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Genome-wide association (GWA) studies have been successful in 
identifying genetic loci associated with complex diseases and traits. 
Owing to the design of genotyping arrays, most of the associated vari-
ants have been common in population samples. Although thousands 
of loci have been associated with complex diseases and traits, they so 
far typically explain only a fraction of the heritability1.

It has now become possible to search for associations with variants 
that are less frequent than in previous GWA studies, by analyzing large 
numbers of samples using whole-genome or whole-exome sequenc-
ing approaches. However, costs have so far limited the possibility for 
sequencing the tens of thousands of samples likely needed to detect 
significant associations for low-frequency variants.

Stochastic imputation to individuals genotyped using genotyping 
arrays in samples of sufficient size offers an alternative and cost-effective  
design to study the associations of low-frequency and rare variants  

at a genome-wide level. GWA studies of circulating lipids have been 
highly successful in identifying loci harboring common variants  
with small effects2,3. In previous large-scale GWA studies, 157 loci 
have been shown to associate with lipid traits2,3, but the strongest 
associations have almost exclusively been reported with common 
variants (minor allele frequency (MAF) > 5%) in European data sets, 
owing to the study designs.

In contrast, previously published variants known to cause  
mendelian forms of dyslipidemic syndromes and, more broadly, 
variants with known functional impact on lipids (FL SNPs) typically 
have low MAFs (≤5%). Although there are almost 40 loci where both 
FL SNPs and common SNPs implicated in GWA studies reside, it is 
often not known whether these associations are driven by the same 
underlying haplotypes and whether the mendelian variants explain 
the association in population samples.
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Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, 
we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci 
with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, 
SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted 
damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion 
of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the 
impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
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We sought to evaluate the impact of common (MAF > 5%),  
low-frequency (0.5% < MAF ≤ 5%) and rare (MAF ≤ 0.5%) genetic 
variants on circulating blood lipids in up to 62,166 European  
samples by imputing variants into the GWA study cohorts using the 
sequence-based 1000 Genomes Project reference panel4 (Phase I 
interim release, June 2011). We aimed to determine (i) what the role of  
low-frequency variants and the burden of rare variants were in estab-
lished lipid-associated loci; (ii) whether a dense set of markers from 1000 
Genomes Project–based imputation could help to identify additional 
loci undetected in previous studies focused largely on common variants 
imputed to less dense reference panels from the HapMap Project; and 
(iii) how low-frequency and functional lipid variants contribute to the 
overall trait variance in comparison to common variants.

RESULTS
Study overview
To understand the contribution of low-frequency and rare genetic vari-
ation to circulating lipid concentrations, we undertook genome-wide 
imputation and association analysis in up to 62,166 individuals across 
22 GWA study cohorts of European ancestry. Within each cohort, we 
performed sex-stratified inverse-rank normalization of high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C), triglyceride (TG) and total cholesterol (TC) measures, after 
adjustment of each trait for age, age2 and study-specific covariates, 
including principal components to account for population structure. 
Case-control studies were further subdivided according to original 
data selection disease status. The GWA genotype scaffold for each 
cohort was imputed at up to ~37.4 million autosomal variants from 
the 1000 Genomes Project multi-ancestry reference panel4 (Phase I 
interim release, June 2011). Across a subset of studies, ~98% and ~95% 
of variants present in the reference panel with 1% < MAF ≤ 5% and 
0.5% < MAF ≤ 1%, respectively, were well imputed, as defined here 
by an IMPUTE5,6 info score of at least 0.4 (Supplementary Table 1). 
However, as expected, imputation of rare variants (MAF ≤ 0.5%) proved 
more difficult, although ~65% of the rare variants polymorphic in the 
reference data set were well imputed across the same subset of studies.

Genome-wide screen for single-variant associations
We first tested for association of over 9.6 million genotyped or 
successfully imputed SNPs, enabled by the 1000 Genomes Project 
imputation, with circulating HDL-C, LDL-C, TG and TC levels. 
Overall, we detected 93 loci with genome-wide significant association  

(Supplementary Fig. 1) to one or more lipid traits (P < 5 × 10−8), of 
which 10 loci have not been associated with lipids before (Table 1  
and Supplementary Figs. 2 and 3). Of the 83 previously established 
lipid loci, 79 had a new lead SNP for at least one lipid trait in our 
analysis (Supplementary Table 2). In 34 of the 79 loci, the linkage  
disequilibrium (LD; r2) between the new lead SNP and the previ-
ously identified lead SNP was ≤40% (15 loci had r2 ≤ 5%), and, in  
56 loci, the newly identified variant was not present in the HapMap 2  
imputation reference set used in previous studies. In 11 loci, the newly 
discovered lead SNP had MAF ≤ 5% and an average effect size of 
0.18 (in s.d. units) in comparison to the average effect size of 0.05 for 
the previously established common lead SNP estimated in a cohort 
independent of the discovery scan to avoid bias due to winner’s curse  
(n = 5,119; Fig. 1). These loci included the well-known lipid gene LPA 
for LDL-C (rs186696265: MAF = 0.8%, effect size = 0.26, P = 4.4 × 10−14,  
r2 = 0.1%). In addition, we observed high-effect lead SNPs in PCSK9 
for LDL-C (rs11591147: MAF = 1.9%, effect size = 0.53, P = 2.2 × 10−92,  
r2 = 0.9%) and APOE for TC (rs7412: MAF = 7.1%, effect size = 0.41, 
P = 7.5 × 10−239, r2 = 1.6%), which were already highlighted in the 
Global Lipids Genetics Consortium fine-mapping analyses3.

Using formal conditional analyses, in the MAFB locus, the new low-
frequency lead SNP with a large effect (effect size > 0.2, MAF ≤ 5%)  
explained the association of the previously identified lead SNP in  
7 population cohorts (n = 12,834), although the LD between these 
variants was less than r2 = 5% (Fig. 1). Additionally, there were seven 
loci with two or more associated lead SNPs over 1 Mb apart that had  
r2 < 5%, but in all cases the individual-level formal conditional analyses  
showed that the associations were completely explained by the known 
lipid-related SNPs in the regions (ZCCHC11, TMEM48 and PPAP2B 
associations explained by rs11591147 in the PCSK9 locus, olfactory 
receptor gene cluster association explained by rs7395581 in the LRP4-
MADD locus, CCDC79 association explained by rs73591976 in the 
LCAT-RANBP10 locus, and PSG9 and IRF2BP1 associations explained 
by rs7412 in the APOE locus).

In 5 of the 79 loci, the lead SNP was a missense variant pointing to 
either a well-established causal gene (ANGPTL4, APOE, PCSK9 or 
CILP2) or to a new candidate gene (ABCA6). The APOE lead SNP for 
TC, rs7412 (p.Arg176Cys, MAF = 7.1%, r2 = 0.7%), has been shown 
to associate with recessive familial type III hyperlipoproteinemia7,8, 
and the PCSK9 lead SNP for LDL-C, rs11591147 (p.Arg46Leu,  
MAF = 1.9%, r2 = 0.9%), has been shown to associate with extreme 
LDL-C values9. In the ANGPTL4 locus, the lead SNP in our GWA data 

Table 1  Newly identified loci associated with HDL-C, LDL-C, TC and/or TG concentrations

Locus Chr. Position B37 rsID Annotation
Primary  

associated trait
Secondary  

associated trait
Alleles 

(effect/other) EAF

Meta-analysis

Effect (SE) P n

PROX1 1 214,161,820 rs340839a 5′ UTR TG A/G 0.47 0.039 (0.006) 4.4 × 10−10 54,836

CEP68 2 65,284,623 rs2540948 Intronic TG C/T 0.35 –0.036 (0.006) 6.6 × 10−9 59,939

PRKAG3 2 219,699,999 rs78058190 Intergenic HDL-C A/G 0.05 –0.141 (0.020) 5.7 × 10−12 52,934

ADAMTS3 4 73,696,709 rs117087731 Intergenic TC T/A 0.01 0.308 (0.051) 2.3 × 10−9 23,641

MTHFD2L 4 75,084,732 rs182616603 Intronic TC T/C 0.01 0.374 (0.044) 1.8 × 10−17 42,905

MTHFD2L 4 75,084,732 rs182616603 Intronic LDL-C T/C 0.01 0.314 (0.045) 2.1 × 10−12 38,420

GPR85 7 112,722,196 rs2255811 3′ UTR TG G/A 0.25 0.041 (0.007) 2.3 × 10−8 59,962

RMI2 16 11,454,650 rs7188861 Intergenic HDL-C A/C 0.20 0.044 (0.008) 6.9 × 10−9 60,578

TM4SF5 17 4,667,984 rs193042029 Intergenic TG G/T 0.01 –0.170 (0.029) 8.1 × 10−9 50,105

GATA6 18 19,907,770 rs79588679 Intergenic LDL-C T/C 0.17 –0.049 (0.009) 3.6 × 10−8 53,108

ZNF274 19 58,681,861 rs117492019 Intergenic LDL-C T/G 0.19 –0.047 (0.008) 1.2 × 10−8 55,371

ZNF274 19 58,671,267 rs12983728 Intergenic TC A/G 0.16 –0.046 (0.008) 4.9 × 10−8 58,904
aPresent in the HapMap 2 reference panel.
The table presents the association meta-analysis results for the newly identified loci for the four lipid traits tested. Effect sizes are presented in s.d. units. Chr., chromosome;  
EAF, effect allele frequency; SE, standard error of the effect; n, number of samples; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;  
TC, total cholesterol; TG, triglycerides.
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was a predicted damaging missense variant, rs116843064 (p.Glu40Lys, 
MAF = 3.0%) with r2 = 1.8% with the previously associated common 
lead SNP. The missense variant was associated with TG and HDL-C 
levels and has previously been associated with extreme TG values10. 
The CILP2 lead SNP, rs58542926 (in the TM6SF2 gene encoding a 
p.Glu167Lys substitution, MAF = 7.8%, r2 = 98%), was associated with 
TC levels, risk of myocardial infarction and nonalcoholic fatty liver 
disease in two papers that appeared while this manuscript was in revi-
sion11,12. Our new lead SNP in the ABCA6-ABCA8 locus, rs77542162 
(in ABCA6 encoding a p.Cys1359Arg substitution, MAF = 2.0%,  
r2 = 0.6%) associated with LDL-C and TC values (P = 1.6 × 10−18 and 
1.9 × 10−13, respectively).

In the genome-wide screening, we identified ten loci that have 
not previously been associated with lipids (near PROX1, CEP68, 
PRKAG3, ADAMTS3, MTHFD2L, GPR85, RMI2, TM4SF5, GATA6 
and ZNF274), with four having a low-frequency variant (MAF < 5%) 
as the lead SNP (lowest MAF = 0.7%, rs182616603 in the MTHFD2L 
locus; Table 1). All except one of the lead SNPs had not been surveyed 
in the previous GWA studies based on HapMap 2 imputation. The 
one lead SNP that was present in the HapMap 2 imputation reference 
panels was in the 5′ UTR of PROX1 (rs340839, associated with TG, 
P = 4.4 × 10−12) and was correlated with a marker previously asso-
ciated with fasting glucose levels and type 2 diabetes13 (rs340874,  
r2 = 74.7%). The lead SNP in the HDL-C–associated PRKAG3 locus 
was located upstream of the gene, close to a transcription factor bind-
ing site. PRKAG3 is a regulatory subunit of the AMP-activated protein 
kinase (AMPK), which has previously been shown to regulate lipid 
homeostasis14.

The role of FL SNPs in the general population
In eight loci (PCSK9, CELSR2-SORT1, GCKR, the human leuko-
cyte antigen (HLA) region, LPL, LIPC, CETP and APOE), we tested 
whether the variants known to cause mendelian forms of dyslipi-
demic syndromes and, more broadly, with known functional impact 
on lipids also explained the associations of the common lipid SNPs. 
These FL SNPs were identified by searching the Online Mendelian 
Inheritance in Man (OMIM) database and confirmed through analy-
sis of the literature, and SNPs previously reported to affect gene tran-
scription or translation in cellular and/or animal models were taken 
forward into conditional analyses in 7 population cohorts (n = 12,834; 
Supplementary Fig. 4 and Supplementary Tables 3 and 4).

The FL SNPs explained the lead SNP association (with P < 5 × 10−8  
and conditional P > 0.01 for the lead SNP) in four of the eight 
loci (CELSR2-SORT1, GCKR, APOE and LIPC; Table 2 and 
Supplementary Fig. 5). In the GCKR and APOE loci, the lead SNPs 
of our GWA screen were FL SNPs (rs1260326 (p.Pro446Leu)15  
and rs7412 (p.Arg158Cys)7,8 for GCKR and APOE, respectively). 

In the GCKR locus, rs1260326 explained the population-level  
association. Similarly, in the APOE locus, the two FL SNPs rs7412 and 
rs429358 (p.Cys112Arg)16 defining the APOE ε2, ε3 and ε4 isoforms17 
explained the association (Supplementary Fig. 5d,e). The LIPC 
association was explained by rs1800588 (−514C/T, MAF = 25.1%)18  
and rs113298164 (p.Thr383Met, MAF = 1.4%)19 for TC and TG 
(Supplementary Fig. 5f,g) but not for HDL-C (Supplementary 
Fig. 5h). All results for the conditional analyses are presented in 
Supplementary Table 5.

Search for new functional candidate SNPs
We then searched for potential candidate causal SNPs in the lipid-
associated loci (157 established and 10 newly discovered) with a simi-
lar predicted function to well-characterized FL SNPs. We identified 
possible functional variants in four loci without known functional 
variants at the time of analysis (MLXIPL, LRP4-MADD, SOST-DUSP3 
and CILP2) and tested whether the identified variants explained the 
significant association seen in the locus (Supplementary Table 6). 
The results of the conditional regression analyses for these four loci are 
presented in Supplementary Figure 6 and Supplementary Table 7.  
In the SOST-DUSP3 and CILP2 loci, the candidate functional variants 
explained the genome-wide associations of the lead SNPs in the region 
in the test set (in both loci, conditional P > 0.01). In the SOST-DUSP3  
locus (Fig. 2a), a single low-frequency, deleterious missense variant,  
rs72836561 (p.Arg82Cys, MAF = 2.7%, P = 1.36 × 10−8, effect size = 0.23)  
in the CD300LG gene, explained the whole regional association, 
implicating CD300LG as a likely candidate gene in the locus for  
TG levels. The same variant has also recently been shown to associate 
with HDL-C and with fasting serum triacylglycerol levels in exome-
wide association studies20,21.

Figure 1  Change in P value after analysis conditional on the new 
lead SNP and comparison of new and previously reported lead SNP 
effect sizes and allele frequencies per locus. In both plots, each arrow 
represents one locus and trait where significant association was found in 
our screening and in one of the previously published large-scale screening 
studies2,3; color is based on the LD between the known and new lead 
SNPs. (a) On the y axis are the −log10 (P values); arrows start from  
the P value seen in the unconditional analysis in the Finnish subset  
(n = 12,834) and point to the P value in analysis conditional on the 
new lead SNP. (b) Each arrow starts from the effect and MAF for the 
established lead SNP and points to the corresponding values for the  
new lead SNP. Red asterisks represent the new low-frequency lead SNPs. 
Effects have been estimated in the FRCoreExome9702 sample set  
(n = 5,119), which is independent of the discovery set. For clarity,  
only results for loci with r2 < 0.4 have been presented.
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In the CILP2 locus for LDL-C, TC and TG, two independent missense 
variants (r2 = 0) in the TM6SF2 gene—a deleterious missense variant, 
rs187429064 (MAF = 3.6%, p.Leu156Pro; for TC, effect size = −0.25  
and P = 2.03 × 10−11), and a probably damaging missense variant, 
rs58542926 (MAF = 6.3%, p.Glu167Lys; for TC, effect size = −0.18 
and P = 6.47 × 10−12)—explained the lead SNP association for LDL-C,  
TC and TG (Fig. 2b, Supplementary Fig. 7 and Supplementary  
Table 7 illustrate the result of the conditional analysis for TC).

Biological profiling of the CD300LG and TM6SF2 genes
CD300LG (CD300 molecule–like family member G; also called 
nepmucin) is a type I cell surface glycoprotein that contains a sin-
gle immunoglobulin V–like domain22 and has a role in lymphocyte 
binding and transmigration23. The predicted damaging mutation 
(encoding p.Arg82Cys) in our TG- and HDL-C–associated locus, 
rs72836561, affects the immunoglobulin domain of CD300LG, which 
binds to lymphocytes. CD300LG is expressed in the vascular endothe-
lial cells of various tissues and is located both at the plasma membrane 
and in intracellular vesicles23,24. Although CD300 family members 
have been demonstrated to bind lipids25, the function of CD300LG 
in lipid metabolism has not been studied. TM6SF2 (transmembrane 6  
superfamily member 2)26 is a multi-pass membrane protein, in which 
the predicted deleterious missense mutation (rs1874290064; encoding 
p.Leu156Pro) maps to the predicted fifth transmembrane domain 
and the probably damaging missense mutation (rs58542926; encod-
ing p.Glu167Lys) maps to the exposed non-transmembrane domain. 
TM6SF2 has been shown to localize to the endoplasmic reticulum 
(ER) compartment/ER-Golgi intermediate compartment (ERGIC) 
and to influence TG secretion in liver cells27. Additionally, the 
p.Glu167Lys missense substitution was shown to alter serum lipid 
profiles in humans, and knockdown of Tm6sf2 in mice was shown to 
lead to increased liver TG content and decreased very-low-density 
lipoprotein (VLDL) secretion11,12.

We further characterized these two genes by using the Gene 
Network database28 (see the Online Methods for details) for tissue- 
specific expression, pathway analysis and prediction of mouse  

knockout phenotype, based on the Mouse Genome Informatics 
(MGI) database29. We found that CD300LG is coexpressed with genes  
whose knockout increases circulating VLDL particle levels in mice 
(prediction P = 1.4 × 10−9), in line with our phenotype of higher 
TG levels in humans carrying the deleterious missense variant  
of CD300LG. For TM6SF2, the MGI-based predictions, using  
coexpression of genes, included abnormal lipid levels (decreased  
LDL-C, prediction P = 8.6 × 10−19; decreased VLDL, prediction  
P = 2.5 × 10−29; decreased TC, prediction P = 6.3 × 10−24) among 
the most highly significant predictions, in line with recent publica-
tions and our association results. All associated MGI-based knockout  
predictions (P < 1 × 10−6) are shown in Supplementary Table 8, and 
lists of genes with the same and stronger MGI-based predictions can 
be found in Supplementary Table 9.

Both genes were found to be among the most highly expressed 
genes in tissues important for lipid absorption and/or metabo-
lism on the basis of the analysis using the Gene Network database  
(Supplementary Table 10). CD300LG is highly expressed in  
muscles, plasma and adipose tissue, and TM6SF2 is highly expressed 
in liver, plasma and intestines. Furthermore, on the basis of the gene 
expression network analysis, TM6SF2 likely interacts with proteins 
involved in intestinal absorption (Supplementary Table 11), and  
it is most highly predicted to function as a lipid transporter  
(P = 1.05 × 10−14, prediction is based on coexpressed genes; 
Supplementary Table 12).

Contribution of low-frequency variants to lipid variation
We estimated the proportion of the variance in lipid traits explained 
by variants in the 157 previously established and 10 newly identified  
loci in an additional cohort of 5,119 individuals from the Finrisk 
cohort (FRCoreExome9702) not included in our discovery meta-
analysis. The lead SNPs from all three GWA screens (Teslovich  
et al.2, Willer et al.3 and this study), together with the FL SNPs 
and new candidate functional SNPs, were divided into two groups  
on the basis of their allele frequency in the FRCoreExome9702  
data set. Common SNPs explained 8.2% (TG), 11.9% (HDL-C), 

Table 2  Association results of unconditional analysis and analysis conditional on known mendelian and FL SNPs in loci where the 
functional SNPs explain the genome-wide association

Locus Chr. Trait

Lead SNP in the unconditional analysis

rsID MAF

Unconditional Conditional

Effect (SE) P n
Covariate SNP(s) 

in the model MAF Effect (SE) P n

CELSR2-SORT1 1 LDL-C rs646776 0.216 0.159 (0.015) 1.31 × 10−25 12,739 rs12740374 21.6% 0.001 (0.015) 0.958 12,739

TC rs646776 0.216 0.123 (0.015) 4.06 × 10−16 12,834 rs12740374 21.6% 0.001 (0.015) 0.959 12,834

GCKR 2 TG rs1260326 0.353 0.128 (0.013) 8.44 × 10−23 12,815 rs1260326 35.3% NA NA NA

LIPC 15 TC rs1800588 0.251 0.090 (0.015) 7.23 × 10−10 12,825 rs113298164   1.4% −2 × 10−6 (0.015) 1.000 11,893

rs1800588 25.1%

LIPC 15 TG rs686958 0.252 0.085 (0.015) 6.86 × 10−9 12,801 rs113298164   1.4% 0.022 (0.015) 0.152 11,873

rs1800588 25.1%

APOE 19 LDL-C rs7412 0.048 0.648 (0.031) 5.93 × 10−95 12,730 rs7412   4.8% NA NA NA

rs429358 18.1%

APOE 19 TC rs7412 0.048 0.456 (0.031) 3.10 × 10−49 12,827 rs7412   4.8% NA NA NA

rs429358 18.1%

APOE 19 TG rs483082 0.229 0.089 (0.015) 5.74 × 10−9 12,799 rs7412   4.8% NA NA NA

rs429358 18.1%

The table shows the results for unconditional association analysis and analysis conditional on variants known to cause mendelian forms of dyslipidemic syndromes and, more 
broadly, variants with known functional impact on lipids (FL SNPs). If multiple candidate variants were observed in a locus, they were all included in the same model. Results for 
the lead SNP from the unconditional analysis are presented from the meta-analysis of the Finnish subset (n = 12,834). Effect sizes are presented in s.d. units. Chr., chromosome; 
MAF, minor allele frequency; SE, standard error of effect estimate; n, number of samples; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
TC, total cholesterol; TG, triglycerides; NA, not applicable.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature Genetics  VOLUME 47 | NUMBER 6 | JUNE 2015	 593

A rt i c l e s

16.3% (LDL-C) and 16.2% (TC) of the variance in lipid levels  
(Fig. 3). Together with the low-frequency variants, we now explain 
9.3%, 12.8%, 19.5% and 18.8% of the variance in TG, HDL-C,  
LDL-C and TC concentrations, respectively.

We also evaluated the contribution of our SNPs to the additive 
genetic variance estimated by a linear mixed model (LMM) applied 
to 10,472 individuals from 6 Finnish GWA cohorts (Online Methods) 
and to narrow-sense heritability estimates obtained from a large twin 
study30. The narrow-sense heritability estimates from the twin study 
were 40%, 51%, 51% and 33%, and the LMM estimates derived from 

the Finnish subset were 26%, 29%, 27% and 19% (for HDL-C, LDL-C,  
TC and TG, respectively; see the Online Methods for details). We 
estimate that the SNP set explained at least 28.1%, 32.0%, 38.2% and 
36.7% (narrow-sense heritability) and at most 48.9%, 49.2%, 67.2% 
and 69.6% (LMM heritability estimate) of the additive genetic vari-
ance in TG, HDL-C, LDL-C and TC concentrations, respectively.

Gene-based association analysis
To complement the single-variant tests for low-frequency  
variation, we used GRANVIL31 to test for the association of  

Figure 2  Regional association plots of the conditional analysis in loci where the new candidate functional SNPs explain the genome-wide association. 
(a) Results at the SOST-DUSP3 locus for TG concentrations in the Finnish subset (n = 12,834). (b) Results at the CILP2 locus for TC concentrations 
in the Finnish subset (n = 12,834). In both plots, the top panel shows the −log10 (P value) of each variant as a dot whose size reflects effect size. The 
middle panel shows the recombination rate in the area, and the bottom panel shows the positions of genes. The x axis shows physical position in the 
genome. In gray are the association results from the unconditional analysis, with green dots representing the new candidate functional SNPs. Black dots 
are the results from the conditional analysis.
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each lipid trait with accumulations of minor alleles (‘mutational 
load’) at well-imputed rare variants within genes in a subset 
of 30,463 individuals from 15 cohorts (Online Methods and 
Supplementary Table 1).

We observed genome-wide significant evidence of association  
(P < 1.7 × 10−6, Bonferroni correction for 30,000 genes) of HDL-C 
with the mutational load of rare nonsynonymous variants in LIPC  
(P = 2.1 × 10−7, mean MAF = 0.26%; Supplementary Fig. 8). To  
further investigate the relationship between gene-based and  
single-SNP association signals at this locus, we performed conditional  
analysis, adjusting the effect of the mutational load for the lead  
SNP in our study (rs261291). The association of HDL-C with rare 
nonsynonymous variants in LIPC remained relatively unchanged 
(conditional P = 3.6 × 10−6), suggesting that the mutational load of 
the gene is independent of the GWA signal at this locus.

We identified two genes for which the mutational load of rare vari-
ants (irrespective of annotation) was associated with TG concentration 
at genome-wide significance, both mapping to the APO gene cluster: 
ZPR1 (P = 1.5 × 10−11, mean MAF = 0.25%) and APOA5 (P = 5.0 × 10−8,  
mean MAF = 0.24%). Conditional analyses, adjusting for the lead SNP 
(rs964184) for the association at the APO gene cluster, reduced the 
strength of the association of rare variants in both ZPR1 and APOA5 
with TG concentration but could not fully explain the effect of the 
mutational load of these genes (Supplementary Table 13). As ZPR1 
and APOA5 map within 2 kb of each other, we further investigated the 
impact of LD on the association signal in the region with conditional 
analyses adjusting the association for the mutational load of each gene 
by that at the other gene (Online Methods). The strength of association 
of both genes was reduced but not fully attenuated after adjusting for 
the effect of the other gene (ZPR1 conditional P = 1.4 × 10−5; APOA5 
conditional P = 6.3 × 10−4), suggesting that the effects of rare variants 
in these two genes are only partially correlated with each other.

DISCUSSION
Using 1000 Genomes Project–imputed data with a dense SNP set, 
we were able to impute 9.6 million common and low-frequency 
SNPs with good quality in 62,166 European samples. With GWA 
meta-analysis on these data, we identified 10 new loci associated 
with blood lipid traits and new lead SNPs in 79 previously known 
lipid-related loci. In 11 previously known loci, the new lead SNP 
had MAF ≤5%, and, on average, the newly identified low-frequency 
variants showed an effect size that was 3.6 times greater than that 
of the corresponding lead SNP in previous meta-analysis studies. 
Moreover, in four of the ten newly discovered loci, the lead SNPs 
were low-frequency variants.

Our association results show that low-frequency variants have a 
much larger contribution to lipid variation in the general population 
than has previously been shown2,3. In several cases, associations that 
had previously been tagged by common variants are now led by variants  

with an allele frequency of 0.5−5% and larger effect sizes. The 
large effect sizes also show in the population variance in lipid traits 
explained, where low-frequency variants add 3.2% to the variance 
explained for LDL-C when added to the common variants identified 
in previous reports or in our study, even though there are relatively 
few carriers of low-frequency variants in the general population.

Although GWA studies have typically identified associations with 
lipid levels in cohorts with normal population variation, known func-
tional variants—some causing mendelian forms of lipid syndromes 
and others changing protein structure or disturbing gene transcrip-
tion—have often been identified in patients and families with extreme 
lipid values. We found four regions where the population-level asso-
ciation was explained by known mendelian and/or functional SNPs, 
suggesting that the effects of FL SNPs may generalize to European 
samples with normal lipid variation. Taken together, the successfully 
imputed and tested functional SNPs, in combination with the new 
functional candidate variants, explained 2.2−6.7% of the variation in 
lipid traits at the population level.

As the FL SNPs explained the population-level association through 
LD structure in four of the eight loci, we reversed this connection 
to identify potential candidate genes by finding SNPs with a similar 
functional profile to the FL SNPs in lipid-associated loci with no pre-
vious strong functional candidates. Using this strategy, we identified 
two loci where missense variants with predicted damaging or deleteri-
ous consequences explained the lead SNP associations from the GWA 
meta-analysis, thus, together with previous evidence, supporting the 
role of CD300LG (TG) and TM6SF2 (TC, LDL-C and TG) in lipid 
metabolism, as evidenced by gene network analysis, gene expression 
correlations, predicted functions in mice and expression patterns 
across organs, with each type of data suggesting potential links to 
lipid metabolism. TM6SF2 was recently listed among genes poten-
tially affecting LDL-C uptake in a small interfering RNA (siRNA) 
screen focused on cellular lipid phenotypes within previously pub-
lished blood lipid-associated GWA loci32. Additionally, two reports 
showing strong evidence of a role for one of the two TM6SF2 missense 
variants, encoding p.Glu167Lys, on VLDL and TG metabolism were 
recently published11,12. In our data, this variant does not by itself 
explain the whole regional association; however, the association was 
explained when this variant was considered together with a second 
missense variant with lower MAF and larger effect. Overall, our results  
reinforce the importance of CD300LG and TM6SF2 for blood lipid 
levels in the general population.
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Figure 3  Proportion of total trait variance explained by the lead 
SNPs and functional SNPs. The proportion of the variance in the trait 
explained by different SNP sets has been estimated in the independent 
FRCoreExome9702 sample set (n = 5,119). All lead SNPs from the 
three association screens (Teslovich et al.2, Willer et al.3 and our 
screen), together with the known FL SNPs and new candidate functional 
SNPs, were grouped on the basis of their allele frequency in the 
FRCoreExome9702 data set into common SNPs (allele frequency > 5%) 
and low-frequency SNPs (allele frequency ≤ 5%). The variance explained 
by these two groups is presented with blue bars. The proportion of 
variance explained by the FL SNPs and candidate functional variants is 
represented by the red bars.
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In two established GWA study loci with common lead SNPs, our 
analyses showed associations of the mutational load of rare variants 
with lipid traits. The association of HDL-C with rare variants in LIPC 
has previously been reported33, and we also demonstrate that this 
signal is independent of the common lead GWA study SNP at this 
locus. We identified significant association with TG concentration for 
the accumulation of rare variants in APOA5, but conditional analysis 
on the GWA lead SNP suggested that the single-variant and gene-
based associations are partially correlated. However, the GWA lead 
SNP alone was not sufficient to fully explain the gene-based signal. 
An excess of minor alleles in APOA5 has previously been associated 
with hypertriglyceridemia34, but we report here an impact of this 
gene on TG concentrations at a population level. Although imputa-
tion enables recovery of ~65% of rare variants that are present in 
the 1000 Genomes Project haplotypes, many will not be represented 
in the reference panel. Resequencing in large sample sizes will be 
required to fully elucidate the role of rare variation at these GWA 
loci on HDL-C and TG levels and to inform functional studies to 
determine the underlying mechanisms through which these genes 
influence the regulation of lipids.

In addition to the 93 loci identified, there were 7 loci showing 2 or  
more association signals that were more than 1 Mb from each other 
and where the LD between the lead SNPs was small (r2 ≤ 0.05). 
However, in formal conditional analyses of these loci using individual- 
level data, the most strongly associated SNPs in the locus also 
explained the other associations, even over a physical distance of  
1 Mb or more or a low level of LD. As these observations were only 
seen after careful conditional testing of individual-level data, they also 
highlight how challenging it is to interpret association patterns using 
only summary-level results on single-SNP analyses.

There are some potential limitations to our genetic study. Although 
we used a dense sequence-based global imputation panel, this panel 
does not cover all low-frequency and rare variants in Europeans. 
Similarly, although the imputation reference set included a large 
number of low-frequency SNPs and other variants with known func-
tional impact on lipids, some were either missing from the panel or 
not polymorphic in our test sets of seven Finnish cohorts. Therefore, 
we are likely missing some additional effects in our data. As more 
individuals are sequenced and the resulting data are made available 
as imputation reference panels, more variants can also be imputed 
with high confidence and tested for associations.

In conclusion, our study shows that low-frequency variants 
contribute substantially to population variance in lipid levels.  
The variants known to cause mendelian forms of lipid syndromes 
and variants with known functional effects on lipid levels explain 
the common variant association in overlapping loci, establishing  
a similar role for these variants in patient series with extreme  
phenotypes and in general populations. In addition, we found ten 
new lipid-associated loci for further investigation, and, for two 
previously known lipid loci, we identified new candidate missense 
variants with predicted damaging function. When combining all 
the accumulated genetic evidence, we could explain up to 19.5% 
of the variation in lipid traits. By considering the aggregate effects  
of rare variants within genes, we identified three transcripts  
associated with lipids in already established GWA loci that could 
not be fully explained by the common lead SNPs reported in  
this study. Together, these observations show the important role 
of low-frequency functional SNPs in variation in lipid levels in the 
general population and represent new therapeutic opportunities for 
treating dyslipidemias and preventing cardiovascular diseases. They 
also highlight the idea that imputation is a cost-effective approach 

for assessing association with low-frequency and rare variants  
without the need for costly resequencing experiments.

URLs. Online Mendelian Inheritance in Man (OMIM) database,  
http://www.omim.org/; Gene Network database, http://genenetwork.
nl/genenetwork/; Mouse Genome Informatics (MGI) database,  
http://www.informatics.jax.org/; 1000 Genomes Project, http://
www.1000genomes.org/; SNPTEST software, http://mathgen.stats.
ox.ac.uk/genetics_software/snptest/snptest.html; R: a language and  
environment for statistical computing, http://r-project.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Genotype quality control and imputation. Before imputation, all cohorts 
(see the Supplementary Note for cohort information) went through a quality 
control pipeline with the following criteria: samples with genotype call rate 
<95%, sex discrepancies, excess heterozygosity or cryptic relatedness were 
removed. Additionally, ancestry outliers and multidimensional scaling (MDS) 
outliers were excluded. SNPs with MAF <1%, with call rate <95% (or <99% if 
the SNP had MAF <5%) or that failed the Hardy-Weinberg equilibrium exact 
test (precise threshold depending on study) and sex-chromosome SNPs were 
removed. Genotyping platforms, study-specific quality control criteria and 
other details are presented in Supplementary Table 14. Imputation for the 
data sets was performed using IMPUTE (v2.0)5,6 (unless stated otherwise) 
with the 1000 Genomes Project June 2011 imputation reference panel with 
2,188 haplotypes4.

Phenotype measures. All four lipid traits (HDL-C, LDL-C, TC and TG) were 
measured using basic enzymatic methods. Summary statistics of phenotypes 
in each cohort are presented in Supplementary Table 15. Individuals on lipid-
lowering medication were excluded, and measures deviating by more than 5 s.d.  
were set to missing. All four phenotypes were adjusted for age, age2 and  
the first three genetic principal components. Principal components  
were derived from the GWA data using principal-component analysis of the 
identity-by-state (IBS) sharing matrix for each study separately35. Both the 
removal of outliers and the adjustments were performed for males and females 
separately in each of the studies for all four traits. The residuals resulting 
from the adjustments were then inverse-normal transformed to the N(0, 1) 
distribution. The GenMets and DGI cohorts were additionally stratified by 
metabolic syndrome and type 2 diabetes case status, respectively. Only men 
were available in the GerMIFS I and II and ULSAM cohorts. As the NTR 
cohort has related samples, males and females were analyzed together to 
account for relatedness.

Single-variant association and meta-analysis methods. A GWA analysis was 
run in each of the cohorts separately (see Supplementary Table 14 for software 
details). Quality control on the association results was performed centrally to 
have as harmonized a data set as possible. In this procedure, the following SNPs 
were removed: SNPs with minor allele count <3; SNPs with imputation quality 
Proper_INFO <0.4; duplicates; and genotyped SNPs with Hardy-Weinberg 
equilibrium P < 1 × 10−4. The meta-analysis was run using the GWAMA  
software tool36,37, which uses fixed-effects inverse variance–weighted  
meta-analysis. Genomic control was applied to each of the cohorts in the 
meta-analysis. SNPs with <50% of the cohorts contributing or SNPs showing 
between-study heterogeneity of effect size (Cochran’s Q test statistics I2 < 50%)  
were discarded from the meta-analysis results. After these quality control 
steps, the maximum number of SNPs in the analysis was 9,657,952.

SNP associations with P < 5 × 10−8 were considered genome-wide  
significant, and lead SNPs were required to be at least 1 Mb away from  
adjacent lead SNPs. In areas with long-range LD, formal conditional analysis 
was performed in a subset of 12,834 Finnish samples to ensure the independ-
ence of the lead SNPs.

Search for known functional lipid SNPs. We searched the OMIM database for 
information on 167 loci that had been found to associate with one of the studied  
traits (HDL-C, LDL-C, TC and TG) in either of the 2 previously published 
GWA studies2,3 or in our genome-wide screen. For each of these 167 loci,  
every gene in a 2-Mb region centered on the published lead variant was looked 
up in the OMIM database, and the variants associated with lipid-related syn-
dromes or population-extreme lipid values were collected. Of the 167 loci, 38 had  
OMIM-listed lipid-related SNP variants within the searched window. As our 
genotype data only included SNP variants, we could not study deletions, inser-
tions and other copy number variations. Each of the OMIM-listed lipid-related 
SNPs was subsequently mapped to genome build 37 using the dbSNP data-
base for rsID identification. Of the 38 loci, 18 had at least one polymorphic 
OMIM-listed SNP in the imputed Finnish test set of 7 cohorts (Corogene 
controls, FTC, GenMets, HBCS, NFBC1966, YFS and PredictCVD; combined 
n = 12,834). To be sure of the functionality of these SNPs, additional literature 
searching was performed to find evidence of effects on gene transcription 

or translation. Of the 18 loci, 8 showed genome-wide significant association 
in the Finnish meta-analysis and had at least one variant with evidence of  
functional impact on lipid levels in cell or animal models.

Formal conditional association analysis in loci containing known  
functional lipid SNPs. Formal conditional analyses were run using the Finnish 
test set of 7 cohorts (n = 12,834). Each of the cohorts was analyzed separately 
with linear regression analysis implemented by SNPTEST software. In each 
cohort, the imputation quality threshold of Proper_INFO > 0.4 was applied. 
Each locus was analyzed only for the trait(s) for which it had previously been 
reported in already published GWA studies. In conditional analysis on SNP(s), 
the phenotype was first adjusted with the SNP(s), and a linear regression model 
was then fitted for the remaining residuals. When we performed iterative 
conditional analyses at a locus, the signal was first conditioned on the most 
significant variant and then conditioned on the top variant from the initial 
conditional analysis and so forth. Loci where the initial lead SNP association 
in the conditional analyses had conditional P < 0.01 and no further significant 
associations (conditional P < 5 × 10−8) were found within the 2-Mb window 
were considered to be explained.

The results from the seven Finnish cohorts were combined using GWAMA. 
Because the conditional analyses were run only for the preselected 2-Mb windows, 
genomic inflation factor (λ) correction could not be applied. However, we did not 
see substantial inflation in the GWA analysis of all four traits in the seven Finnish 
cohorts (λ ranged from 0.992.991.029, depending on the trait and cohort).

Search for functional candidate SNPs. To explore suggestive functional vari-
ants causing association signals at loci that do not have lipid-related OMIM-
listed variants, we selected nine loci: GALNT2, MLXIPL, PPP1R3B, TRIB1, 
ADAMTS3, LRP4-MADD, SOST-DUSP3, CILP2 and HNF4A. These loci had 
been significantly associated with lipid traits in either previously published 
GWA studies2,3 or in our genome-wide screen, as well as in the meta-analysis 
using 7 Finnish cohorts (n = 12,834). In each of these loci, 2-Mb windows were 
searched for functional variants that had association P < 5 × 10−4. Candidate 
SNPs were annotated using the Ensembl database, and functional effects were 
predicted using the Provean38, SIFT39 and PolyPhen40 databases. If a variant 
was annotated as a missense mutation predicted to be damaging in at least one 
of the prediction databases, it was treated as an FL SNP, and formal conditional 
analysis was performed to investigate whether it explained the association.

Gene network analysis. We used 2,206 principal components that had been 
derived from a data set of 77,840 samples using Affymetrix microarrays 
(54,736 human, 17,081 mouse and 6,023 rat). Because gene set enrichment 
analysis showed that each of these components was enriched for at least one 
biological pathway, we used these components to develop a gene function 
prediction algorithm. To do so, we first determined whether each of the com-
ponents was enriched for a given gene set by performing a t test (contrasting 
genes known to be part of this pathway with all other genes) and transformed 
the T statistics into z scores. Subsequently, we calculated the eigenvector  
coefficients of the 2,206 components for individual genes of interest with  
the z-score profile of this gene set to predict the gene’s involvement in a 
specific pathway (details provided in Fehrmann et al.28; see Cvejic et al.41 
and Wood et al.29 for a short description). We used a permutation strategy to 
determine the significance of the predictions, controlling the false discovery 
rate at 5%. On the basis of the MGI mouse knockout database, we predicted 
that CD300LG would increase circulating VLDL-C levels. For TM6SF2, the 
most significantly predicted biological process was intestinal absorption. Only 
highly significant predictions (permuted P < 1 × 10−6) were taken into account 
when profiling the two genes.

We text-mined the sample descriptions provided by experimenters who 
uploaded microarray data to the Gene Expression Omnibus (GEO). This text-
mining allowed us to determine the tissue or cell type for the majority of the 
samples. We subsequently used Wilcoxon-Mann-Whitney tests in the human 
samples from the Affymetrix U133 Plus 2.0 platform to ascertain how highly 
each gene was expressed in samples of a certain tissue or cell type as compared 
to samples in other tissues and cell types. We found that CD300LG was highly 
expressed in adipose tissue, heart, muscle and plasma and that TM6SF2 was 
highly expressed in ileum and intestinal mucosa.
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Modeling the proportion of variance explained. To estimate the pheno-
typic variance explained by different types of SNPs, we ran multiple linear  
regression models in R using the FRCoreExome9702 data set (n = 5,119),  
an independent sample set from the Finrisk cohort. For the models, all lead 
SNPs (Teslovich et al.2, Willer et al.3 and our study), together with FL SNPs 
and new functional candidates, were divided into two groups on the basis of 
the MAF of each variant in the FRCoreExome9702 data set. The tested SNP 
sets were (i) common (MAF > 5%) lead SNPs and functional SNPs; (ii) low-
frequency (MAF ≤ 5%) lead SNPs and functional SNPs added to SNP set (i); 
and (iii) FL SNPs and the three identified functional candidates.

These SNP sets were used to explain the variation in trait residuals adjusted 
for sex, age, age2 and population stratification. To apply linear models, TG was 
log transformed before adjustments.

Linear mixed-model estimate of the variance explained by common SNPs. We 
estimated how much phenotypic variance a panel of 319,445 directly genotyped  
SNPs with MAF >1% in the autosomes explained using the linear mixed-model 
approach implemented in GCTA42 (v.1.13). This estimate is a lower bound of 
the total additive genetic variance, as it only includes the contribution of the 
variants tagged by the panel of common SNPs that was used in the analysis. 
The analysis included samples from six Finnish cohorts (NFBC1966, Corogene 
controls, GenMets, YFS, HBCS and PredictCVD) for which we had access to 
the individual genotype data. All mixed-model analyses excluded individuals 
in such a way that none of the remaining pairs of individuals had an estimated 
relatedness coefficient r > 0.05, and the same trait values were used as in  
the individual-SNP analyses. The sample sizes for the traits were 10,466 for 
HDL-C, 10,383 for LDL-C, 10,472 for TC and 10,451 for TG.

Gene-based association analysis. Transcript boundaries were defined accord-
ing to the UCSC human genome database. Within each study, GRANVIL31 

was used to test for association of each trait with accumulations of minor 
alleles (mutational load) at successfully imputed rare variants (MAF ≤ 1% 
and Proper_INFO ≥ 0.4; Supplementary Table 1) within genes in a linear 
regression framework: (i) irrespective of annotation and (ii) restricted to  
nonsynonymous changes. Fixed-effects meta-analysis was performed by com-
bining directed z scores from the regression analysis across studies, weighted by 
sample size. The significance threshold was set to P < 1.7 × 10−6, correspond-
ing to a Bonferroni correction for 30,000 genes. Conditional analyses were 
performed to assess the evidence for association of traits with the mutational 
load of a gene after accounting for the lead SNP by including the genotype 
(under an additive model) of this variant as a covariate in the regression model. 
Conditional analyses were also performed to assess the independence of the 
effects of rare variants in two genes by including the mutational load of one as 
a covariate in the regression model for trait association with the other.
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