

22.57
17.97
24.45
22.55

17.87
12.87
17.62
16.62

16
.933

41.46
36.70
42.90
41.44

28.27
23.51
27.49
27.23

23.14
18.39
25.07
23.10

18.33
13.19
18.04
17.02

I

1.00

44.76
39.61
46.27
44.68

30.47
25.33
29.64
29.33

24.94
19.83
26.97
24.88

19.74
14.20
19.42
18.33

Model 1: covariance due to Q; Model 2: covariance due to Q and G; Model 3: covariance due to Q and
E; Model 4: covariance due to Q, E and G
Factor scores 1 refer to genetic factor scores based on familial phenotypic information and factor scores 2
on individual phenotypic information.
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