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Abstract

Graph analysis of electroencephalography (EEG) has previously revealed developmental increases in connectivity
between distant brain areas and a decrease in randomness and increased integration in the brain network with con-
current increased modularity. Comparisons of graph parameters across age groups, however, may be confounded
with network degree distributions. In this study, we analyzed graph parameters from minimum spanning tree
(MST) graphs and compared their developmental trajectories to those of graph parameters based on full graphs
published previously. MST graphs are constructed by selecting only the strongest available connections avoiding
loops, resulting in a backbone graph that is thought to reflect the major qualitative properties of the network, while
allowing a better comparison across age groups by avoiding the degree of distribution confound. EEG was recorded
in a large (n = 1500) population-based sample aged 5–71 years. Connectivity was assessed using phase lag index to
reduce effects of volume conduction. Connectivity in the MST graph increased significantly from childhood to ad-
olescence, continuing to grow nonsignificantly into adulthood, and decreasing significantly about 57 years of age.
Leaf number, degree, degree correlation, and maximum centrality from the MST graph indicated a pattern of in-
creased integration and decreased randomness from childhood into early adulthood. The observed development in
network topology suggested that maturation at the neuronal level is aimed to increase connectivity as well as in-
crease integration of the brain network. We confirm that brain network connectivity shows quantitative changes
across the life span and additionally demonstrate parallel qualitative changes in the connectivity pattern.
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Introduction

The brain is a complex network of highly connected
brain areas under constant pressure for optimal perfor-

mance. Describing the brain network using graph theoretical
parameters has proven useful providing biomarkers for dis-
ease (Heuvel et al., 2010; Menon, 2011; Stam et al., 2009;
Tijms et al., 2013; Zhao et al., 2012). In addition, it provides
a theoretical underpinning for what might constitute optimal
performance in an optimal network organization (Bullmore
and Sporns, 2009; de Haan et al., 2009; Sporns, 2014; Stam,
2014). Ontological development may show similar pressure
for increased optimal organization. Anatomically, the human

brain shows developmental changes on the whole-brain
scale (Casey et al., 2000; Courchesne et al., 2000; Giedd
et al., 1999; Lenroot and Giedd, 2006; Paus et al., 2001;
Westlye et al., 2010), on the intermediate scale of distinct
brain areas (Gogtay et al., 2004; Lenroot and Giedd, 2006;
Paus, 2005; Shaw et al., 2006), and also on the neuronal mi-
croscale (Huttenlocher, 1979; Huttenlocher and Dabholkar,
1997; Huttenlocher and de Courten, 1987).

These anatomical changes are accompanied by changes on
a functional level, as measured using functional magnetic res-
onance imaging (fMRI), MEG, and electroencephalography
(EEG) (M/EEG). The resting-state networks seem largely in
place by the age of two (Fransson et al., 2010), but also show
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clear development by increasing (long-distance) connectivity
as evidenced both from fMRI (Fair et al., 2008, 2009; Power
et al., 2010) and M/EEG studies (Courchesne et al., 2000; Han-
lon et al., 1999; Smit et al., 2012). Comparing young to older
adults, modularity decreases for longer connectivity dis-
tances and across networks (Meunier et al., 2009), and in
aging, connectivity decreases in strength (Smit et al., 2012).

Functional methods of determining connectivity use either
direct (EEG, MEG) or indirect (fMRI blood-oxygen-level de-
pendent [BOLD]) measures of correlated neuronal activity to
derive coupling strength between brain areas. The high tempo-
ral resolution of M/EEG may be particularly useful for esti-
mating short duration networks that appear and disappear on
second scale (‘‘fragile binding’’). On a larger temporal
scale, fMRI can also detect connectivity, as illustrated most
clearly by the resting-state networks (Damoiseaux et al.,
2006). Recent work has shown that both the fMRI- and M/
EEG-based resting-state activity share a common ground
(Britz et al., 2010; Mantini et al., 2007; Musso et al., 2010).
Our previous investigations showed that connectivity showed
substantial change over time closely following anatomical de-
velopmental curves of white matter (Boersma et al., 2010;
Smit et al., 2010, 2012). Moreover, connectivity correlated
with white matter volume (WMV) (Smit et al., 2012). When
connectivity matrices from EEG were converted to graphs
and analyzed following Watts and Strogatz (Watts and Stro-
gatz, 1998), global network efficiency showed similar correla-
tions with white matter and protracted development from
childhood into young adulthood (Smit et al., 2012).

M/EEG recordings are subject to volume conduction ef-
fects that blur the recorded signals at the scalp or sensor
level. Volume conduction is particularly problematic for de-
termining functional connectivity between signals for algo-
rithms like Coherence and synchronization likelihood (SL)
(Nunez and Srinivasan, 2006; Nunez et al., 1997). For this
reason, Stam and coworkers (2007) proposed the phase lag
index (PLI), which was designed to reduce the effect of vol-
ume conduction by ignoring zero and p phase differences be-
tween pairs of signals. If the distribution of phase differences
is symmetric around zero, this may be evidence for spurious
connectivity due to volume conduction. Deviances from a
symmetric distribution must be due to dependency between
sources (direct or indirect). Flat distributions show no evi-
dence for connectivity, spurious or not. Our first aim is to es-
tablish whether average connectivity, as well as the graphs
derived from connectivity matrices, still show the strong de-

velopmental effects that we have reported earlier (Boersma
et al., 2010, 2013; Smit et al., 2010, 2012).

A second limitation of previous studies may be that the
comparison of networks across the different age groups is
problematic, as networks have different average connectivity
and degree (Tewarie et al., 2015; van Wijk et al., 2010).
Although the use of graph parameters compared to those of
randomized graphs is often thought to remove much of
these comparability problems, this may only partly be the
case (van Wijk et al., 2010). The use of the minimum span-
ning tree (MST) graph might provide additional information
over the use of thresholded or weighted graphs (Boersma
et al., 2013; Stam, 2014; Stam et al., 2014). MST graphs
are connected graphs constructed from weighted, undirected
connectivity matrices in such a way that they are fully con-
nected and do not form loops. The Kruskal algorithm for
finding the MST iteratively selects the edge with lowest
weights (where weight is defined as ‘‘distance,’’ the inverse
of ‘‘connection strength’’) and adds the connection to the
spanning tree only if no loops are formed. The algorithm
stops when all vertices are connected (Kruskal, 1956).

Tewarie and coworkers (2015) showed using simulations
that—even though tree graphs are biologically implausible—
MST graph properties still capture topological features of the
underlying full network, such as small-worldness and ran-
domness of the graph. Kim and colleagues (2004) showed
that spanning trees (like the MST) capture a large proportion
of the betweenness centrality (BC) (e.g., *50% of BC was
captured in a coauthorship network with only 16% of the
nodes), supporting the idea that they capture most of the in-
formation flow in the network. The tree thus forms a ‘‘back-
bone’’ structure of the original graph. In this article, it is our
aim to capture properties of this backbone structure, while
keeping comparability across different age groups.

Graph parameters derived from MST graphs include the
number of leaf nodes (nodes with degree 1; leaf number
[LN]), diameter (DI), the tendency for preferential attachment
(degree correlation [DC]), and measures that reflect the impor-
tance of the maximally central node (maximum degree Kmax,
maximum eigencentrality [ECmax], and BCmax). Table 1 gives
an overview of the measures. It has been argued that optimal
network function is a tradeoff between a small diameter (i.e.,
the MST network reveals that the underlying brain network is
compact), but not dependent on a single hub node (which has a
very small diameter, but may be less resilient (Albert et al.,
2000; Stam, 2014; Stam et al., 2014).

Table 1. Minimum Spanning Tree Graph Parameters and Their Description

MST graph parameter Abbreviation Description

Leaf number LN Number of end nodes (i.e., nodes with degree k = 1) represents the dimension
from linear to star graph (Fig. 1)

Diameter DI Largest in the set of shortest paths between all possible pair of nodes
Betweenness centrality BCmax Maximum value of the number of shortest paths passing through the nodes
Eigenvector centrality ECmax Maximum value of the loadings on the first principal component of the graph
Maximum degree Kmax Largest degree in the graph
Tree hierarchy TH Tradeoff between the number of leaf nodes and maximum betweenness defined

as LN=(2m � BCmax) , where m is the number of nodes minus 1, i.e., the number
of edges in the graph

Degree correlation DC Correlation between the degrees of pairs of connected nodes

MST, minimum spanning tree.
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Increased integration of the network may manifest itself as
a move from low to high LN in MST graphs. How MST
graphs relate to optimization of the brain is a matter of ongo-
ing investigation (Lee et al., 2006; Serrano et al., 2009; Stam,
2014; Stam et al., 2014). However, it has been shown that
MST parameters are altered in Parkinson’s disease, epilepsy,
Alzheimer’s disease, and near brain tumors (Cxiftçi, 2011;
Dubbelink et al., 2014; Lee et al., 2006; Tewarie et al.,
2014; van Dellen et al., 2014); for an overview, see Stam
(2014).

In sum, we investigated whether the observed increase in
network order remains after connectivity has been estab-
lished with a measure less sensitive to volume conduction
compared to the SL measure used previously (Smit et al.,
2012; Stam and van Dijk, 2002). Next, we investigated
whether the MST graphs from PLI connectivity networks
provide a similar picture of increased integration with matu-
ration. By reanalyzing the same dataset as previously (Smit
et al., 2012), and by using a different connectivity measure
and different graph type, we can make a comparison without
the burden of sample fluctuation. Finally, while our previous
analyses focused on a narrow age range in childhood (5 and 7
year olds) (Boersma et al., 2013), in this study, we provide
data on subjects aged 5–71 from multiple large longitudinal
EEG datasets covering adolescence and adulthood. Using
these data we will establish whether the previously reported
increase in MST order in childhood continues to adolescence
and is maintained during adulthood.

Methods

Subjects and procedure

Data were collected as part of a study into the genetics of
brain development and cognition. A total number of 1675 in-
dividuals (twins and additional siblings) accepted an invita-
tion for extensive EEG measurement. For the present
analyses, EEG data recorded during 3–4 min of eyes-closed
rest were available from six measurement waves with ages
centered approximately around 5, 7, 16, 18, 25, and 50
years. Table 2 shows the number of subjects broken down
by wave and level of genetic overlap (twin zygosity/siblings).
Note that the twin/family relatedness is not a part of the cur-
rent, non-genetic analyses, but high degree of genetic overlap

between subjects will result in a reduction of effective degrees
of freedom. Part of the measurements consisted of longitudi-
nal measurements at two ages (5–7 and 16–18 years). In ad-
dition, some of the subjects aged 16–18 were invited back for
measurements at age 25. In total, this study incorporated
2453 EEG recordings. After data cleaning, 2206 recordings
were available. The structure of the final subject set after
data cleaning used in the present study was 362, 377, 425,
386, 359, and 297 respectively for the six measurement
waves, which included 328 longitudinal observations between
5 and 7, 385 between 16 and 18, 103 between 16 and 25, 100
between 18 and 25.

Ethical permission was obtained by the ‘‘subcommissie
voor de ethiek van het mensgebonden onderzoek’’ of the
Academisch Ziekenhuis VU (currently METc of the VU
University Medical Centre). All subjects (and parents/guard-
ians for subjects under 18) were informed about the nature of
the research. All subjects or parents/guardians were invited
by letter to participate, and agreement to participate was
obtained in writing. All subjects were treated in accordance
with the Declaration of Helsinki.

EEG acquisition

The childhood and adolescent EEG were recorded with tin
electrodes in an ElectroCap connected to a Nihon Kohden
PV-441A polygraph with time constant 5 sec (corresponding
to a 0.03 Hz high-pass filter) and low pass of 35 Hz, digitized
at 250 Hz using an in-house built 12-bit A/D converter board,
and stored for offline analysis. Leads were Fp1, Fp2, F7, F3,
F4, F8, C3, C4, T5, P3, P4, T6, O1, O2, and bipolar horizon-
tal and vertical electrooculogram (EOG) derivations. Elec-
trode impedances were kept below 5 kO. Following the
recommendation by Pivik and associates (1993), tin earlobe
electrodes (A1, A2) were fed to separate high-impedance
amplifiers, after which the electrically linked output signals
served as reference to the EEG signals. Sine waves of
100 lV were used for calibration of the amplification/AD
conversion before measurement of each subject.

Young adult and middle-aged EEG was recorded with Ag/
AgCl electrodes mounted in an ElectroCap and registered
using an AD amplifier developed by Twente Medical Systems
(Enschede, The Netherlands) for 657 subjects and NeuroScan
SynAmps 5083 amplifier for 103 subjects. Standard 10-20

Table 2. Subject Count and Sample Overlap Between Measurement Waves

Waves

Childhood Adolescence Adulthood

5 7 16 18 25 50

Average age (SD)
MZ twins 155 153 182 165 108 116
MZ complete pairs 70 75 91 81 46 50
DZ twins and siblings 207 224 243 221 251 181

DZ/sib complete pairs 92 110 121 109 283 206
Total N 362 377 425 386 359 297
% male 47.8% 50.9% 46.5% 46.5% 46.2% 40.1%

Numbers are valid subjects after EEG data cleaning. EEG data were collected in six separate waves, four with narrow age range (5–18),
and two with wider age ranges (25–50). Waves 5 & 7 have complete overlap. Waves 16 & 18 have complete overlap. One hundred three
subjects in adolescent waves also appear in wave 25. All others are independent observations.

DZ, dizogotic; MZ, monozygotic; EEG, electroencephalography.
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positions were F7, F3, F1, Fz, F2, F4, F8, T7, C3, Cz, C4, T8,
P7, P3, Pz, P4, P8, O1, and O2. For subjects measured
with NeuroScan, Fp1, Fp2, and Oz were also recorded. The
vertical EOG was recorded bipolarly between two Ag/AgCl
electrodes, affixed one cm below the right eye and one cm
above the eyebrow of the right eye. The horizontal EOG
was recorded bipolarly between two Ag/AgCl electrodes
affixed one cm left from the left eye and one cm right from
the right eye. An Ag/AgCl electrode placed on the forehead
was used as a ground electrode. Impedances of all EEG elec-
trodes were kept below 5 kO, and impedances of the EOG
electrodes were kept below 10 kO. The EEG was amplified,
digitized at 250 Hz, and stored for offline processing.

EEG preprocessing

We selected 12 EEG signals (F7, F3, F4, F8, C3, C4, T5,
P3, P4, T6, O1, and O2 and both EOG channels) for further
analysis as the set with the most complete match between the
different measurement waves/cohorts.

All signals were broadband filtered from 1 to 35 Hz with a
zero-phase FIR filter with 6 dB roll-off. Next, we visually
inspected the traces and removed bad signals based on absence
of signals, excessive noise, extensive clipping, or muscle arti-
fact. Note that for the network analysis, a full set of EEG sig-
nals was required, and therefore, any rejected EEG channel
resulted in the loss of that subject. Next, we used the extended
independent components analysis (ICA) decomposition imple-
mented in EEGLAB (Delorme and Makeig, 2004) to remove
artifacts, including eye movements, and blinks. After exclusion
of components reflecting artifacts, the EEG signals were fil-
tered into the alpha (6.0–13.0 Hz) frequency band. The peak
alpha frequency developed from 8.1 Hz at age 5 to 9.9 Hz at
age 18, after which a slow decline to 9.4 Hz was observed
at around 50 years. The lower edge of the alpha filter was
set such that alpha oscillation of all subjects was included
from *2.0 Hz below the lowest peak frequency to *3.0 Hz
above the highest average peak frequency. The cleaned fil-
tered data were cut into sixteen 8-sec epochs.

Connectivity

Connectivity was calculated using the PLI. For a detailed
description, we refer the reader to Stam and colleagues
(2007). In short, the PLI inspects the distribution of phase
differences between pairs of signals X = {X1, X2, X3 . XN}.
First, signals in X are filtered for oscillations in the frequency
band of interest. Next, the instantaneous phase for a signal Xi

is established using the Hilbert transform

H(Xi)(t) = atan(s(t))þH(s(t))i)

where s(t) is the signal over time t, and H is the Hilbert trans-
form, i is

ffiffiffiffiffiffiffiffi

� 1
p

, and atan is the arctangent considering the
sign of the real and imaginary inputs to return positive or
negative angles. Phase difference between signals n and m
is then D/(t) = /n(t)�/m(t) for n 6¼ m. Next, PLI is calcu-
lated as

PLI = abs(sign[sinfD/(t)g])

for D / modulated within the range �p and p.
To compare the results from PLI to a measure that does not

take into account the effects of volume conduction, we cal-

culated SL on the same data using the specifications as
reported previously (Smit et al., 2012).

Graph analysis

MST graphs were created with the Kruskal algorithm
(Kruskal, 1956) applied to the PLI connectivity matrices.
Next, we derived parameters described in Table 1 from
these graphs using a variety of MATLAB algorithms, includ-
ing standard MATLAB code, the MIT graph toolbox (http://
strategic.mit.edu/downloads.php?page=matlab_networks),
the brain connectivity toolbox (Rubinov and Sporns, 2010),
and custom scripts. We performed the same analysis on 1000
random graphs by creating symmetric matrices with random
numbers on a (0, 1) interval. We extracted the same graph
parameters (Table 1) and averaged these across the 1000
graphs.

Statistics

The effect of age was determined in several ways. First, we
created developmental plots (scatterplots) from connectivity
and each of the MST graph parameters on age. Next, local
nonlinear-weighted regression trends were fitted (loess, on
65% window size second-order polynomials). 95% confidence
intervals around the loess fit were obtained using a bootstrap
with 10,000 repeats using percentiles. Since some observa-
tions are nested within family, the bootstrap was based on
the independent unit (family) rather than individual. Note
that the bootstrap was not used to establish significance. To
test significance of developmental trends, we estimated differ-
ent fixed-effect models. First, linear, quadratic, and cubic
trends were fitted to the dataset, which we tested for signifi-
cance sequentially. Because of the complex structure of data,
including repeated measures and family dependencies,
which even extended across the different age groups (sib-
lings of twins might fall into a different age category
than the proband twins), we used generalized estimating
equations (GEE) to obtain p values. GEE is a random-effects
model that corrects significance of fixed effects under nonin-
dependence of observations, viz., under residual correlation
within a known cluster of observations (in the current case,
clusters are all observations within a family, including
repeated measures). GEE with the ‘‘exchangeable’’ option
estimates a single correlation between residuals within the
cluster. Since all off-diagonal elements in the residual corre-
lation matrix are estimated to be the same, this naturally han-
dles uneven cluster sizes (including missing data and
families of different size). Even though the residual matrix
is arguably more complex than the single correlation (e.g.,
repeated measures and monozygotic twin correlations are
expected to be higher than other within-family correlations),
the robust standard errors (SEs) are not affected by this mis-
specification with regard to controlling for type I errors
(Minică et al., 2014).

Second, we defined nine age groups using the following
boundaries specified in years. The youngest four age groups
were specified to match the measurement waves with rela-
tively narrow age ranges (childhood and adolescence): 4.9–
6.0, 6.0–7.4, 13.0–16.6, and 16.6–20.0. The adult waves had
a larger age range and were split centered around decades
20.0–25.0, 25.0–35.0, 35.0–45.0, 45.0–57.5, and 57.5 and
older. The youngest adult age group was chosen so as to not
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overlap with the late adolescent/young adult wave. The oldest
age group’s lower boundary was increased to 57.5 to reduce
the large age range to 13.5 years. These were tested in an om-
nibus test using GEE with age group as the factor controlling
for sex. To investigate post hoc-specific age group deviations,
we also tested equality of means of age groups in a pair-wise
manner with false discovery rate (FDR) correction for the
n(n� 1)/2 comparisons tested (36 at n = 9) (Benjamini and
Hochberg, 1995). In the post hoc comparisons, we further
multiplied the p values by a factor of two to accommodate
for multiple testing across the measures. Two was chosen
rather than eight, since the dimensionality of the data showed
a clear two-dimensional structure (see Results section).

Results

SL and PLI are different

SL and PLI were compared both on a lead pair by lead pair
basis and on average connectivity. When comparing the 66
lead-pair connectivity scores, SL and PLI correlations ranged
from 0.111 for childhood age groups to 0.34 for adolescent
age groups. Averaged across the whole scalp, the correlation
between SL and PLI ranged from 0.30 to 0.65. This suggests
that PLI and SL show overall different patterns of connectiv-
ity. The average connectivity pattern for SL and PLI is shown
in Figure 1. Compared to PLI, SL showed stronger connectiv-
ity for nearby electrodes grouped into three clusters (frontal,
central, and posterior). This may partly reflect volume conduc-
tion effects. SL also shows evidence of stronger connectivity
across homologues than PLI. These are less likely to reflect
volume conduction effects (Nunez et al., 1997) due to their
relatively large interelectrode distance. Since PLI connectivity
for homologues is relatively low, we can conclude that later-
alized alpha sources mainly oscillate in phase. PLI connectiv-
ity showed a more evenly distributed pattern of connectivity

than SL, but a parietal hub was visible, while the frontal clus-
ter disappeared. In sum, average PLI connectivity taps partly
into the same sources of individual variation as SL, however,
the connectivity pattern differs for PLI and SL.

Increased order with increased LN

Figure 2 shows the dependency of MST graph parameters
on LN. Each point in the scatterplot represents the MST
graph values of a single individual. Note that most values
fall close to the polynomial regression. A second-order poly-
nomial fit was significant in all cases. The centrality mea-
sures and Kmax showed a positive relationship with an
upward curve as expected from random graph simulations
(Boersma et al., 2013). Tree hierarchy (TH) also showed a
positive dependence on LN, but with a downward curve,
thus setting a limit to the effect of LN on TH. DI decreased
with increasing LN in a linear manner, which may be
expected since maximum and minimum values for DI may
be derived analytically from LN (Stam, 2014). DI will lie be-
tween DImax = N� LNþ 1 and DImax = 2(N� 1)=LN, where
N is the number of nodes.

PLI connectivity shows an inverted-U development

Figure 3 (top row) shows the results of average connectiv-
ity within the MST graph developing over age. Connectivity
showed a pattern of development similar to those reported
previously based on a different measure of connectivity
(Smit et al., 2012). Top-left graph shows the development
with loess fit (50% window size, second-order fit). The
top-middle graph shows the same loess fit with bootstrap
95% confidence interval and reveals changes from childhood
to early adulthood in average PLI, a decrease from 16 to 25.
The omnibus test GEE model predicting average connectiv-
ity with age group as factor controlling for sex was highly

FIG. 1. Connectivity matrices for PLI (A) and SL (B) for the adolescent age group (18 years). Matrices were converted to
have matching averages and standard deviations to highlight the pattern rather than absolute differences in connectivity. Electro-
des over left and right hemisphere (black boxes) as well as anterior (Lateral Frontal, Frontal, Central) and posterior (Temporal,
Parietal, Occipital) areas are grouped. SL showed two clear clusters (light grey box) in either hemisphere. PLI showed a single
posterior cluster (grey) that also connected well to the anterior areas. SL also showed stronger cross-hemisphere connectivity for
homologues (dark grey boxes) compared to PLI. A repeated measures GEE model with repeated factor connectivity type (SL,
PLI) and location pair (66 combinations) resulted in a highly significant interaction of type*location, v2 = 7372.8, df = 65,
p << 1.0 $ 10�15. GEE, generalized estimating equations; PLI, phase lag index; SL, synchronization likelihood. Color images
available online at www.liebertpub.com/brain
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significant, Wald v2(8) = 243.3, p = 4.5 $ 10�48. Post hoc
comparisons with FDR adjustment revealed that significant
increases were found from childhood to adolescence, but
also between age groups 5 and 7. MST connectivity declined
in the 57.5+ age group and reached significance in compari-
son to the adolescent and *40 age groups.

Connectivity patterns change with age

Although average PLI connectivity may change across
different age groups, localized developmental differences
may still occur. We assessed the connectivity between all
possible pairs of signals and calculated change across the
9 age groups in a stepwise manner (i.e., 8 change values)
expressed as rate per annum. Three-dimensional headplots
were constructed using BrainNet Viewer (Xia et al., 2013)
with approximate locations of the electrodes (Fig. 4 left col-
umn). The thickness of the edges was rescaled to average in-
crease per annum making them comparable across headplots.
Red colors indicate increase, blue decrease, and green indi-
cates no change.

Changes within childhood were largely limited to intrahe-
mispheric connections (Fig. 4 right column). Homologous
(left–right lateralized) electrode pairs and other interhemi-
spheric connections showed low PLI connectivity increase.
From childhood to adolescence, both inter- and intrahemi-
spheric connections showed increases, but homologues still
showed less PLI change. In adolescence, a change is seen
with homologues reaching the largest change. In later ages,
reduction in connectivity strength is clearest in interhemi-
spheric connections (other than homologues). In sum, the
changes during childhood, adolescence, and middle-aged
adulthood showed remarkable changes in topology. Clearly,
the brain does not simply change connectivity, but changes
the overall pattern of connectivity.

Reliability of MST parameters

Split-half reliability across two sets of eight epochs was
corrected for the reduced time length in the eight compared
to 16 epochs. Very high reliability for scalp-average PLI
connectivity was obtained (0.96). Pairwise channel reliabil-
ity ranged from r = 0.72 to 0.94. MST graph parameters
were measured moderately reliably. Highest reliability
was found for Kmax (0.741). The other centrality measures
showed lower reliability (BCmax: 0.587, ECmax: 0.592).
LN, DI, and DC showed reliability of 0.71, 0.628, and
0.605, respectively.

An increasingly integrated network

Figure 3 also shows the development of MST graph pa-
rameters as scatterplot with loess fit (Fig. 3A), bootstrap of
the loess fit with 95% confidence intervals (Fig. 3B), and
pairwise testing of significance across age groups (Fig. 3C).
Network parameters showed developmental trends highly
comparable to connectivity. Cubic curves were not signifi-
cant (absolute robust z < 1.4, ns). All quadratic terms were
significant (absolute robust z > 6.44, p < 1.2E-10) with all pa-
rameters showing inverted-U shapes—except DI showed a
U curve as expected.

The brain network of children showed a lower LN, indi-
cating a more random network and less integrated organiza-
tion. Increasing age resulted in an increased LN and a

FIG. 2. MST graph parameters covary with LN. From left
to right on the x-axis, increased LN indicates increased hier-
archical order and integration in the network. LN ranges
from 2 (a linear configuration) to 11 (a star-like configura-
tion) for a 12-vertex network, expressed in this study as a
proportion from 0 to 1. Each plot contains an average MST
graph parameter for each individual, plotted against average
LN (averaged across multiple EEG epochs). The red line is a
loess fit (50% width, second order). The dashed line indicates
the average value obtained in 1000 graphs (n = 12) based on
random signals. BC, betweenness centrality; DC, degree cor-
relation; DI, diameter; EC, Eigenvector centrality; EEG,
electroencephalography; LN, leaf number; MST, minimum
spanning tree; TH, tree hierarchy. Color images available
online at www.liebertpub.com/brain
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FIG. 3. Age development plots for average connectivity strength (PLI) within the MST graph and MST network parameters
of EEG alpha oscillations (6.0–13.0 Hz). (A) Large individual variation around loess smooth (50% width, second-order fit) was
observed. Most parameters showed (inverted) a U-shaped development. (B) 95% confidence intervals were obtained by boot-
strapping across families. (C) Group-wise comparison was corrected for residual correlation with robust SEs (see Methods sec-
tion) and FDR corrected for the n*(n� 1)/2 comparisons (n = 9) and further multiplied by 2 to correct for the dimensionality of
the data (as indicated by the PCA). Pairwise comparison was significant when an open circle is connected to a colored marker
(grey/red). For example, age group 5 differed significantly in MST connectivity strength from ages 7, 16, 18, *23, *30, *40,
and *50. Squares indicate the strongest effect (FDR corrected-p < 0.001) followed by diamonds (corrected-p < 0.01) and circles
(corrected-p < 0.05). Color saturation indicates–log10(P), with gray values for corrected-p = 0.05 ranging to bright red for
corrected-p = 10�7. FDR, false discovery rate; SEs, standard errors. Color images available online at www.liebertpub.com/brain
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correspondingly increased BCmax, ECmax, and Kmax. TH
changed similarly in an inverted-u shape. DI and DC de-
creased. These findings are consistent with an increasing
star-like organization and increased integration. The compar-
ison of most measures showed significant change from 5 years
of age to adolescence/adulthood with highly significant values
( p < 0.0001, and p < 0.001 compared to age *40 for DC and
ECmax). Age 7 showed a similar pattern. Both ages 5 and 7
generally showed no significant difference with the oldest
age group (>57.5).

Older age (57.5+) was marked by a significant decrease for
many parameters, although the effects were not very strong
( p < 0.01). LN and TH decreased with older age compared
to ages *30 to *50. Connectivity decreased only compared
to age *40 ( p < 0.01). The centrality measures showed less-
consistent decrease, possibly due to a noisier variation.

Principal components reveal partly separate
sources of variation

Since the developmental trends of connectivity and MST
graph parameters showed markedly similar paths, we subjected
the correlation matrix of four different measures for connectiv-
ity (homologous contralateral connectivity, other interhemi-
spheric connectivity, and intrahemispheric connectivity left
and right) and six MST-based graph parameters (LN, DI,
BCmax, ECmax, Kmax, DC) to an eigenvalue decomposition
after selecting one random subject per family and regressing
out the effects of age and sex. TH was excluded since it was
based on two other parameters and therefore does not add in-
formation to the correlation matrix. Scores for DI and DC
were inverted so as to enforce positive correlations. Figure 4
shows the results. The correlation matrix shows a clear cluster-
ing of connectivity versus MST graph parameters. The highest
eigenvalue of 5.85 explained 58.5% of the variance, the second
highest was 2.09 (20.9% variation). Both the correlation matrix
(Fig. 5A) and the scree plot (Fig. 5C) strongly suggest a two-
factor solution. After varimax rotation, MST parameters
loaded strongly on the first component and PLI connectivity
measures on the second (Fig. 5B). Figure 5D shows that the
two components show different developmental patterns, with
a much clearer U-curve for MST graph parameters, while PLI
connectivity shows a decrease from adolescence to young
adulthood. For these reasons, we conclude that MST graph
parameters and PLI-based connectivity largely reflect

FIG. 4. Localized development of connectivity strength.
Left: 3D headplots of average change in PLI per year from
one age group to the next (age groups 5, 7, 16, 18, *23,
*30, *40, *50, 57.5+) from an elevated right posterior
viewpoint. The location of maximal development is not stable,
but changes with age. Actual ages of the age groups that are
compared are shown on the left. Right: Separating edges
into intrahemispheric left and right (Intra L, Intra R), contra-
lateral homologues (Hom), and other cross-hemisphere
(Cross) connections showed that childhood was marked by a
clear intrahemispheric increase of connectivity, while later
age groups showed no such strong prevalence or stronger in-
creases in contralateral homologues (within adolescence).
**p < 0.05, ***p < 0.001 after FDR correction at q = 0.05.
Color images available online at www.liebertpub.com/brain
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different sources of variation in brain function with different
developmental curves.

Preservation of properties in MST graphs

Twelve-node graphs are arguably insufficient to detect prop-
erties of the underlying network that has spatially much
higher dimensionality. We therefore conducted an analysis
on 39 datasets with 128-channel 4-min eyes-open resting
EEG available in our laboratory. We refer to Smit and asso-
ciates (2013) for more specifics on data recording. The
cleaned data were filtered (8–13 Hz), epoched into sixteen
8-sec epochs, PLI connectivity calculated, MST parameters
calculated, and averaged over the epochs. After that, we se-
lected the 12 electrodes nearest to those in the current data-
set, and recalculated PLI and MST parameters. The average
PLI correlated highly (r = 0.97). Kmax, DC, LN, and DI cor-
related moderately to highly (r = 0.48, r = 0.40, r = 0.70, and
r = 0.61, respectively; all p < 0.011), indicating that a sub-
stantial proportion of interindividual variance is reflected
in a very rudimentary 12-node representation of the initial
128-node network. BCmax and ECmax correlated nonsignifi-
cantly (r = 0.24), suggesting that maximum centrality mea-
sures are hardly preserved.

We additionally compared parameters derived from full
12-node graphs to those of MST graphs. Full graphs were
thresholded graphs with a fixed average degree (K = 4.5) as
calculated previously in this sample (Smit et al., 2012).
The connectivity within the MST graphs correlated highly
with connectivity in the full graphs (r = 0.93). Kmax corre-
lated r = 0.63, ECmax 0.46, and LN 0.44 between full and
MST graphs. This confirms previously reported results
that spanning trees conserve important node properties and
properties on information flow (Kim et al., 2004; Tewarie
et al., 2015). However, it also confirms that the overlap
might not be perfect due to the arbitrary threshold selection
(van Wijk et al., 2010).

Discussion

Our aim was to investigate whether the increased integra-
tion of the network observed from 5 to 7 years of age extends
into adolescence and adulthood. The large and highly signif-

icant differences found in graph parameters and connectiv-
ity between childhood and adolescence/adulthood suggest
that this is the case. We established that the life-span devel-
opment of average connectivity between pairs of scalp-
recorded signals closely mimics those reported previously
(Smit et al., 2012). By using the PLI (Stam et al., 2007)—a
measure that was designed to ignore volume conduction—
we have found support that our previous findings using SL
(Stam and van Dijk, 2002) have not been spurious. We hy-
pothesize that the sparse electrode layout in our previous re-
port may have been protective against detecting false
synchronization (Smit et al., 2012).

Average connectivity within the MST measured with PLI
showed strong increases within childhood and from childhood
to adolescence. Our previous report on the same sample used
SL as a measure of functional brain connectivity. Each mea-
sure is sensitive to different types of functional connectivity
as evidenced by the different connectivity matrices they pro-
duce (Fig. 1). Even so, the current results show remarkable
similarities with previous reported results. Both PLI and SL
showed a strong increase from childhood to adolescence
with effect sizes over r > 0.40 comparing age group 5 with
other ages. PLI showed peak value at age 40 (Fig. 3, right col-
umn), with SL peaking at around age 50. This suggests that the
previous results were quite robust against effects of volume
conduction and common reference. However, the current re-
sults also differed from those reported previously. Connectiv-
ity measured using SL showed continuous and significant
increases into late adulthood, whereas PLI connectivity showed
a nonsignificant change (and a decrease from age 18 to
*23). Moreover, the correlations between SL and PLI
were generally low to moderate, suggesting that they reflect
different sources of variation.

Several findings in the extant literature suggest that this
increase in EEG functional connectivity depends on matura-
tion of white brain matter, including myelinization. For
example, it has been found that interhemispheric EEG connec-
tivity measured by coherence has been related to diffusion ten-
sor imaging diffusivity (Teipel et al., 2009) and T2 relaxation
times in white matter in head injury, which arguably is related
to neuronal membrane lesion (Thatcher et al., 1998). In addi-
tion, we have previously found that developmental curves for

FIG. 5. Principal Components Analysis of connectivity scores separated into contralateral homologues (Hom), other cross-
hemispheric connections (Cross) intrahemisphere left (Intra L) and intrahemisphere right (Intra R), and MST graph measures.
Note that TH was excluded as this measure is fully based on two other graph parameters (LN and BCmax). Positive correla-
tions of DI and DC with other parameters were enforced by reversing scores. (A) The correlation matrix (corrected for age
and sex) suggested two clusters, one for the four connectivity types, and one for the MST graph parameters. (B) The scree plot
also strongly suggested two separate sources of variation. (C) The loading pattern for varimax-rotated two-component ex-
traction showed clear separation of the connectivity and MST graph measures. (D) The varimax-rotated factor scores (cor-
rected for sex) showed different developmental paths, suggesting that development differentially affects connectivity and
MST graph parameters. Color images available online at www.liebertpub.com/brain
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connectivity are highly consistent with the protracted develop-
ment of white matter development: both connectivity and
WMV showed peaks in middle age (Allen et al., 2005; Bart-
zokis et al., 2001; Benes et al., 1994; Good et al., 2002; Wal-
hovd et al., 2005a, 2005b; Westlye et al., 2010). Moreover, a
moderate correlation was found between WMV and connec-
tivity. Because PLI reduces the effects of spurious connectiv-
ity in the brain based on volume conduction and common
reference, these results seem to further strengthen the idea
that functional connectivity in the resting state reflects the
strength of anatomical connectivity between distant brain
areas. It is not expected that changes in head circumference
are a spurious explanation for the observed changes in func-
tional connectivity and resulting changes in the MST network.
At the age of 5, the head has reached 90% of its final size
(Rollins et al., 2010). Moreover, effects on volume conduction
due to head growth are likely to scale with the brain and not
produce relative changes in (relative) conductive properties
of the brain/skull/scalp. Global changes in volume conduction
induced by head circumference increase seem inconsistent
with the regional changes in connectivity as revealed in Fig-
ure 4. Finally, we have previously found that signal strength
(oscillatory power) is larger in childhood than in adulthood
(Smit et al., 2012), which would indicate that S/N ratios de-
crease with age. Reduced S/N should result in noisier PLI es-
timates and graphs closer to noise, which is the opposite of
what was observed. More likely, synaptic pruning and white
matter development caused the increase of connectivity,
resulting in greater connectivity and complexity even at larger
distances. Functionally, brain regions come ‘‘closer’’ together
during brain size increase.

Arguably, MST graphs are more comparable across groups
than thresholded graphs (Stam, 2014; van Wijk et al., 2010).
Graph parameters derived from the MST graph showed evi-
dence for change in the level of integration. All MST param-
eters show an inverted-U curve (and a U curve for diameter).
The backbone graph in the human brain activity moved from a
line to a more star-like configuration during development. In
later age, a return to a more line-like configuration was
found. For all, but the centrality measures, these resulted in
significant drops for age group 57.5+ compared to ages 30
and 50. Importantly, principal components analysis showed
that MST graph parameters reflected different sources of var-
iation compared to PLI connectivity. Clearly, not just the av-
erage connectivity, but the connectivity pattern changes. Note
that we observed that MST graph parameters showed a more
star-like configuration than random graphs (Fig. 1). In this
sense, the observed developmental changes showed a move
from random networks toward more integrated networks,
and more random networks in later life. This, too, is consistent
with previous observations of life-span development in the
same sample (Boersma et al., 2010; Smit et al., 2010, 2012).

The current EEG dataset was limited to a small number of
EEG signals (n = 12). The signals are linear combinations of
the neural generators they project to the scalp location of the
electrodes. Although the PLI algorithm disregards spurious
connectivity of neural sources that project to multiple elec-
trodes, it is clear that many sources contribute to a signal
electrode. Therefore, each signal represents the activity of
a large area in proximity of the electrode. We therefore ana-
lyzed high-density recordings for PLI and MST parameters,
downsampled spatially to 12 channels, and analyzed PLI

and MST parameters again. Average connectivity was well
represented in the reduced 12-node network. In addition,
many MST parameters were also (partially) preserved in
the 10-fold reduced networks (notably, Kmax, DC, and LN).
Note that this reduction includes an increased measurement
error. Therefore, we conclude that the observed developmen-
tal changes in 12-node networks suggest that high-density
measurements could, likely with much higher power, detect
a similar change.

The results make MST graph parameters highly suitable as
biomarkers for the development in early life and cognitive
decline associated with older age. Follow-up studies could
target the genetic variants that have been linked to neuronal
change such as myelination. In addition, studies could inves-
tigate how genetic variants exert their influence in cognitive
decline or Alzheimer’s disease (e.g., apolipoprotein E gene
[APOE], clusterin gene [CLU/APOJ], and phosphatidylino-
sitol binding clathrin assembly protein [PICALM]) (Harold
et al., 2009; Hollingworth et al., 2011; Lambert et al.,
2013). Carriers of the APOE �4 allele have an increased
risk for forming beta-amyloid plaques; during prion-like ag-
gregation, damage to neurons is done by oxidative stress,
resulting in brain atrophy. This loss significantly reduces
the number of neurons available for connectivity such as
that seen in mild cognitive impairment and Alzheimer’s dis-
ease ( Jelic et al., 1997; Tóth et al., 2014), and may addition-
ally result in the loss of integration in the MST network.
Likewise, clusterin (CLU/APOJ) is involved in the clearance
by binding to beta-amyloid resulting in variability in neurode-
generation (Desikan et al., 2014; Mengel-From et al., 2013)
and could have similar effects on connectivity and connec-
tivity patterns. PICALM highlights the need to investigate
inflammatory pathways (Perry et al., 2010). From the current
results, we expect that connectivity loss will prove to be non-
random, resulting in reduced integration due to specific at-
tacks on central nodes (He et al., 2009; Stam et al., 2009).

In developmental neurobiology, the dichotomy into long
and short projection distances may be essential. In an fMRI
study, it was shown that decreased short-range connectivity
concurs with increased long-range connectivity. Local con-
nections in a cognitive control network become less diffuse
with development from 10 to 22 years of age, which is ac-
companied by an increased long-distance functional connec-
tivity (Kelly et al., 2009). Similar findings of changes in
(long-distance) connectivity have been reported (Dosenbach
et al., 2010; Fair et al., 2009; Supekar et al., 2009). The pres-
ent results extend these findings in showing that from child-
hood to adulthood, brain networks move from less to more
integrated graphs (Fig. 2). Since network parameters may
be relevant predictors of cognitive performance (Michel-
oyannis et al., 2006; Tewarie et al., 2014; van den Heuvel
et al., 2009) and are disrupted in neurological disorders
(Stam et al., 2009, 2014; Tewarie et al., 2014; van Dellen
et al., 2014), we can hypothesize that the increasingly inte-
grated network topology is essential to the large develop-
mental changes in human cognitive performance during the
same period. Indeed, a more integrated network was predic-
tive of better cognitive performance in MS patients (Tewarie
et al., 2014). Cognitive performance correlated with a larger
decrease in network integration in Parkinson’s patients (Dub-
belink et al., 2014). Whether these findings generalize to the
normal population may be addressed in future investigations.
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In conclusion, brain connectivity measured by the PLI
shows large changes over the lifespan. These changes
largely corroborate the earlier findings that the connection
strength increases during development (Hagmann et al.,
2010; Smit et al., 2010, 2012). Since PLI is less sensitive
to volume conduction by ignoring the zero and p phase dif-
ferences between signal pairs (Stam et al., 2007), develop-
mental changes are therefore unlikely to reflect changes in
conductive properties across age groups. The use of the
MST backbone graph aimed to solve the problem that
graph measures may not be compared across different
sizes and degree distributions (van Wijk et al., 2010). How-
ever, MST graphs confirmed that brain matures across the
lifespan and shows changes in structure both in the develop-
ment in childhood and during aging in later life. These find-
ings corroborate our earlier findings that the network shows
reduced randomness from childhood to young adulthood
(Boersma et al., 2010, 2013; Schutte et al., 2013; Smit
et al., 2010, 2012).
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