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Background—Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular 
disease, range from 34% to 50%. Genetic variants so far identified by genome-wide association studies explain only a 
small proportion (<2%) of its variation.

Methods and Results—We conducted a meta-analysis of 28 genome-wide association studies including >90 000 subjects of 
European ancestry, the first genome-wide association meta-analysis of fibrinogen levels in 7 studies in blacks totaling 8289 
samples, and a genome-wide association study in Hispanics totaling 1366 samples. Evaluation for association of single-
nucleotide polymorphisms with clinical outcomes included a total of 40 695 cases and 85 582 controls for coronary artery 
disease, 4752 cases and 24 030 controls for stroke, and 3208 cases and 46 167 controls for venous thromboembolism. 
Overall, we identified 24 genome-wide significant (P<5×10−8) independent signals in 23 loci, including 15 novel 
associations, together accounting for 3.7% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key 
roles in fibrinogen regulation for the 3 structural fibrinogen genes and pathways related to inflammation, adipocytokines, 
and thyrotrophin-releasing hormone signaling. Whereas lead single-nucleotide polymorphisms in a few loci were 
significantly associated with coronary artery disease, the combined effect of all 24 fibrinogen-associated lead single-
nucleotide polymorphisms was not significant for coronary artery disease, stroke, or venous thromboembolism.

Conclusions—We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these 
loci does not support a causal relationship between circulating levels of fibrinogen and coronary artery disease, stroke, or 
venous thromboembolism.  (Circulation. 2013;128:1310-1324.)

Key Words: cardiovascular diseases ◼ fibrinogen ◼ gene expression ◼ genome-wide association study

Fibrinogen plays a major role in wound healing and throm-
bosis. Circulating levels of fibrinogen are upregulated in 

inflammatory conditions, consequently serving as an important 
marker of inflammation. Fibrinogen is a well-established pre-
dictor of cardiovascular disease outcomes such as myocardial 
infarction,1,2 stroke,3 and venous thromboembolism (VTE).4,5

Editorial see p 1276
Clinical Perspective on p 1324

It is estimated that 34% (extended pedigrees study) to 
44% (twins study) of the interindividual variation in fibrino-
gen levels is heritable,6,7 indicating a substantial influence of 
genetics. Two recent meta-analyses of genome-wide associa-
tion (GWA) studies, conducted in cohorts of European ances-
try, identified several genetic variants affecting fibrinogen 
levels.8,9 These variants account only for a small proportion 
(<2%) of plasma fibrinogen variation, suggesting that addi-
tional genetic variants with more modest effects may remain 
to be detected.

There is now increasing evidence that a substantial pro-
portion of consequential genetic variation for many pheno-
types is tagged by common single-nucleotide polymorphisms 
(SNPs),10 although most of these SNPs cannot pass the restric-
tive genome-wide significance level of P<5×10−8 in a typical 
association study. To overcome this limitation, increased sam-
ple sizes are needed. We conducted a large meta-analysis of 
28 GWA studies including >90 000 individuals of European 
ancestry, a 4-fold increase in sample size compared with pre-
vious meta-analyses.8,9 We included data from an additional 
8423 samples from the first GWA studies of blacks and 1447 
Hispanic individuals to also explore whether ethnic differences 
exist in the genetic regulation of plasma fibrinogen concen-
tration. To further elucidate possible biological mechanisms 
underlying fibrinogen regulation, we examined genome-wide 
significant loci in relation to expression levels of nearby genes 
and in gene pathway analyses. Finally, we examined whether 
fibrinogen-related genes affect risk of coronary artery disease 
(CAD), stroke, and VTE.11–16
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Methods
Cohorts and Plasma Fibrinogen Measurements
Twenty-eight studies contributed to the discovery GWA study meta-
analysis of European-ancestry individuals. Characteristics of all par-
ticipating studies are provided in the Methods section and Table I in 
the online-only Data Supplement. In 7 cohorts with 33 745 individuals, 
plasma fibrinogen concentration was measured by an immunonephe-
lometric method.17 For the other 21 European-ancestry cohorts (57 578 
individuals), plasma fibrinogen levels were determined by a functional 
method (based on the Clauss method).18 Seven black cohorts with 
GWA data, including a total of 8423 individuals (5937 with Clauss 
and 2486 with immunonephelometric measures), and 1 cohort of 
1447 Hispanics with immunonephelometric fibrinogen measures were 
also analyzed (Methods section and Table II in the online-only Data 
Supplement). Exclusion criteria applied in individual cohorts are pro-
vided in the Methods section in the online-only Data Supplement.

All studies were approved by the relevant research ethics 
committees.

Genotyping, Quality Control of Genotype Data,  
and Imputation
Commercial arrays were used for genome-wide genotyping in 
all cohorts, and quality-control filtering of SNP genotype data 
was generally performed in individual cohorts by call rate, minor 
allele frequency, and deviation from Hardy-Weinberg equilibrium 
(Methods section and Tables III and IV in the online-only Data 
Supplement). Approximately 2.5 million autosomal SNPs were 
imputed cohorts with the HapMap II white (CEU; Center d’Etude 
du Polymorphisme Humain) sample as reference panel for the 
European-ancestry cohorts, a combined CEU+YRI reference panel 
for the black cohorts, and a combined CEU+YRI+CHB+JPT refer-
ence panel for the Hispanic sample (CEU, European Ancestry from 
Centre d’Etude du Polymorphisme Humain; YRI, Yoruba in Ibadan, 
Nigeria; CHB, Han Chinese in Beijing, China; JPT, Japanese in 
Tokyo, Japan). MACH or IMPUTE software19–21 was used in the 
imputation (Tables III and IV in the online-only Data Supplement).

Meta-Analysis of GWA Studies
Values of plasma fibrinogen concentration were natural logarithm–
transformed before analysis. Association analyses were conducted in 
each cohort of measured and imputed autosomal SNP allele dosage 
with fibrinogen values with a linear regression model assuming addi-
tive genetic effects adjusted for age and sex. Additional adjustments 
for principal components or multidimensional scaling, country, or 
center were made when necessary by individual cohorts to account 
for population stratification (see Methods in the online-only Data 
Supplement). Relatedness was accounted for in family studies by 
applying linear mixed-effect models. Genotype-phenotype associa-
tion results from the 28 cohorts were then meta-analyzed by use of 
an inverse-variance model with fixed effects in METAL (http://www.
sph.umich.edu/csg/abecasis/Metal/index.html).22

To identify additional independent association signals in the 
genome-wide significant loci, conditional GWA analysis was 
performed as described in the Methods in the online-only Data 
Supplement. Overall, we selected for further analysis only SNPs 
from genome-wide significantly associated loci, including the lead 
SNP for each locus in the initial meta-analysis, along with 1 addi-
tional lead SNP representing a new clear signal identified in the con-
ditional analysis.

To identify genes that regulate fibrinogen levels in other ethnic 
groups, we conducted a separate GWA meta-analysis using 7 sepa-
rate GWA scans in blacks totaling 8289 samples and a single GWA 
analysis in a cohort of Hispanics totaling 1366 samples.

The threshold of genome-wide significance was set at P=5.0×10−8 
for the primary analyses of GWA with plasma fibrinogen levels and 
their heterogeneity measures, as well as for the conditional meta-
analysis. We used Bonferroni correction for the exploration of the 24 
lead-SNPs in the black and Hispanic samples and for the lookups in 
clinical outcomes (P<0.002).

Genetic Risk Score
A genetic risk score was computed using data from 88 251 European-
ancestry individuals to model the increase in fibrinogen levels accord-
ing to the number of fibrinogen-raising alleles for each lead SNP. 
Methods are further described in Methods in the online-only Data 
Supplement.

Multivariable-Adjusted Model
We reanalyzed the association with plasma fibrinogen concentra-
tion of the lead SNPs using a linear model with further adjustment 
for body mass index and smoking, in addition to sex and age and 
the extra covariates used in each cohort in the discovery analyses. 
Association results from all cohorts were then meta-analyzed with the 
inverse-variance–weighted fixed-effects meta-analysis implemented 
in METAL.

Pathway Analyses
MAGENTA and GRAIL23,24 were used to assess putative relationships 
between the lead SNPs and to infer genes and pathways underlying 
SNP associations with plasma fibrinogen levels. MAGENTA version 
2 analysis was performed as described,24 including gene sets from 
Gene Ontology, KEGG, PANTHER, and Ingenuity downloaded in 
June 2011 (http://www.broadinstitute.org/mpg/magenta/). Gene-set 
statistics were determined for an empirically derived 95th percentile 
threshold of gene-wide adjusted P values. Only gene sets meeting 
a false discovery rate <0.05 were considered for further inspection. 
Candidate SNPs were identified in the MAGENTA analysis as SNPs 
with nominal locus-wide corrected P values (corrected P<0.05) map-
ping to genes in gene sets that met the false discovery rate of <0.05. 
GRAIL analysis was performed as described (http://www.broadinsti-
tute.org/mpg/grail/) using the pair-wise similarity metric compiled 
from the literature in December 2006 to limit bias, as recommended.25

Association With Gene Expression in Human Liver
The lead SNPs and their perfect proxies (r2=1) were further analyzed 
with respect to association with expression levels of nearby genes 
(located within ±200 kb of the SNP).

Global gene expression data from human liver were obtained from 
the Advanced Study of Aortic Pathology (ASAP).26 Details of the 
ASAP biobank and the methods for gene expression analysis and 
genotyping are provided in the Methods section in the online-only 
Data Supplement. Further queries were made against significant 
results from 4 other liver eQTL analyses with methods that were pub-
lished previously.27–30

Associations With Clinical Outcomes
We examined associations of the 24 lead SNPs with prevalent CAD, 
stroke, and VTE. Genotype-CAD association results for the selected 
SNPs were obtained from the Coronary Artery Disease Genome-wide 
Replication and Meta-analysis (CARDIoGRAM) and Europe South 
Asia Coronary Artery Disease Genetics (C4D) consortia, including a 
total of 40 695 CAD cases and 85 582 controls. Lead SNP associa-
tions with stroke were explored in data generated from 4 large cohorts 
composing the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) consortium, including 1544 incident 
strokes (1164 ischemic strokes) developed over an average follow-up 
of 11 years, and 18 058 controls and in data generated from 4 cohorts 
making up the Welcome Trust Case Control Consortium (WTCCC), 
including 3548 cases with ischemic stroke and 5972 controls. The 
SNP genotype–VTE association results were generated in 3208 VTE 
cases and 46 167 controls from the French Marseille Thrombosis 
Association Study (MARTHA) and the CHARGE studies. Definitions 
of the disease phenotypes adopted in each individual study are detailed 
elsewhere.11–15,31 Each of the 24 fibrinogen-associated SNPs was tested 
for association with each of the clinical outcomes by logistic regres-
sion with adjustment for age and sex. The log odds ratios and their 
standard errors for each SNP were standardized for direction and 
magnitude to correspond to the change in allele dosage that accounted 
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for a 3.1% relative increase in circulating fibrinogen level (fibrinogen 
effect associated with the FGB variant rs1800789). These harmonized 
effect estimates were then pooled by fixed-effects (inverse-variance–
weighted) meta-analysis (stroke and VTE) or by random-effects 
meta-analysis (for CAD owing to significant heterogeneity in both the 
direction and magnitude of the harmonized log odds ratios).

Results
Meta-Analysis in European-Ancestry Samples
Meta-analysis was performed for 2 515 567 SNPs on individual 
GWA study results generated in 28 European-ancestry cohorts 
including a total of 91 323 individuals. A total of 985 SNPs, 
located in 23 chromosomal loci, passed the genome-wide sig-
nificance threshold of P=5.0×10−8 (Figure 1). Among the 23 
loci (designated according to nearest gene), 8 (IL6R, NLRP3, 
IL1RN, CPS1, PCCB, FGB, IRF1, and CD300LF) represent 
replications of previously identified fibrinogen-associated loci, 
and 15 are novel associations (JMJD1C, LEPR, PSMG1, CHD9, 
SPPL2A, PLEC1, FARP2, MS4A6A, TOMM7/IL6, ACTN1, 
HGFAC, IL1R1, DIP2B, and SHANK3/CPT1B). More informa-
tion about these genes is provided in Table V in the online-only 
Data Supplement. Further information about the lead SNPs and 
their association with fibrinogen levels is given in Table 1.

To search for further independent association signals 
within the 23 loci, we repeated the individual GWA analy-
ses, conditioning on the 23 lead SNPs. This analysis revealed 
2 genome-wide significant SNPs located in the FGA gene 
(rs2070016; P=3.9×10−8) and on chromosome 5 (rs11242111; 
P=1.60×10−21; Figure I in the online-only Data Supplement). 
Accordingly, rs11242111 was added to the list of independent 
lead SNPs selected for further analyses (Table 1). rs2070016, 
in FGA, showed evidence of correlation with the lead SNP 
rs1800789 in FGB (r2 =0.364 according to 1000 Genomes Map 
Pilot 1); hence, we did not select this SNP for further analy-
ses. After adjustment for the number of tests, none of the 24 
lead SNPs showed significant heterogeneity across European-
ancestry cohorts. Regional association plots for the 24 loci are 
shown in Figure II in the online-only Data Supplement.

Further adjustment for body mass index and smoking, 
which together explained 5.3% of the variation in plasma 
fibrinogen level among 81 511 individuals from the European-
ancestry meta-analysis, resulted in stronger associations for 
most of the lead SNPs but no new discoveries (Table 1).

Meta-Analysis and Validation of European-
Ancestry Loci in the Black and Hispanic Samples
The Manhattan and QQ plots (λ=1.012) reporting the results 
for the black samples are shown in Figure III in the online-
only Data Supplement. Only the FGA/FGB/FGG locus on 
chromosome 4 reached genome-wide significance in the black 
cohort meta-analysis, with the most strongly associated SNP 
being rs4463047 (P=4.63×10−10) at 12 790 bp from rs1800789 
(P=4.02×10−7). No single SNP attained genome-wide signifi-
cance in the Hispanic samples (Figure III in the online-only 
Data Supplement).

We tested the association of the 24 European-ancestry 
lead SNPs in the black cohort meta-analysis (Table VI in the 
online-only Data Supplement). After correction for 24 statis-
tical tests (P value threshold <0.002), only the 2 lead SNPs, 
rs1800798 (FGB) and rs6734238 (ILRN), passed the signifi-
cant threshold. However, 5 other lead SNPs, located in the 
IRF1, IL6R, CHD9, JMJD1C, and MS4A6A loci, were asso-
ciated at P<0.05, with consistent directions of effect in both 
populations (Table VII in the online-only Data Supplement). 
Furthermore, at 20 of the 24 lead SNPs, the direction of the 
β estimate was the same in the European and black samples 
(P=0.00077, sign test).

In the Hispanic samples, 3 European-ancestry lead SNPs, in 
FGB (rs1800798), IL6R (rs6734238), and CHD9 (rs7204230), 
passed the significance threshold (24 SNPs; P<0.002) for 
association, and 3 additional lead SNPs were associated at 
a nominally significant threshold of P<0.05, with consistent 
directions of effect in both populations (Table VI in the online-
only Data Supplement). In addition, the direction of the β esti-
mate at 20 of the 24 lead SNPs was the same in the European 
and Hispanic samples (P=0.00077, sign test).

Figure 1. Manhattan plot of the 
association P values for plasma 
fibrinogen concentration in the 
meta-analysis performed on 
European-ancestry samples. 
Analyzed single-nucleotide 
polymorphisms are plotted 
on the x axis ordered by 
chromosomal position. The y 
axis plots the logarithm of the 
P values. Gene loci labeled in 
green were previously known; 
gene loci labeled in black 
are novel discoveries in this 
meta-analysis. The dotted 
line indicates the threshold 
for genome-wide significance 
(P=5×10−8).
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Genetic Risk Score and Proportion of  
Variance Explained
Figure 2 presents the average fibrinogen values across catego-
ries of the genetic risk score. The mean percentage of residual 
variance (after adjustment for age and sex) explained by 24 
lead SNPs was 3.7% in all European-ancestry cohorts (range, 
1.4%–7.6% in individual cohorts). The heritability of plasma 
fibrinogen concentration estimated from the family cohorts 
within this study (Netherlands Twin Registry, CROATIA-
Vis, CROATIA-Korcula, ORCADES, FHS, and SardiNIA) 
ranged from 15% to 51% (mean±SD, 31±15%; see Results 
in the online-only Data Supplement). The proportion of vari-
ance in fibrinogen levels explained by common SNPs (minor 
allele frequency >0.01) was calculated in 1 of our participant 
cohorts (WGHS, n=21,336) using the method proposed by 
Yang et al.10 Results showed that 16% (SE=0.017) of the vari-
ance in fibrinogen levels was explained by common SNPs.

Finally, the genetic risk score was strongly associated 
with levels of fibrinogen in the combined black cohorts 
(P=1.5×10−8) and the Hispanic cohort (P=3.8×10−15).

Pathway and Expression QTL Analyses
We performed additional in silico pathway analyses using 
GRAIL and MAGENTA (Table VIII in the online-only 
Data Supplement). The GRAIL results identified 6 SNPs 
(rs6734238, rs12712127, rs8192284, rs10157379, rs1938492, 
and rs6831256) that were located within or near genes (IL1RN, 
IL1R1, IL6R, NLRP3, LEPR, and LRPAP1) with significantly 
related function among all of the genes in the vicinity of the 24 
lead SNPs, suggesting that these genes should be prioritized as 
the most plausible functional candidate genes within the asso-
ciated loci. Gene-set enrichment analysis using MAGENTA 
(based on the whole genome-wide genetic data set) identified 
several gene sets and pathways that were enriched in the analysis 
(Table IX in the online-only Data Supplement). Apart from the 3 
structural genes, the most represented pathways were related to 

inflammation (acute-phase response, interleukin signaling), adi-
pocytokine signaling, and thyrotrophin-releasing hormone sig-
naling. According to these results, several genes (LEPR, IL6R, 
IL1R, IL1F10/IL1F5/IL1F8/IL1RN, FGA/FGB, ACTN1, and 
CPT1B) were prioritized as plausible candidate genes within our 
23 genomic regions. A comprehensive SNP list, which includes 
both the 24 lead SNPs and the SNPs selected by either GRAIL 
or MAGENTA on the whole genome-wide genetic data set, is 
given in Table IX in the online-only Data Supplement.

We then interrogated the 24 lead SNPs and their perfect 
proxies with respect to their associations with expression 
levels of nearby genes (located within ±200 kb of the lead 
SNP) in 5 human liver databases. Expression levels of LEPR, 
PCCB, MSL2L1, NGFRAP1, FGB, and TOMM7 were signifi-
cantly associated with allelic differences in 1 of the 24 lead 
SNPs (results are shown in Table VIII in the online-only Data 
Supplement). Finally, to assess the functional role of SNPs in 
fibrinogen genes, we also studied the eQTL associations of all 
SNPs within 100 kb of the fibrinogen gene cluster. The highest 
association with expression of fibrinogen transcripts within the 
fibrinogen cluster was found for SNP rs4220 (P=1.38×10−20), 
causing a missense mutation in the FGB gene. All positive 
associations with fibrinogen transcripts are shown in Table X 
in the online-only Data Supplement.

Associations With Clinical Outcomes
After correction for multiple testing (P<0.002 threshold), 
rs4129267 located in the IL6R locus, rs6734238 in the IL1F10/
IL1RN locus, and rs1154988 in the PCCB locus were found to 
be significantly associated with CAD; however, the directions of 
the effects on CAD and fibrinogen levels were consistent only 
for rs4129267 in the IL6R locus. The pooled association for the 
24 lead SNPs with CAD was not significant (odds ratio, 1.00; 
95% confidence interval, 0.97–1.03). None of the fibrinogen-
associated lead SNPs were significantly associated with stroke 
or VTE after correction for multiple testing. The pooled results 

Figure 2. Mean values 
for plasma fibrinogen 
concentration in grams per 
liter (right y axis) plotted by 
categories of fibrinogen-
associated single-nucleotide 
polymorphism score (x axis), 
represented by the black dots. 
Number of individuals in each 
category is represented by the 
gray bars (left y axis).
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were suggestive for stroke (odds ratio, 1.03; 95% confidence 
interval, 1.00–1.07) but not for VTE (odds ratio, 0.96; 95% con-
fidence interval, 0.92–1.01; Table 2). Additional results from 
the WTCCC stroke consortium, generated according to clinical 
subphenotypes, are shown in Table XI in the online-only Data 
Supplement. No significant associations with stroke subpheno-
types were found after correction for multiple hypothesis testing.

Discussion
The present study represents the largest effort to identify 
novel gene loci regulating plasma fibrinogen levels. Overall, 
we identified 24 independent genome-wide significant SNPs 
in 23 loci, including 15 loci with newly discovered fibrinogen 
associations. Using our genetic findings, we found no evi-
dence for a causal role of fibrinogen in CAD, stroke, and VTE.

The proportion of variance in plasma fibrinogen level 
accounted for by all 24 fibrinogen-associated lead SNPs 
increased to 3.7% (a detailed description of the novel nearby 
candidate genes is presented in Table V in the online-only 
Data Supplement). These results support the notion that regu-
lation of plasma fibrinogen levels is driven by multiple genes, 
each having a modest effect on the phenotype. It is likely that 
even more loci with smaller effects remain to be discovered.

Relevance of the Fibrinogen-Related Loci in Non–
European-Ancestry Individuals
We performed the first meta-analysis of GWA studies on black 
samples, and we provide evidence for a significant associa-
tion of a weighted SNP score based on the 24 lead SNPs from 
the European-ancestry meta-analysis with levels of fibrinogen 
in both blacks (P=1.5×10−8) and Hispanics (P=3.8×10−15). 
Thus, despite differences in allele frequencies or differences 
in the relative impact of covariates associated with fibrino-
gen among populations, loci identified in European-ancestry 
samples collectively contribute to the regulation of plasma 
fibrinogen in black and Hispanic populations. Twenty of 
24 lead SNPs showed the same direction of effect when the 
European sample was compared with either the black or the 
Hispanic sample. The substantially smaller size of the black 
and Hispanic cohorts compared with the total sample with 
European ancestry restricted available power and may have 
limited the significance of the candidate SNP associations in 
these populations (see Power Calculations in the Methods sec-
tion of the online-only Data Supplement).

Pathways Involved in Regulation of Plasma 
Fibrinogen Level
It is interesting to note that several of the genome-wide signifi-
cant loci identified in the present study harbor inflammatory 
genes, a remarkable set of which relate to the interleukin-1 
pathway, indicating the importance of this pathway in the 
regulation of fibrinogen. Most of these inflammatory genes 
have previously been reported in relation to other inflam-
mation-related phenotypes and diseases. For example, IL6R, 
NLRP3, IL1RN/ILF10, and IRF1 were recently identified in a 
GWA study meta-analysis of C-reactive protein conducted on 
European samples.32 Both fibrinogen and C-reactive protein 
are acute-phase proteins with levels that are largely influenced 
by inflammatory triggers. It is thus not surprising that they 

are both partly regulated by a common group of genes that 
are implicated in the immune response. These results are also 
consistent with our in silico gene-set enrichment analyses, 
which showed that inflammation-related pathways, includ-
ing acute-phase response and interleukin signaling, were 
most enriched for fibrinogen-associated genes. In this regard, 
interesting new plausible candidate genes could be discerned 
within the newly identified loci, including IL6, located in the 
TOMM7-IL6 locus on chromosome 7, and IL1R1, located in 
the cytokine receptor gene cluster on chromosome 2.

Our gene-set enrichment analysis also highlighted genes 
regulating fat metabolism as important in the control of 
plasma fibrinogen concentration, as indicated by the strong 
representation of adipocytokine signaling genes. This is con-
sistent with our observation that smoking and body mass index 
contributed ≈5.3% of the plasma fibrinogen variation and with 
data from the Fibrinogen Studies Collaboration, reporting that 
7% of the variation in plasma fibrinogen concentration was 
accounted for by smoking, body mass index, and high-density 
lipoprotein cholesterol.33

Relations to Cardiovascular Disease
Although plasma fibrinogen concentration has been identified 
as a predictor of incident CAD events,1,34 it has been argued that 
increased plasma fibrinogen levels in population subgroups at 
increased CAD risk could be attributable to other mechanisms, 
including existing atherosclerosis, which might induce a pro-
inflammatory state with a subsequent increase in acute-phase 
reactants such as fibrinogen or C-reactive protein. Given the 
associations of fibrinogen levels with other established CAD 
risk factors (eg, smoking and body mass index), it remains 
uncertain whether these other factors may confound the associ-
ation of fibrinogen with disease risk. Prior studies that assessed 
the causality of the association between plasma fibrinogen 
concentration and risk of CAD by mendelian randomization 
using 2 common SNPs located in the promoter region of the 
FGB gene found no significant association of this locus with 
CAD, concluding that the relationship was noncausal.35,36 One 
limitation of these studies is that this single locus might have 
biologically unusual effects on measured fibrinogen levels.35,36 
Our analysis of 23 other fibrinogen-associated SNPs offers a 
broader perspective and thus a more robust and generalizable 
evaluation of the causal relationship between fibrinogen and 
cardiovascular events. A further strength of our study is that 
we present estimates of the effects on risk of clinical outcomes 
individually for each SNP and globally for all SNPs combined.

Our results do not support a causal relationship between 
plasma fibrinogen level and CAD. In fact, consistent with 
the negative results from previous mendelian randomiza-
tion, the lead SNP located in the FGB gene showed no asso-
ciation with CAD. Whereas SNPs rs4129267, rs6734238, and 
rs1154988, located in the IL6R, IL1F10/IL1RN, and PCCB 
loci, respectively, were significantly associated with CAD in 
CARDIoGRAM and C4D, the direction of effect was consis-
tent only for the SNP located in the IL6R locus (ie, the allele 
that lowered the plasma fibrinogen concentration also lowered 
CAD risk). Furthermore, the global effect of all 24 fibrino-
gen-associated SNPs was not associated with CAD risk (odds 
ratio, 1.00; 95% confidence interval, 0.97–1.03).
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Overall, our results suggest that systemic inflammation both 
causes raised fibrinogen level and (by a different mechanism) 
is associated with increased risk of CAD. The lack of overlap 
between the top CAD-associated SNPs from the literature and 
the fibrinogen-associated SNPs identified in our study further 
argues against a reverse causality hypothesis in which inflam-
mation caused by the atherosclerosis process would raise the 
fibrinogen level.

Although not as consistent as for CAD or myocardial 
infarction, some studies have also suggested that an elevated 
fibrinogen concentration is a risk factor for stroke.3,37–39 In 
the present study, none of the fibrinogen-associated SNPs 
were significantly associated with stroke. Our findings 

suggest that similar to what we observed for CAD, a raised 
fibrinogen concentration is not causally related to stroke, 
although a positive trend was observed that warrants further 
investigation. Similarly, our results show that none of the 
fibrinogen-associated SNPs were significantly associated 
with VTE after correction for multiple testing, although 
rs1800789G in the fibrinogen gene cluster, which is asso-
ciated with higher fibrinogen level in our discovery study, 
showed a clear trend (P=0.004). However, given the small 
sample size of the VTE cases examined, the power for 
detection of VTE association in our data is substantially 
lower than for stroke and CAD (see Methods in the online-
only Data Supplement).

Table 2. Association Results for the 24 Lead SNPs With Coronary Artery Disease, Stroke, and Venous Thromboembolism

CAD* Stroke† VTE‡

SNP Band A1 A2 Freq1
Closest 
Gene OR SE P OR SE P OR SE P

rs1938492 1p31.3 A C 0.597 LEPR 0.98 0.011 0.038 0.98 0.025 0.405 1.00 0.032 0.892

rs4129267 1q21.3 T C 0.378 IL6R 0.96 0.011 1.73×10−05 0.97 0.024 0.212 1.01 0.032 0.838

rs10157379 1q44 T C 0.603 NLRP3 1.00 0.011 0.883 1.02 0.025 0.329 1.04 0.032 0.204

rs12712127 2q11.2 A G 0.451 IL1R1/
IL1R2

1.00 0.011 0.985 0.98 0.025 0.423 1.00 0.032 0.909

rs6734238 2q13 A G 0.589 IL1F10/
IL1RN

1.04 0.011 9.44×10−05 1.00 0.025 0.974 1.01 0.032 0.702

rs715 2q34 T C 0.685 CPS1 1.03 0.013 0.011 1.01 0.029 0.822 0.91 0.054 0.081

rs1476698 2q37.3 A G 0.615 FARP2 1.00 0.011 0.873 1.02 0.026 0.388 1.06 0.033 0.089

rs1154988 3q22.3 A T 0.778 MSL2/
PCCB

1.04 0.013 0.002 0.95 0.029 0.100 0.95 0.037 0.186

rs16844401 4p16.2 A G 0.089 HGFAC/
LRPAP1

1.03 0.024 0.263 1.01 0.052 0.848 0.92 0.082 0.285

rs1800789 4q32.1 A G 0.2 FGB 1.00 0.014 0.939 0.99 0.031 0.828 0.89 0.04 0.004

rs11242111 5q31.1 A G 0.101 C5orf56/
IRF1

0.95 0.024 0.02 1.09 0.057 0.145 0.97 0.079 0.72

rs2106854 5q31.1 T C 0.267 C5orf56/
IRF1

0.98 0.012 0.068 0.99 0.030 0.671 1.05 0.039 0.191

rs2286503 7p15.3 T C 0.397 TOMM7 0.97 0.011 0.005 0.97 0.025 0.173 0.99 0.033 0.641

rs10226084 7p21.1 T C 0.543 SN×13/
PRPS1L1

1.01 0.011 0.497 1.02 0.024 0.379 0.98 0.032 0.614

rs7464572 8q24.3 C G 0.624 PLEC1 1.02 0.011 0.03 0.98 0.028 0.526 0.99 0.041 0.724

rs7896783 10q21.3 A G 0.508 JMJD1C 1.02 0.01 0.14 0.98 0.024 0.449 0.98 0.032 0.512

rs1019670 11q12.1 A T 0.381 MS4A6A 1.01 0.012 0.311 0.96 0.028 0.173 1.02 0.036 0.597

rs7968440 12q13.13 A G 0.69 DIP2B 1.00 0.012 0.825 1.00 0.025 0.989 1.01 0.033 0.819

rs434943 14q24.1 A G 0.305 ACTN1 1.01 0.013 0.314 1.03 0.027 0.256 0.97 0.035 0.366

rs12915708 15q21.2 C G 0.3 SPPL2A 0.98 0.012 0.063 1.00 0.027 0.889 1.00 0.034 0.915

rs7204230 16q12.2 T C 0.682 CHD9 0.99 0.012 0.419 1.01 0.029 0.721 0.96 0.044 0.401

rs10512597 17q25.1 T C 0.202 CD300LF 1.02 0.014 0.218 1.00 0.032 0.909 0.99 0.041 0.781

rs4817986 21q22.2 T G 0.268 PSMG1 1.02 0.013 0.182 1.00 0.027 0.928 1.03 0.035 0.486

rs6010044 22q13.33 A C 0.777 SHANK3/
ARSA

0.97 0.014 0.012 0.97 0.030 0.364 0.96 0.042 0.368

A1 indicates allele 1; A2, allele 2; CAD, coronary artery disease; Freq1, frequency of A1; OR, odds ratio; SNP, single-nucleotide polymorphism; and VTE, venous 
thromboembolism.

*Joint meta-analysis of results from the Coronary Artery Disease Genome-wide Replication and Meta-analysis (CARDIoGRAM) and Europe South Asia Coronary Artery 
Disease Genetics (C4D) consortia.

†Joint meta-analysis of results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the Wellcome Trust Case-Control 
Consortium (WTCCC).

‡Meta-analysis result from the French Marseille Thrombosis Association (MARTHA) Consortium and the CHARGE Consortium Studies on Venous Thrombosis.

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


1318  Circulation  September 17, 2013

Conclusions
The present meta-analysis of fibrinogen GWA studies, based 
on a 4-fold greater sample size than previous meta-analyses 
(≈91 500 individuals), identified 24 independent signals in 23 
loci (of which 15 are new) and increased the proportion of 
variance of plasma fibrinogen level accounted for by all lead 
SNPs in genome-wide significant loci from <2% to 3.7%. For 
some of these loci, our pathway and eQTL analyses provided 
supporting evidence on the most plausible candidate genes. 
Finally, our study does not support causal involvement of 
fibrinogen in cardiovascular disease, particularly in clinically 
apparent CAD. Functional studies are needed to confirm and 
to characterize candidate genes suggested by the in silico anal-
yses presented here.

Future studies aimed at explaining the substantial missing 
heritability of plasma fibrinogen concentration should focus 
on exploring gene-gene and gene-environment interactions 
and on applying resequencing technologies to elucidate the 
role of rare variants.
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CLINICAL PERSPECTIVE
Plasma fibrinogen concentration is a predictor of cardiovascular disease independently of other traditional risk factors, and 
variation in fibrinogen concentration has a substantial heritable component. We conducted a meta-analysis of 28 genome-
wide association studies, including >90 000 subjects of European ancestry and substantial numbers of blacks and Hispanics. 
We identified 24 genome-wide significant (P<5×10−8) independent single-nucleotide polymorphisms in 23 genetic loci, 
including 15 novel associations, together accounting for 3.7% of plasma fibrinogen variation. Gene-set enrichment analysis 
highlighted potential key roles in fibrinogen regulation for the known structural fibrinogen genes, as well as inflammation 
and other candidate pathways. However, in an evaluation for associations of the top fibrinogen single-nucleotide polymor-
phisms with coronary artery disease, stroke, and venous thromboembolism in very large case-control genome-wide studies, 
there was no evidence for association with any of these clinical outcomes of either the single single-nucleotide polymor-
phism most closely related to fibrinogen level (in the fibrinogen gene) or the combined effect of all 24 fibrinogen-associated 
single-nucleotide polymorphisms (across 23 distinct loci). Our findings in a very large total study population provide com-
prehensive data for new and known genetic variants underlying fibrinogen concentration in human populations, including 
multiple ethnic groups. Our findings highlight potential pathways for future study of the role of fibrinogen in the pathophysi-
ology of atherosclerosis and cardiovascular disease. Clinical outcome analysis does not support a strong causal relationship 
between circulating levels of fibrinogen and coronary artery disease, stroke, or venous thromboembolism.
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Supplementary Methods: 
Cohorts of European descent (see Supplementary Table S1): 
 
The Precocious Coronary Artery Disease Study (PROCARDIS) consists of coronary artery disease 
(CAD) cases and controls from four European countries (UK, Italy, Sweden and Germany). CAD 
(defined as myocardial infarction, acute coronary syndrome, unstable or stable angina, or need for 
coronary artery bypass surgery or percutaneous coronary intervention) was diagnosed before 66 years of 
age and 80% of cases had a sibling fulfilling the same criteria for CAD. Subjects with self-reported non-
European ancestry were excluded. Among the “genetically-enriched” CAD cases, 70% had suffered 
myocardial infarction (MI).  
 
The Framingham Heart Study (FHS) was started in 1948 with 5,209 randomly ascertained participants 
from Framingham, Massachusetts, US, who had undergone biannual examinations to investigate 
cardiovascular disease and its risk factors. In 1971, the Offspring cohort (comprising 5,124 children of the 
original cohort and the children's spouses) and in 2002, the Third Generation (consisting of 4,095 children 
of the Offspring cohort) were recruited. FHS participants in this study are of European ancestry. The 
methods of recruitment and data collection for the Offspring and Third Generation cohorts have been 
described 1.  
 
The Women’s Genome Health Study (WGHS) is a prospective cohort of initially healthy, female North 
American health care professionals at least 45 years old at baseline  representing participants in the 
Women’s Health Study (WHS) who provided a blood sample at baseline and consent for blood-based 
analyses. The WHS was a 2x2 trial beginning in 1992-1994 of vitamin E and low dose aspirin in 
prevention of cancer and cardiovascular disease with about 10 years of follow-up.  Since the end of the 
trial, follow-up has continued in observational mode. Additional information related to health and 
lifestyle were collected by questionnaire throughout the WHS trial and continuing observational follow-
up. Detailed information about the study can be found in 2. 
 
The SardiNIA study has been previously described 3. Briefly, it is a large population-based study which 
consists of 6,148 individuals, males and females, ages 14-102 y, that were recruited from a cluster of four 
towns in the Lanusei Valley of Sardinia. Samples have been characterized for several quantitative traits 
and medical conditions, including fibrinogen.  
 
The Rotterdam Study is a prospective, population-based cohort study of determinants of several chronic 
diseases in older adults 4. In brief, the study comprised 7,983 inhabitants of Ommoord, a district of 
Rotterdam in the Netherlands, who were 55 years or over. Subjects are of European ancestry based on 
their self-report. The baseline examination took place between 1990 and 1993.  
 
The Study of Health in Pomerania (SHIP) is a longitudinal cohort study in West Pomerania, the north-
east area of Germany and has been described previously 5, 6. From the entire study population of 212,157 
inhabitants living in the area, a sample was selected from the population registration offices, where all 
German inhabitants are registered. Only individuals with German citizenship and main residency in the 
study area were included. A two-stage cluster sampling method was adopted from the WHO MONICA 
Project Augsburg, Germany. In a first step, the three cities of the region (with 17,076 to 65,977 
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inhabitants) and the 12 towns (with 1,516 to 3,044 inhabitants) were selected. Further 17 out of 97 
smaller towns (with less than 1,500 inhabitants) were drawn at random. In a second step, from each of the 
selected communities, subjects were drawn at random, proportional to the population size of each 
community and stratified by age and gender. Finally, 7,008 subjects aged 20 to 79 years were sampled, 
with 292 persons of each gender in each of the twelve five-year age strata. In order to minimize drop-outs 
by migration or death, subjects were selected in two waves. The net sample (without migrated or deceased 
persons) comprised 6,267 eligible subjects. The SHIP population finally comprised 4,308 participants at 
baseline (corresponding to a final response of 68.8%). 
 
The Coronary Artery Risk Development in Young Adults (CARDIA) Study is a prospective 
multicenter study with 5115 adults Caucasian and African American participants of the age group 18-30 
years, recruited from four centers. The recruitment was done from the total community in Birmingham, 
AL, from selected census tracts in Chicago, IL and Minneapolis, MN; and from the Kaiser Permanente 
health plan membership in Oakland, CA. The details of the study design for the CARDIA study have 
been previously published 7. Seven examinations have been completed since initiation of the study in 
1985–1986, respectively in the years 0, 2, 5, 7, 10, 15 and 20. Written informed consent was obtained 
from participants at each examination and all study protocols were approved by the institutional review 
boards of the participating institutions. 
 
PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) was a prospective multicenter 
randomized placebo-controlled trial to assess whether treatment with pravastatin diminishes the risk of 
major vascular events in elderly. Between December 1997 and May 1999, we screened and enrolled 
subjects in Scotland (Glasgow), Ireland (Cork), and the Netherlands (Leiden). Men and women aged 70-
82 years were recruited if they had pre-existing vascular disease or increased risk of such disease because 
of smoking, hypertension, or diabetes. A total number of 5804 subjects were randomly assigned to 
pravastatin or placebo. A large number of prospective tests were performed including Biobank tests and 
cognitive function measurements. A detailed description of the study has been published elsewhere8, 9. 
 
The Cardiovascular Health Study (CHS) is a population-based cohort study of risk factors for CHD and 
stroke in adults ≥65 years conducted across 4 field centers 10. The original predominantly Caucasian 
cohort of 5,201 persons was recruited in 1989-1990 from random samples of the Medicare eligibility lists; 
subsequently, an additional predominantly African-American cohort of 687 persons was enrolled for a 
total sample of 5,888. DNA was extracted from blood samples drawn on all participants at their baseline 
examination in 1989-90.  
 
The Lothian Birth Cohort (LBC) studies, LBC1936 & LBC1921, were ascertained as follows. 
The LBC1936 consists of 1,091 relatively healthy individuals assessed on cognitive and medical traits at 
70 years of age. They were born in 1936, most took part in the Scottish Mental Survey of 1947, and 
almost all lived independently in the Lothian region of Scotland (Edinburgh City and surrounding area).  
A full description of participant recruitment and testing can be found elsewhere.11, 12 The LBC1921 cohort 
consists of 550 relatively healthy individuals, 316 females and 234 males, assessed on cognitive and 
medical traits at 79 years of age. They were born in 1921, most took part in the Scottish Mental Survey of 
1932, and almost all lived independently in the Lothian region in Scotland. A full description of 
participant recruitment and testing can be found elsewhere. 11, 13 Ethics permission for the study was 
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obtained from the Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/56) and from 
Lothian Research Ethics Committee (LBC1936: LREC/2003/2/29 and LBC1921: LREC/1998/4/183). 
The research was carried out in compliance with the Helsinki Declaration. All subjects gave written, 
informed consent. 
 
The MARseille THrombosis Association (MARTHA) project has been previously described 14. 
Briefly, MARTHA consist in two independent samples of VT patients, named MARTHA08 (N=1,006) 
and MARTHA10 (N=586). MARTHA patients are unrelated subjects of European origin, with the 
majority being of French ancestry, consecutively recruited at the Thrombophilia center of La Timone 
hospital (Marseille, France) between January 1994 and October 2005. All patients had a documented 
history of VT and free of well characterized genetic risk factors including AT, PC, or PS deficiency, 
homozygosity for FV Leiden or FII 20210A, and lupus anticoagulant. They were interviewed by a 
physician on their medical history, which emphasized manifestations of deep vein thrombosis and 
pulmonary embolism using a standardized questionnaire. The thrombotic events were confirmed by 
venography, Doppler ultrasound, spiral computed tomographic scanning angiography, and/or 
ventilation/perfusion lung scan.  
 
The CROATIA-Split study, Croatia, is a population-based, cross-sectional study in the Dalmatian City 
of Split that  includes 1000 examinees aged 18-95. Blood samples were collected in 2009 and 2010  along 
with many clinical and biochemical measures and lifestyle and health questionnaires. A detailed 
description of the study has been published elswhere15. 
 
The CROATIA-Korcula study, Croatia, is a family-based, cross-sectional study in the isolated island of 
Korcula that included 965 examinees aged 18-95. Blood samples were collected in 2007 along with many 
clinical and biochemical measures and lifestyle and health questionnaires. A detailed description of the 
study has been published elswhere16. 
 
The CROATIA-Vis study, Croatia, is a family-based, cross-sectional study in the isolated island of Vis 
that included 1,056 examinees aged 18-93. Blood samples were collected in 2003 and 2004 along with 
many clinical and biochemical measures and lifestyle and health questionnaires. A detailed description of 
the study has been published elswhere16. 
 
The Orkney Complex Disease Study (ORCADES) was performed in the Scottish archipelago of 
Orkney and collected data between 2005 and 2011 (mean age 53). Data for 889 participants aged 18 to 
100 years from a subgroup of ten islands, were used for this analysis. A detailed description of the study 
has been published elswhere17. 
 
The British 1958 birth cohort (B58C) is a national population sample followed periodically from birth. 
At age 44-45 years, 9377 cohort members were examined by a research nurse in the home as described 
previously18 and non-fasting blood samples were collected with permission for DNA extraction and 
creation of immortalised cell cultures (http://www.b58cgene.sgul.ac.uk/collection.php). DNA samples 
from unrelated subjects of white ethnicity, with nationwide geographic coverage, were genotyped either 
by the Wellcome Trust Case Control Consortium (WTCCC)19, the Type 1 Diabetes Genetics 
Consortium20 or the GABRIEL consortium21.  
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The MONICA/KORA Augsburg Study consisted of a series of independent population-based 
epidemiological surveys of participants living in the region of Augsburg, Southern Germany22. All survey 
participants are residents of German nationality identified through the registration office. The presented 
data were derived from the third and fourth population-based Monitoring of Trends and Determinants in 
Cardiovascular Disease (MONICA)/ Cooperative Health Research in the Region of Augsburg (KORA) 
surveys S3 and S4. These cross-sectional surveys covering the city of Augsburg (Germany) and two 
adjacent counties were conducted in 1994/95 (S3) and 1999/2001 (S4) with 4,856 (S3) and 4,261 (S4) 
individuals aged 25 to 74 years. S3 was part of the WHO MONICA study. In a follow-up examination of 
S3 conducted in 2004/05 (MONICA/KORA F3) and of S4 conducted in 2006/08 (MONICA/KORA F4), 
a number of 3,006 (F3) and 3,080 (F4) subjects participated. All participants underwent standardized 
examinations including blood withdrawals for plasma and DNA. For the MONICA/KORA genome-wide 
association study, a number of 1,644 and 1,814 subjects were selected from F3 and F4 samples23. After 
excluding subjects with no albumin measurements available, the final populations for the 
MONICA/KORA data comprised 1,523 (S3/F3) and 1,788 (S4/F4) subjects.   
 
The Aging in the Chianti Area (InCHIANTI) study is a population-based epidemiological study aimed 
at evaluating the factors that influence mobility in the older population living in the Chianti region in 
Tuscany, Italy. The details of the study have been previously reported24. Briefly, 1616 residents were 
selected from the population registry of Greve in Chianti (a rural area: 11,709 residents with 19.3% of the 
population greater than 65 years of age), and Bagno a Ripoli (Antella village near Florence; 4,704 
inhabitants, with 20.3% greater than 65 years of age). The participation rate was 90% (n=1453). 
 
The TwinsUK cohort was derived from the UK adult twin registry based at King’s College London 
(www.twinsUK.ac.uk). These unselected twins have been recruited from the general population through 
national media campaigns in the United Kingdom and shown to be comparable to age-matched population 
singletons in terms of disease-related and lifestyle characteristics 25. Informed consent was obtained from 
all participants and the study was approved by the St. Thomas' Hospital Ethics Committee.  
 
The Helsinki Birth Cohort Study (HBCS) is composed of 8 760 individuals born between the years 
1934-44 in one of the two main maternity hospitals in Helsinki, Finland.  Between 2001 and 2003, a 
randomly selected sample of 928 males and 1 075 females participated in a clinical follow-up study with 
a focus on cardiovascular, metabolic and reproductive health, cognitive function and depressive 
symptoms. Detailed information on the selection of the HBCS participants and on the study design can be 
found elsewhere 26, 27. Research plan of of the HBCS was approved by the Institutional Review Board of 
the National Public Health Insitute and all participants have signed an informed consent. 
 
The Netherlands Twin Registry (NTR): Between January 2004 and July 2008, 9.530 participants from 
3,477 families registered in the NTR were visited at home between 7:00 and 10:00 am for collection of 
blood samples. Fertile women were bled on day 2–4 of the menstrual cycle, or in their pill-free week. 
Body composition was measured and information about physical health and lifestyle (e.g. smoking and 
drinking behavior, physical exercise, medication use) was obtained. For more detailed information about 
the methodology of the NTR Biobank study, see 28. Valid GWA data were available for  2490 individuals. 
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The Atherosclerosis Risk in Communities (ARIC): The Atherosclerosis Risk in Communities 
(ARIC) Study recruited 15,792 adults aged 45 to 64 years in 1987 through 1989 by probability 
sampling from Forsyth County, North Carolina; Jackson, Mississippi; suburbs of Minneapolis, 
Minnesota; and Washington County, Maryland 29. The Jackson sample comprised African Americans 
only; the other three samples represent the ethnic mix of their communities. Extensive information 
was collected at baseline on cardiovascular risk factors.  The ARIC study was approved by the 
institutional review board of each field center institutes and participants gave informed consent 
including consent for genetic testing. In this study we included only European American and African 
American participants. 
 
Multi-Ethnic Study of Atherosclerosis (MESA): The MESA is a cohort study designed to 
investigate the characteristics of subclinical cardiovascular disease and the risk factors that predict 
progression to clinically overt cardiovascular disease or progression of the subclinical disease. MESA 
comprises a diverse, population-based sample of 6,814 asymptomatic men and women aged 45-84. 
Thirty-eight percent of the recruited participants are Caucasian, 28 percent African-American, 22 percent 
Hispanic, and 12 percent Asian, predominantly of Chinese descent 30. Participants were recruited from six 
field centers across the United States: Wake Forest University, Columbia University, Johns Hopkins 
University, University of Minnesota, Northwestern University and University of California - Los 
Angeles.  

 
Cohorts of African American and Hispanic descent (see Supplementary Table S2) 
 
The Atherosclerosis Risk in Communities (ARIC): See information in the Cohorts of European 
descent section. 
 
The Genetic Study of Atherosclerosis Risk (GeneSTAR) is an ongoing prospective study begun in 
1983 to determine environmental, phenotypic, and genetic causes of premature cardiovascular disease 
31. Participants came from European and African American families identified from probands with a 
premature coronary disease event prior to 60 years of age who were identified at the time of 
hospitalization in any of 10 Baltimore area hospitals. Their apparently healthy 30-59 year old siblings 
without known CAD were recruited and underwent phenotypic measurement and characterization 
between 1983 and 2006; offspring of the siblings and probands, as well as the co-parent of these 
offspring, were recruited and assessed between 2003 and 2006. 
 
The Women’s Health Initiative (WHI) is one of the largest (n=161,808) studies of women's health 
ever undertaken in the U.S [1]. There are two major components of WHI: (1) a Clinical Trial (CT) that 
enrolled and randomized 68,132 women ages 50 – 79 into at least one of three placebo-control clinical 
trials (hormone therapy, dietary modification, and calcium/vitamin D); and (2) an Observational Study 
(OS) that enrolled 93,676 women of the same age range into a parallel prospective cohort study32. A 
diverse population including 26,045 (17%) women from minority groups were recruited from 1993-
1998 at 40 clinical centers across the U.S. Of the CT and OS minority participants enrolled in WHI, 
12,157 (including 8,515 self identified African American and 3,642 self identified Hispanic subjects) 
who had consented to genetic research were eligible for the WHI SHARe GWAS project. DNA was 
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extracted by the Specimen Processing Laboratory at the Fred Hutchinson Cancer research Center 
(FHCRC) using specimens that were collected at the time of enrollment. Only African American 
participants with fibrinogen measured at baseline were included in this analysis.  
 
Cleveland Family Study (CFS): The CFS is a family-based longitudinal study designed to study the 
risk factors for sleep apnea.33 Participants include first-degree or selected second-degree relatives of a 
proband with either laboratory diagnosed obstructive sleep apnea or neighborhood control of an 
affected proband. In total, 2,534 individuals (46% African American) from 352 families were studied 
on up to 4 occasions over a period of 16 years (1990-2006). The initial aim of the study was to 
quantify the familial aggregation of sleep apnea. Over time, the aims were expanded to characterize 
the natural history of sleep apnea, sleep apnea outcomes, and to identify the genetic basis for sleep 
apnea. 
 
Phenotyping methods (see Supplementary Tables S1 and S2) 
 
PROCARDIS: Plasma fibrinogen concentrations for the Procardis_clauss sub-sample were measured in 
fasting citrate plasma samples by the Clauss method using the IL Test Fibrinogen C kit and IL Test 
Calibration Plasma, on the  ACL-9000 coagulometer (all from Instrumentation Laboratory Spa, Milan, 
Italy). The inter- assay CV was 7% (n=106). For the Procardis_immunonephelometric, fibrinogen was 
measured  in EDTA plasma samples using Dade Behring reagents on the Dade-Behring Nephelometer II 
analyzer (Dade-Behring, Marburg, Germany). The inter-assay CV was 5.5%.    
 
FHS: Fibrinogen levels were measured using the Clauss method34 in the offspring and the third-
generation subjects, and a modified method of Ratnoff and Menzie in the original cohort subjects 35. 
 
WGHS: Fibrinogen was measured by a mass-based immunoturbidimetric assay 
(DiaSorin) with reproducibility of 5.20% and 3.99% at concentrations of 0.99 
and 2.74 g/L respectively. 
 
SardiNIA: The study measured fibrinogen levels using the Clauss method34. 
 
RS:  Fibrinogen levels were derived from the clotting curve of the prothrombin time assay using 
Thromborel S as a reagent on an automated coagulation laboratory 300 (ACL 300, Instrumentation 
Laboratory, Zaventem, Belgium).  
 
SHIP: A non-fasting blood sample was drawn from the antecubital vein in the supine position and 
immediately analyzed or stored at -80°C. Plasma fibrinogen concentrations were assayed according to 
Clauss34 using an Electra 1600 analyzer (Instrumentation Laboratory, Barcelona, Spain). Coagulation 
time is measured and transferred into the result in g/L by applying a reference curve calculated in the 
laboratory. The assay proves linearity between 0.7 – 7 g/L. The analytical sensitivity of the assay was 0.7 
g/L. Internal quality control measures were performed daily using two levels of manufacturers’ control 
materials. External quality control measures were performed on a regular basis by participating in 
analysis programs. The inter-assay coefficients of variation were 4.61 % at low levels (mean value = 0.95 
g/L) and 1.82% at high levels (mean value = 3.22 g/L) of control material. 
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CARDIA:  Total fibrinogen concentration at the Y7 examination was determined at the University of 
Vermont using immunonephelometry (BNII Nephelometer 100 Analyzer; Dade Behring, Deerfield, IL, 
USA). The amount of immuno-reactive fibrinogen present in the sample was quantitatively determined by 
light scatter intensity. The immunoassay was calibrated using reference plasma, and the results reported in 
mg dL−1. The intra-assay and inter-assay coefficient of variation (CVs) for the immunoassay were 2.7% 
and 2.6%, respectively. 
 
PROSPER: Fibrinogen levels were measured by the Clauss method34 using aMDA180 coagulometer 
(Trinity Biotech; calibrant 9th British standard National Institute for Biological Standards and Control). 
 
CHS: After an 8-12-h fast, CHS participants underwent phlebotomy by atraumatic venipuncture with a 
21-gauge butterfly needle connected to a Vacutainer (Becton Dickinson, Rutherford, NJ) outlet via a Luer 
adaptor36. For fibrinogen determination, an additional citrate-containing tube was processed 
at 4° C. The study measured fibrinogen levels using the Clauss methods. 
 
LBC: Fibrinogen levels were measured using HemosILTM based on the Clauss method. No exclusions 
were applied. Outliers were removed (>3.3SD). Plasma fibrinogen was in g/L, natural log transformed. 
 
MARTHA: Blood samples were collected by antecubital venipuncture into Vacutainer® tubes 0.105 M 
trisodium citrate (ratio 9:1, Becton Dickinson) for the coagulation test and the thrombin generation assay. 
Platelet-poor plasma (PPP) was obtained after double centrifugation of citrated blood (3000 g for 10 min 
at 25°C) and kept frozen at -80°C until analysis. Fibrinogen levels were measured using the Clauss34 
method on STAR automatic coagulomater.  
 
CROATIA-ORCADES: All 4 studies used the Clauss method for measuring plasma fibrinogen. 
 
B58BC: Details of the blood collection, fibrinogen measurement and covariate adjustment have been 
described elsewhere 37. In brief, fibrinogen was measured by the Clauss method34 using an MDA 180 
coagulometer (Biomerieux, Basingstoke, UK).  
 
KORA: Fibrinogen was determined by an immunonephelometric method (Dade Behring Marburg 
GmbH, Marburg, Germany) on a Behring Nephelometer II analyzer. 
 
InCHIANTI: Overnight fasted blood samples were used for genomic DNA extraction, and measurement 
of fibrinogen.  Plasma fibrinogen concentrations were measured by the Clauss method34 using STA 
fibrinogen assay (Diagnostic Stago, Roche Diagnostics, France). The intra- and inter-assay CV was 4.1%.   
 
Twins UK: Fasting blood samples was taken from samples into 0.13 trisodium citrate containers (Becton 
Dickinson, Oxford, United Kingdom) at room temperature, centrifuged at 2560g for 20 minutes to obtain 
platelet-poor plasma within 1 hour of collection and stored at –40°C until analysis. Fibrinogen levels were 
determined using the Clauss method 38. 
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HBCS: Fibrinogen levels were measured using the Clauss method 39  with an electrical impedance end 
point . Plasma fibrinogen was measured in g/L and was natural log transformed to attain normality.  

NTR: Fibrinogen was measured in a 4.5 ml CTAD tube that was stored during transport in melting ice 
and upon arrival at the laboratory, centrifuged for 20 minutes at 2000x g at 4° C, after which citrated 
plasma was harvested, aliquoted (0.5 ml), snapfrozen in dry ice, and stored at –30° C. Fibrinogen levels 
were determined on a STA Compact Analyzer  Diagnostica Stago, France), using STA Fibrinogen 
(Diagnostica Stago, France).  
 
ARIC: Fibrinogen was measured at baseline in the entire ARIC cohort after an 8-hour fasting 
period.Circulating plasma fibrinogen was measured by the Clauss clotting rate method39. Participants 
whose fibrinogen measurement was off 6SD from the mean were also excluded. 
 
MESA: Fasting blood samples were collected, processed and stored using standardized procedures36. 
Fibrinogen antigen was measured using the BNII nephelometer (N Antiserum to Human Fibrinogen; 
Dade Behring Inc., Deerfield, IL). The assay was performed at the Laboratory for Clinical Biochemistry 
Research (University of Vermont, Burlington, VT). Intra- and inter-assay analytical coefficients of 
variation were 2.7% and 2.6%, respectively. 

 
GeneSTAR: Blood was obtained from venipuncture and collected into vacutainer tubes containing 3.2% 
sodium citrate. Plasma fibrinogen was measured using a modified Clauss method on an automated optical 
clot detection device (Dade-Behring, Newark, DE). Excess thrombin was added to citrated plasma, and 
the time needed for clot formation was recorded. This clotting time was then compared with that of a 
standardized fibrinogen preparation. 
 
WHI: Blood samples were collected from all participants at baseline and stored at −70° Celsius. 
Fibrinogen was measured using a turbidometric fibrinogen clot rate assay (MLA ELECTRA 1400C; 
Medical Laboratory Automation Inc., Mt. Vernon, NY). 
 
CFS: Fibrinogen levels were assayed at the University of Vermont Laboratory for Clinical Biochemistry 
Research using fasting blood samples collected at an examination performed between 2001-2006 (STa-R 
automated coagulation analyzer, Diagnostica Stago; Parsippany, NJ), which used the clotting method 
developed by Clauss39. 
 
 
Genotyping methods (see Supplementary Table S3 and S4) 
 
PROCARDIS:  PROCARDIS was genotyped using Illumina Human 1M and 610K quad arrays on a total 
of 6000 patients with CAD and 7,500 control subjects. Genotype quality control excluded SNPs with a 
call rate <95%, MAF <0.01, HWE p<10e-6. After quality filtering,  SNPs were imputed to HapMap22,  
build 36, using MACHv1.0.16.  After imputation, a total of 2,543,888 remained available for analyses. 
 
FHS: Genotyping was carried out as a part of the SNP Health Association Resource project using the 
Affymetrix 500K mapping array (250K Nsp and 250K Sty arrays) and the Affymetrix 50K supplemental 
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gene focused array on 9274 individuals. Genotyping resulted in 503 551 SNPs with successful call rate > 
95% and HWE P >1E-6 on 8481 individuals with call rate > 97%. Imputation of ~2.5 million autosomal 
SNPs in HapMap with reference to release 22 CEU sample was conducted using the algorithm 
implemented in MACH. The final population for fibrinogen analysis included 7022 individuals (original 
cohort, n=383; offspring, n=2806; third generation, n=3833). 
 
WGHS: Genotyping in the WGHS sample was performed using the HumanHap300 Duo ‘‘+’’ chips or 
the combination of the HumanHuman300 Duo and iSelect chips (Illumina, San Diego, CA) with the 
Infinium II protocol. In either case, the custom SNP content was the same; these custom SNPs were 
chosen without regard to minor allele frequency (MAF) to saturate candidate genes for cardiovascular 
disease as well as to increase coverage of SNPs with known or suspected biological function, e.g. disease 
association, non-synonymous changes, substitutions at splice sites, etc. For quality control, all samples 
were required to have successful genotyping using the BeadStudio v. 3.3 software (Illumina, San Diego, 
CA) for at least 98% of the SNPs.  A subset of 23,294 individuals were identified with self-reported 
European ancestry that could be verified on the basis of multidimensional scaling analysis of identity by 
state using1443 ancestry informative markers in PLINK v. 1.06.  In the final dataset of these individuals, 
SNPs were retained with MAF >1%, successful genotyping in 90% of the subjects, and deviations from 
Hardy-Weinberg equilibrium not exceeding P=10-6 in significance. Among the final 23,294 individuals 
of verified European ancestry, genotypes for a total of 2,608,509 SNPs were imputed from the 
experimental genotypes and LD relationships implicit in the HapMap r. 22 CEU samples. 
 
SardiNIA: Genotyping started on 2004, and different subset of samples have been genotyped with 
different SNP arrays. Specifically, 1,412 were genotyped with the 500K Affymetrix Mapping Array set; 
3,329 with the 10K Mapping Array set, with 436 individuals genotyped with both arrays; 1,097 
individuals with the 6.0 Affymetrix chip, of which 1,004 and 66 of those were typed with the 10K and 
500K chips respectively. Quality controls filters for the 500K and 10K array have been previously 
described (Scuteri et al Plos Genetics 2007; Sanna et al Nat Gen 2008). For the Affymetrix 6.0 chip, we 
removed SNPs with call rate <95%, MAF <1% and HWEpvalue<10-6 (Naitza et al Plos Genet 2011, 
submitted). We also discarded SNPs that showed an excess of mendelian errors and SNPs in common 
with the 500K showing an excess of discordant genotypes (>3 over 66 samples). 
After performing quality control checks and merging genotypes from the three gene chip platform, we 
used 731,209 QCed autosomal markers to estimates genotypes for all polymorphic SNPs in the CEU 
HapMap population (release 22, The International HapMap Consortium, 2007) in the individuals 
genotyped with the 500K Array and the 6.0 Affymetrix chip separately, using the MaCH software (Li et 
al 2009, http://www.sph.umich.edu/csg/abecasis/mach/). Taking advantage of the relatedness among 
individuals in the SardiNIA sample, we carried out a second round of computational analysis to impute 
genotypes at all SNPs in the individuals who were genotyped only with the Affymetrix Mapping 10K 
Array, being mostly offspring and siblings of the individuals genotyped at high density. At this second 
round of imputation, we  focused on the SNPs for which the imputation procedure predicted r2>0.30 
between true and imputed genotypes and for which the inferred genotype did not generate an excess of 
Mendelian Errors. The within-family imputation procedure is implemented in Merlin software (Abecasis 
et al., 2002; Chen W-M & Abecasis G-R, 2007). Overall, a total of 2,325,920 autosomal SNPs were 
selected for GWAS. 
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Due to computational constraints, we divided large pedigrees into sub-units with “bit-complexity” of 21 
or less (typically, 25-30 individuals) before analysis. 
The CROATIA-Vis study genotyping used the Illumina HAP300v1 SNP chip.  Genotype quality control 
excluded SNPs with a call rate <95%, MAF <0.01, HWE p<10e-6 .  Analysis was performed using 
GenABEL  with first 3 principal components accounting for population stratification and “mmscore “ 
option to account for relationships. SNPs were imputed to HapMap22,  build 36, using MACHv1.16.  and 
GenABEL derived residuals were  analysed using ProbABEL. 
 
RS: Genotyping was conducted using the Illumina 550K array. SNPs were excluded for minor allele 
frequency ≤1%, Hardy-Weinberg equilibrium (HWE) p<10-5, or SNP call rate ≤90% resulting in data on 
530,683 SNPs. Imputation was done with reference to HapMap release 22 CEU using the maximum 
likelihood method implemented in MACH. 
 
The SHIP samples were genotyped using the Affymetrix Human SNP Array 6.0. Hybridisation of 
genomic DNA was done in accordance with the manufacturer’s standard recommendations. The genetic 
data analysis workflow was created using the Software InforSense. Genetic data were stored using the 
database Caché (InterSystems). Genotypes were determined using the Birdseed2 clustering algorithm. For 
quality control purposes, several control samples where added. On the chip level, only subjects with a 
genotyping rate on QC probesets (QC callrate) of at least 86% were included. All remaining arrays had a 
sample callrate > 92%. The overall genotyping efficiency of the GWA was 98.55 %. Imputation of 
genotypes in SHIP was performed with the software IMPUTE v0.5.0 based on HapMap II. 
 
CARDIA (European):  Study samples from were genotyped using the Affymetrix Genome-Wide 
Human SNP Array 6.0 (Santa Clara, California); only participants of European descent were included in 
the GWAS analyses. Samples with high missing rate, cryptic IBS, and population stratification outliers 
were excluded from the analysis. Genotyping was completed for 1720 individuals with a sample call rate 
≥ 98%. A total of 578,568 SNPs passed quality control (MAF ≥ 2%, call rate ≥ 95%, HWE ≥ 10-4) and 
were used for imputation. For this study, complete genotype and phenotype information were available 
for 1435 individuals. 
 
PROSPER/PHASE: A whole genome wide screening has been performed in the sequential PHASE 
project with the use of the Illumina 660K beadchip. Of 5763 subjects DNA was available for genotyping. 
After QC (call rate <95%) 557,192 SNPs and 5244 subjects were left for analysis were left for analysis. 
The SNPs were imputed to 2.5 million SNPs based on the HAPMAP built 36 with MACH imputation 
software. 
 
CHS:  In 2007-2008, genotyping was performed on CHS European-ancestry participants at the General 
Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 
370CNV BeadChip system on 3980 CHS participants who were free of CVD at baseline, consented to 
genetic testing, and had DNA available for genotyping. In 2010, the African-ancestry were genotyped at 
the same lab using the Illumina HumanOmni1-Quad_v1 BeadChip system. Genotypes were called using 
the Illumina GenomeStudio software.  
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LBC: A detailed description of the genotyping method is available elsewhere 40. In brief, genotyping was 
performed on Illumina Human 610-Quadv1 chip on blood-extracted DNA. Standard quality control 
measures were applied including the following thresholds: call rate ≥ 0.98, minor allele frequency ≥ 0.01, 
and Hardy-Weinberg Equilibrium test with P ≥ 0.001. ~2.5M common SNPs included in HapMap, using 
the HapMap phase II CEU data as the reference sample were imputed. NCBI build 36 (UCSC hg18) was 
used and genotype data were imputed using MACH software. Prior to imputation SNPs were removed 
that diverged from HWE with a significance p < 1x10-3 and SNPs with a minor allele frequency < 0.01.  
The respective SNP call and sample call rates were 0.98 and 0.95. 2,543,887 SNPs were imputed.  

 
MARTHA: The MARTHA08 study sample was typed with the Illumina Human610-Quad Beadchip 
while the MARTHA10 sample was typed with the Illumina Human660W-Quad Beadchip. SNPs showing 
significant (P < 10-5) deviation from Hardy-Weinberg equilibrium, with minor allele frequency (MAF) 
less than 1% or genotyping call rate <99%, in each study were filtered out.  
After the filtering, 494,721 and 501,773 autosomal SNPs were left for association analysis and further 
used for imputing ~2.5 million autosomal SNPs according to the CEU HapMap release 21 reference 
dataset. The imputation was performed using MACH v1.0.16. 
Individuals with genotyping success rates less than 95% were excluded from the analyses, as well as 
individuals demonstrating close relatedness as detected by pairwise clustering of identity by state 
distances (IBS) and multi-dimensional scaling (MDS) implemented in PLINK software41. Non-European 
ancestry was also investigated using the Eigenstrat program (Price AL, Patterson NJ, Plenge RM, 
Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-
wide association studies.Nat Genet 2006, 38:904-909) leading to the final selection of 972 and 570 
patients left for analysis in MARTHA08 and MARTH10, respectively. 
 
The CROATIA-Split study genotyping used the Illumina HAP370CNV SNP chip.  Genotype quality 
control excluded SNPs with a call rate <98%, MAF <0.01, HWE p<10e-6 .  Analysis was performed 
using GenABEL  with first 3 principal components accounting for population stratification and “mmscore 
“ option to account for relationships. SNPs were imputed to HapMap22,  build 36, using MACHv1.16.  
and GenABEL derived residuals were  analysed using ProbABEL 
 
The CROATIA-Korcula study genotyping used the Illumina HAP370CNV SNP chip.  Genotype quality 
control excluded SNPs with a call rate <98%, MAF <0.01, HWE p<10e-6 .  Analysis was performed 
using GenABEL  with first 3 principal components accounting for population stratification and “mmscore 
“ option to account for relationships. SNPs were imputed to HapMap22,  build 36, using MACHv1.16.  
and GenABEL derived residuals were  analysed using ProbABEL 
 
The ORCADES study study genotyping used the Illumina HAP300v2 SNP chip.  Genotype quality 
control excluded SNPs with a call rate <98%, MAF <0.01, HWE p<10e-6 .  Analysis was performed 
using GenABEL  with first 3 principal components accounting for population stratification and “mmscore 
“ option to account for relationships. SNPs were imputed to HapMap22,  build 36, using MACHv1.16.  
and GenABEL derived residuals were  analysed using ProbABEL 
 
MONICA/KORA: Genotyping for F3 was performed using Affymetrix 500K Array Set consisting of 
two chips (Sty I and Nsp I). The F4 samples were genotyped with the Affymetrix Human SNP Array 6.0. 
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Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard 
recommendations. Genotypes were determined using BRLMM clustering algorithm (Affymetrix 500K 
Array Set) or Birdseed2 clustering algorithm (Affymetrix Array 6.0). For quality control purposes, we 
applied a positive control and a negative control DNA every 48 samples (F3) or 96 samples (F4). On chip 
level only subjects with overall genotyping efficiencies of at least 93% were included. In addition the 
called gender had to agree with the gender in the MONICA/KORA study database. Imputation of 
genotypes was performed using maximum likelihood method with the software MACH v1.0.9 (F3) and 
MACH v1.0.15 (F4). 
 
INCHIANTI: Illumina Infinium HumanHap 550K SNP arrays were used for genotyping 42. Genotyping 
was completed for 1210 subjects with a sample call rate >97%,  heterozygosity rates > 0.3 and correct sex 
specification. 495,343 autosomal SNPs that passed quality control (MAF>1%, completeness >99%, HWE 
> 10-4) were used for imputation.  The  HapMap CEU sample (build 36) was used a reference to impute 
approximately 2.5 million SNPs using MACHv.1.16. Association analysis was conducted using MERLIN 
software. 
 
Twins UK: Genotyping of the TwinsUK dataset was done with a combination of Illumina arrays 
(HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M). Intensity data for each of the three arrays 
were pooled separately (with 1M-Duo and 1.2MDuo 1M pooled together) and genotypes were assigned 
using the Illuminus calling algorithm 43. We applied similar quality control criteria to each dataset and 
merged them 44.  Imputation was performed using the IMPUTE v2 using two reference panels, P0 
(HapMap2, rel 22, combined CEU+YRI+ASN panels) and P1 (610k+, including the combined 
HumanHap610k and 1M reduced to 610k SNP content). 
 
HBCS: DNA was extracted from blood samples and genotyping was performed with the modified 
Illumina 610k chip by the Wellcome Trust Sanger Institute, Cambridge, UK according to standard 
protocols. Genomic coverage was extended by imputation using the HapMap phase II CEU data as the 
reference sample and MACH software. 
 
NTR: Three platforms were used to genotype the data : AFFY/Perlegen 660K, Illumina 370K and 
Illumina 660K. Per platform the  quality control inclusion thresholds for SNPs were MAF > 1%, HWE > 
0.00001, call rate > 95% and 0.30 < Heterozygosity < 0.35. Samples were excluded from the data if their 
expected sex and IBD status did not match, or if the genotype missing rate was above 10%. For each 
platform all SNPs were aligned to the positive strand of the Hapmap 2 Build 36 release 24 CEU reference 
set. The alignment was checked using individuals and family members tested on multiple platforms. 
SNPs were excluded per platform if allele frequencies differed more than 15% with the reference set 
and/or the other platforms. The data of the three chips were then imputed with the IMPUTE program on 
Hapmap 2 build 36rel24 (J. Marchini). From the imputed sets, SNPs were removed if the  MAF had a 
difference larger than 0.15 between subsets (same reference alleles). The remaining SNPs were merged 
into one single set. Afterwards, bad imputed SNPs were removed based on HWE < 0.00001, proper info < 
0.40 and MAF < 1%.  
 
ARIC (European): Genotyping was performed using the Affymetrix Genome-Wide Human SNP Array 
6.0 (Affymetrix, Santa Clara, CA, USA) at the Broad Institute of Harvard and MIT.  Exclusions at 
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individual level included disallowing DNA use, unintentional duplicates with higher missing genotype 
rates, suspected mixed/contaminated samples, scans from one problem plate, samples with a mismatch 
between called and phenotypic sex, samples with genotype mismatch with 39 previously genotyped 
SNPs, suspected first‐degree relative of an included individual, and genetic outliers based on average IBS 
statistics and principal components analysis using EIGENSTRAT 45. SNPs were excluded due to no 
chromosome location, being monomorphic, call rate <95%, or HWE-p < 10-6  for SNPs with MAF>0.05. 
In addition, imputation to approximately 2.5 million autosomal  SNPs identified in HapMap Phase II 
CEU samples was performed using MACH v1.0.16 46. SNPs that met the following criteria were included 
in the imputation: MAF ≥ 1%, call rate ≥ 95%, and HWE-p ≥ 10-5. 
 
MESA: Caucasian, Hispanic, and Chinese American participants were genotyped on the 
Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) at the 
Affymetrix Research Services Lab. 6880 samples passed initial genotyping QC. African 
American samples were genotyped at the Broad Institute of Harvard and MIT as part of the 
CARe project. Affymetrix performed wet lab hybridization assay, and plate-based genotype 
calling using Birdseed v2. Sample QC was based on call rates and contrast QC (cQC) statistics. 
Broad performed similar QC for CARe sample. Additional sample and SNP QC were carried out 
at University of Virginia, including sample call rate, sample cQC, and sample heterozygosity by 
race at the sample level; Outlier plates checking by call rate, median cQC or heterozygosity at 
plate level.  Four samples were removed due to low call rate (<95%). Cryptic sample duplicates 
or unresolved cryptic duplicates were dropped. Unresolved gender mismatches were also 
dropped. At the SNP level, we excluded monomorphic SNPs across all samples; SNPs with 
missing Rate was > 5% or observed heterozygosity > 53% were also excluded. Additional 
genotypes were imputed separately in each ethnic group using the program IMPUTE2. HapMap 
CEU was used as the reference population for CAU sample, while a combined CEU+YRI reference 
panel was used for the African-American cohorts, and a combined CEU+YRI+CHB+JPT reference panel 
was used for the Hispanic sample. 
 
Candidate Gene Association Resource (CARe) AA Cohorts- ARIC, CARDIA, CFS, and MESA: 
African American samples in ARIC, CARDIA, CFS, and MESA were genotyped as part of the CARe at 
the Broad Institute of Harvard and MIT using the Affymetrix Genome-Wide Human SNP Array 6.0 
(Affy6.0). Two methods of DNA quality control metrics were assessed on the samples prior to the 
genome scan. First, quantity of double stranded DNA was assessed using PicoGreen® (Molecular Probes, 
Oregon, USA). Next, to confirm sample identity, a set of 24 markers including a gender confirmation 
assay were genotyped using the Sequenom platform to serve as a genetic fingerprint. Each of these 24 
SNPs are also on the Affy6.0 array and served as a cross-platform sample verification.    Genotypes were 
called using Birdseed v1.33.47, 48 Quality controls steps were performed using the software PLINK,41 
EIGENSTRAT,45 and PREST-Plus.49 Imputation was performed using MACH 1.0.16 
(http://www.sph.umich.edu/csg/abecasis/MaCH/) with a combined CEU+YRI as the reference panel. 
Comparison of genotypes for SNPs that were imputed in the GWAS and also genotyped on the CARe 
candidate gene SNP array estimated an allelic concordance rate of ~95.6% between genotyping and 
imputation for those SNPs. This rate is comparable to rates calculated for individuals of African descent 
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imputed with the HapMap 2 YRI individuals.50 Imputation results were filtered at an RSQ_HAT 
threshold of 0.3 and a minor allele frequency threshold of 0.01. 
 
GeneSTAR: The Illumina 1Mv1_c platform was used for genotyping, and MACH v1.0.16 was used to 
impute to 2.5 million SNPs in HapMap II.  
 
WHI: Genotyping was done at Affymetrix Inc on the Affymetrix 6.0 array, using 2 ug DNA at a 
concentration of 100 ng/ul. 2% additional samples were genotyped as blind duplicates. We first removed 
samples that had call rate below 95%, that were duplicates of subjects other than monozygotic twins, or 
that had a Y-chromosome.  SNPs that were located on the Y chromosome or were Affymetrix QC probes 
(not intended for analysis) were excluded (n=3280). We also flagged SNPs that had call rates, calculated 
separately for African Americans and Hispanics, below 95% and concordance rates below 98%, leaving 
us 871,309 unflagged SNPs. We computed IBD coefficients between all pairs of subjects using a random 
subset of 100,000 SNPs from autosomal chromosomes. A more thorough confirmatory analysis using a 
pairwise kinship coefficient estimator was performed separately for African Americans and Hispanics that 
validated these relationships and identified half-siblings. We were left with 8,412 unique African-
American subjects, with an average call rate of 99.8% over the unflagged SNPs. We analyzed 188 pairs of 
blind duplicate samples. The overall concordance rate was 99.8% (range 94.5-100% over all samples, 
98.3%-100% over samples with call rate >98%, 98.1-100%% over unflagged SNPs). 
Imputation in African-Americans was performed using MaCH 1.0.16. Individuals with pedigree 
relatedness or cryptic relatedness (pi_hat > 0.05) were filtered prior to imputation.  SNPs with MAF ≥1%, 
call rate ≥97% and HWE P ≥10-6 were used for imputation.  A combined CEU+YRI reference panel from 
HapMap phase 2 (release 22, build 36) was used.  A randomly selected subset of individuals from each 
cohort sample was used to generate recombination and error rate estimates.  These rates were then used to 
estimate genotype dosages in all sampled individuals across the entire reference panel for over 2 million 
SNPs.  Imputation results were filtered using a minimum imputation quality score, indicated by the 
RSQ_HAT estimate in MaCH of >0.5 and a MAF threshold of >1%. On a small test sample (2% of the 
markers on three chromosomes), the average R-squared was 0.88, with an allelic discordance rate of 
2.3%. 
 
Statistical analyses in European samples 
Twenty-eight cohorts contributed to the GWA study meta-analysis of European-ancestry individuals 
including a total of 57,813 individuals: 
the Atherosclerosis Risk in Communities Study (ARIC, n=9,256), the British 1958 Birth Cohort (B58BC, 
n=6,085), CARDIA (n=1,435), the Cardiovascular Health Study (CHS, n=3,227), the Framingham Heart 
Study (FHS, n=7,022), the Helsinki Birth Cohort Study (HBCS, n=1,401), InChianti, n=1,196), 
KOCULA, n=801), LBC1921 (n=486), LBC1936 (n= 989), the Marseille Thrombosis Association 
(MARTHA08, n=613 and MARTHA10, n=374), MESA, n=2,404), the MONICA/KORA study 
(n=1,523+1788), NTR n=2,490, ORCADES (n=883), the Precocious Coronary Artery Disease Study 
(PROCARDIS) cases (n=3,489+1168) and controls (n=2,224), PROSPER (n=5,104), RSI (n=2,433), 
SardiNIA (n=4,691), SHIP (n=3,841), SPLIT (n=492), TwinsUK (n=2,058), VIS (n=882), and Woman’s 
Genome Health Study (WGHS, n=23,080). 
 

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


Fibrinogen levels were natural log-transformed in all cohorts except for Twins UK. Association of SNPs 
with fibrinogen levels was tested using a linear regression analysis assuming an additive genetic model in 
which allele dosage (0 to 2 copies of the minor allele) of genotyped or imputed SNPs, using MACH2QTL 
(LBC, MARTHA), ProbABEL 0.1-351 (WGHS, B58C, KORA, PROSPER, CROATIA-Vis, CROATIA-
Korcula, CROATIA-Split, ORCADES, RS, CARDIA, HBCS, ARIC), Stata (PROCARDIS, B58C), SAS 
(KORA), MERLIN (InCHIANTI, SardiNIA), QUICKTEST v0.95 
(http://toby.freeshell.org/software/quicktest.shtml) (SHIP), SNPtest v.1.2 (NTR) and PLINK41 
(MARTHA, HBCS) softwares, incorporating dosage information and including age and sex as covariates 
in the model. TwinsUK used a score test and variance components methods implemented in MERLIN to 
account for zygosity and family structure.  The B58C adjusted for sex, laboratory batch, time of day, 
month of examination, and postal delay. ARIC also adjusted for center. Population stratification was 
accounted for by further adjustment for principal components, multidimentional scaling or country when 
necessary (MARTHA, PROCARDIS, PROSPER, CROATIA-Vis, CROATIA-Korcula, CROATIA-Split 
and ORCADES). Family structure was accounted for in FHS, PROCARDIS, CROATIA-Vis, CROATIA-
Korcula, CROATIA-Split, and ORCADES. In FHS, a linear mixed effects model was used with a fixed 
additive effect for the SNP genotype, fixed covariate effects, random family-specific additive residual 
polygenic effects to account for within family correlations, and a random environment effect 52.   
Individuals using anticoagulant therapy were excluded in B58C, PROCARDIS,MARTHA08 and 
MARTHA10).  

 Samples with high missing rate and cryptic IBS were excluded from the analysis.  Participants who used 
warfarin or whose fibrinogen measurement was off 6SD from the mean were excluded in ARIC. Subjects 
were excluded when values of fibrinogen exceeded 6 pg/ml or when they were using anti-inflammatory 
medication or medication influencing the HPA-axis at the time of sampling in NTR. 

Genomic control correction was applied to the individual cohorts. Lambda values for the individual 
GWAS were: PROCARDIS_Cases 1.008; PROCARDIS_Cases.imm 1.016; PROCARDIS_Controls 
1.011; FHS 1.018; WGHS 1.066; SardiNIA 0.977; RS 0.998; SHIP 1.034; CARDIA 1.001; 
PROSPER_PHASE 1.021; CHS 1.027; LBC1921 1.002; LBC1936 1.008; MARTHA08 0.977; 
MARTHA10  0.977; VIS 1.006; KORCULA 1.001; SPLIT 1.005; ORCADES 1.006; B58C 1.034; 
MONICA_KORA_F3 1.018; MONICA_KORA_F4 1.013; InCHIANTI 1.018; TwinsUK 0.977; NTR 
1.023; HBCS 1; ARIC 1.034; MESA 1.001.The overall measure of genomic inflation from the meta-
analysis was λ=1.147.   Additional meta-analyses were also performed in cohorts grouped by method 
used for plasma fibrinogen determination (immunonephelometric or activity method), and heterogeneity P 
values were calculated using METAL.   
GWA analyses were repeated in each of the European-ancestry samples using the same model as in 
discovery, with additional conditioning on the SNP with the lowest P-value (the “lead SNP”) within each 
genome-wide significant locus from the discovery meta-analysis. Conditional meta-analyses was 
performed in 21 European-ancestry cohorts, including more than 76,600 individuals, and individual 
cohort results were subsequently meta-analyzed as described above. 

Statistical analyses in non-European samples: 
 
For the validation in other ethnicities, allelic dosage at each SNP was used as the independent variable, 
adjusted for age and sex. Analyses were performed using the snpMatrix (WHI) or GWAF (GeneSTAR) 
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analysis packages in R. Samples with high missing rate, cryptic IBS, and population stratification outliers 
were excluded from the analysis. GeneSTAR accounted for familial correlations and excluded samples 
identified with gender discrepancy, Mendelian inconsistency rate > 5%, or as EIGENSTRAT outliers. To 
adjust for population stratification, 10 principal components were also incorporated as covariates in the 
regression models (WHI). For the four CARe AA Cohorts (ARIC, CARDIA, CFS, and MESA), 
measurement for fibrinogen was regressed on age, gender, and cohort-specific covariates in a linear 
regression model and residuals were output for use in the genetic analysis. For all CARe cohorts but CFS, 
the genetic analysis was performed in PLINK41 using a linear regression model under the assumption of 
an additive genetic effect. Dosage information of directly measured and imputed genotypes was analyzed 
in the regression implemented in PLINK with the adjustment for the first ten principal components. 
For CFS, the family structure was modeled in the genetic association tests by linear mixed effects (LME) 
models implemented in R.53 Similar to the analysis of the cohorts of unrelated individuals, an additive 
genetic model was used with the adjustment for the first ten principal components, and dosage 
information was analyzed for genotyped and imputed SNPs in the regression model implemented in R 
routines. 
 
Exclusions: Samples were excluded if they had missing gender information, genotyping success rate 
<95% , extreme heterozygosity rates, cryptic relationships, high number of Mendel errors in families, a 
high number of discordant genotypes at SNPs common to both the Affy6.0 platform and the ITMAT-
BROAD-CARe (IBC) array,54 or were contaminated samples, duplicates, outliers in the nearest neighbour 
and “clustering based on missingness” analyses in PLINK, and samples unlikely to be from African-
Americans based on principal component analysis results. In addition, users of anti-coagulation treatment, 
those with extreme raw fibrinogen values (off 6SD from the mean), and genetic outliers were also 
excluded. 
 
For all meta-analysis performed in this study, summary β and standard error (SE) estimates as well 
as P values, which were corrected for the GWA inflation coefficient computed for each cohort, were 
calculated for all SNPs. SNPs with low imputation quality (<0.3), low MAF (<0.01), or present in 
less than one third of the studies were excluded from the meta-analysis. All QC checks and meta-
analyses were conducted in parallel at two sites by independent researchers. The results were later 
compared and differences were checked for correctness. 
 
Expression data analyses: 
Total RNA from human ASAP liver specimens was isolated using RNAlater (Ambion, Austin, Tex), 
Trizol (BRL-Life Technologies) and Rneasy Mini kit (Qiagen), including treatment with RNase-free 
DNase set (Qiagen) according to the manufacturer’s instructions. RNA quality was determined with an 
Agilent 2100 bioanalyzer (Agilent Technologies Inc., Palo Alto, CA, USA), and quantity was measured 
by a NanoDrop (Thermo Scientific). Global gene expression in ASAP data was obtained for these 
samples using Affymetrix ST 1.0 Exon arrays and genotyping in was performed on Illumina Human 
610W-Quad Beadarrays, with subsequent imputation based on the 1000 Genomes CEU reference panel. 
Associations between SNP genotype and gene expression level were examined using additive linear 
models. P values for all genotype-gene expression level combinations were included in an FDR 
calculation, which was conducted by using the Benjamini-Hochberg method55, as implemented in the 
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multtest R-package R-2.13.0 (http://www.bioconductor.org/packages/release/bioc/html/multtest.html). 
Further details about the methods used in ASAP are described elsewhere56. 
 
Heritability estimation methods: 
For FHS, heritability was estimated using a variance components model implemented in SOLAR57 
software adjusted for covariates age and sex (Sequential Oligogenic Linkage Analysis Routines). 
The SardiNIA cohort is a family-based cohort including 6,148 individuals organized into 1,246 multiple 
complex pedigrees up to five generations each. Heritability was estimated using a variance components 
model to take into account different types of familial relatedness in estimating the correlation among 
individuals, and simultaneously adjust for non-genetic effects of covariates, such as age, age2 and gender 
as previously described 3. 
For Croatia-Vis Croatia-Korcula and Orcades, effects of covariates and variance components were 
estimated by maximum likelihood in a general linear mixed model.  
Heritability was estimated using the polygenic function of GenABEL with sex and age as fixed effects 
and an additive polygenic effect and a residual effect as random effects. The pair-wise  kinship 
coefficients were estimated from the genomic data using the gkin function of GenABEL. 
For the NTR, heritability analyses were performed  by comparing the resemblance in fibrinogen of 
monozygotic (MZ) and dizygotic (DZ) twins as well as between non-twin siblings and parents and 
offspring. A total of 7707 family members were used in the analysis.  
 
Zygosity of the same-sex twins was determined by DNA typing for 29% of  the pairs. For the other twin 
pairs, zygosity was based on eight items on physical similarity and the frequency of confusion of the 
twins by parents, other family members and strangers. Agreement between zygosity based on these items 
and zygosity based on DNA is 97%. 
 
Extending the classical twin design with additional family members such as non-twin siblings and parents 
58, 59 makes it possible to simultaneously estimate the contribution of shared environmental as well as 
additive and dominant genetic factors to the variance in fibrinogen. Potential  assortative mating is taken 
into account by co-modeling the spouse correlation. Structural equation modeling in Mx 60 was employed 
to obtain a saturated model that estimated the correlations between fibrinogen in twins, siblings and their 
parents. In total, 10 correlations were estimated: 1 correlation between the parents, 4 parent-offspring 
correlations (father-son, father-daughter, mother-son and mother-daughter) and 5 twin and sibling 
correlations (MZM,  MZF,  DZM = male sibling/male sibling = male sibling/male twin, DZF = female 
sibling/female sibling = female sibling/female twin, and DOS = opposite-sex sibling/opposite-sex sibling 
= opposite-sex sibling/opposite-sex twin) after establishing that the twin/twin and twin/sib correlations 
could be equated.  Next the variance in fibrinogen in  individuals in the parental and offspring generations 
was decomposed into genetic and environmental variances, while modeling the effects of phenotypic 
assortative mating between parents. We used the factor model described by Neale and colleagues.61 The 
variance decomposition was assumed to be stable across generations. 
 
In the model that best fitted the observed variance-covariance matrices, additive genetic and shared 
environmental factors entirely accounted for the familial resemblance. Heritability of fibrinogen was 
31%, the shared environment accounted for 10% of the variance in fibrinogen. More than half of the 
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variance in fibrinogen (59%) was due to environmental factors unique to each individual which also 
include measurement error. 
 
The proportion of variance in plasma fibrinogen concentration accounted for by the lead SNPs and the 
corresponding proportion of variance explained by the effect of smoking and BMI were computed using 
data from 88,251 European-ancestry by regressing the natural log-transformed fibrinogen residuals, after 
adjustment for age and sex (and cohort specific covariates), against the lead SNPs (or the effect of 
smoking and BMI). The mean, median and standard deviation of r2 values obtained in individual cohorts 
were reported. 
 
Given the known positive associations of BMI and smoking with the plasma fibrinogen concentration, we 
also calculated the proportion of variance explained by these two covariates in our sample.  
 
GRS methods 
The GRS was computed for each individual by weighting the dosage number of fibrinogen-raising alleles 
by the global beta value of the allele (obtained from the European-ancestry meta-analysis). The added 
weighted dosage number of all lead SNPs (genotype score per individual) was then rescaled from 0 to 100 
for each individual. All cohorts reported fibrinogen mean and standard deviation values for a set of pre-
defined genotype score intervals. In addition, we used the genotype scores from the European-ancestry 
discovery analysis to examine associations with plasma fibrinogen concentration in the African-American 
and Hispanic cohorts, using methods described elsewhere.62 
 
Power calculations 
We used a freely available power calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/)63 in order to 
assess the statistical power for the replications in African-American and Hispanic samples, as well as the  
lookups in stroke and VTE.  
 
For the calculations of the replication sample size, we assumed an average variance explained by the 24 
lead-SNPs of 0.16% (3.7%/24 SNPs). According to this, the replication sample size in African-American 
was estimated to have 72% power to detect a SNP explaining 0.16% of the variance in fibrinogen level, 
whereas the Hispanic sample was estimated to have 58% power to detect a SNP explaining this same 
proportion of the variance in fibrinogen level. 
 
Assuming a prevalence of CAD of 0.073, we had 74% power to detect the effect of any SNP with MAF > 
0.1 associated with an Odds Ratio of 1.05 (highest OR from our results, rs11242111) at the significance 
level of 0.002. The minimum OR required for 80% power in these conditions would be 1.052. In contrast, 
assuming a prevalence of stroke of 0.005, we had 4% power to detect the effect of any SNP using the 
same parameters. The minimum OR required for 80% power in these conditions would be 1.146. Finally, 
assuming a prevalence of VTE of 0.004, we had 4% power to detect the effect of any SNP using the same 
parameters. The minimum OR required for 80% power in these conditions would be 1.173. 
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Supplementary Results:   
Heritability estimates and Proportion of Variance Explained by the SNPs. 
 
Heritability estimation was conducted in participating family studies. Cohort-specific and overall average 
heritability estimates are summarized below: 
 
CROATIA_Vis 0.15 
CROATIA_Korcula 0.46 
ORCADES 0.16 
FHS 0.51 
SardiNIA 0.25 
NTR 0.31 
  
average 0.31 
SD 0.15 
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School of Clinical Medicine, Cambridge CB2 0XY, UK; 6 Department of Psychosis Studies, NIHR 
Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King’s College London and 
The South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AF, UK; 7 
University of Queensland Diamantina Institute, Brisbane, Queensland, Australia; 8 Dept Epidemiology 
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Supplementary Table S1: Cohort characteristics for the participants in the meta-analysis performed in European-descent individuals. 
 

Cohort name Counts Mean age, 
years (SD) 

Male, 
% 

BMI, kg/m2 
(SD) 

Arterial 
disease 
hx, % 

Current 
smokers, 

% 

Venous 
disease 
hx, % 

T2D, % Measurement Assay Type Fibrinogen 
Mean (SD), 

g/l 

Ln 
Fibrinogen 
Mean (SD) 

Procardis imm controls 2224 55.2 (8.3) 76.1 26.3 (3.77) 0 20.8 NA 2.3 EDTA imm‐neph 3.53 (0.83) 1.24 (0.23) 
Procardis imm cases 1168 63.6 (6.9) 68.4 28.7 (4.65) 100 56.3 NA 14.6 EDTA imm‐neph 4.48 (1.00) 1.48 (0.22) 

Procardis Clauss 3489 61.9 (7.4) 75.5 28.3 (4.87) 100 50.3 NA 15.2 Citrate Clauss 3.85 (0.86) 1.32 (0.22) 
FHS 7022 46.6 (11.5) 46.1 27.0 (5.20) 10.8 18.9 NA 4.8 Citrate  Clauss 3.2 (0.7) 1.2 (0.2) 

WGHS  23080 54.7 (7.1) 0 25.9 (5.00) 0 0.1 0.03 0.03 Citrate/EDTA imm‐‐turb 3.59 (0.78) 1.26 (0.21) 
SardiNIA 4691 43.3 (17.6) 43.7 25.3 (4.68) 3.3 19.8 NA 2.2 Citrate Clauss 3.28 (0.66) 1.19 (0.2) 

RS 2068 70.8 (9.0) 36.8 26.5 (3.90) 7.9 22.2 NA 11.8 Citrate Funtional* 2.81 (0.69) 1.03 (0.2) 
SHIP  3841 48.8 (16.1) 48.5 27.2 (4.76) NA 31.4 NA 8.2 Citrate  Clauss 2.99 (0.70) 1.07 (0.22) 

CARDIA 1435 25.6 (3.3) 47 25.4 (5.09) 10.8 20.3 NA 1.1 Citrate/EDTA imm‐neph 3.18 (0.66) 1.14 (0.20) 
PROSPER/PHASE 5244 75.3 (3.4) 47 26.8 (4.20) 45 27 0 10 EDTA Clauss 3.60 (0.74) 1.26 (0.21) 

CHS  3227 72.3 (5.4) 39 26.3 (4.42) 0 11.4 4.34 14 Citrate Clauss 3.15 (0.62) 1.13 (0.19) 
LBC1936 989 69.6 (0.8) 50.8 27.8 (4.42) 28.4* 12.6 NA 7.7 Citrate Clauss 3.27 (0.63) 1.17 (0.19) 
LBC1921 486 79.1 (0.6) 42.6 26.2 (4.11)  34.5 * 6.6 NA 4.9 Citrate Clauss 3.59 (0.86) 1.25 (0.24) 

MARTHA08 613 44.1 (14.2) 23.8 24.3 (4.41) <1 25.9 100 NA Citrate Clauss 3.36 (0.68) 1.19 (0.2) 
MARTHA10 374 47.3 (15.8) 36 25.7 (4.78) <1 24.2 100 NA Citrate Clauss 3.41 (0.74) 1.21 (0.21) 

CROATIA-Split 492 49.1 (14.6) 42.5 26.9 (4.18) NA 24.8 NA 4.9 Citrate Clauss  3.84 (1.17) 1.30 (0.30) 
CROATIA-Korcula 801 56.3 (15.6) 35.3 28.0 (4.14) NA 25.3 NA 8.4 Citrate Clauss  4.56 (1.51) 1.47 (0.33) 

CROATIA-Vis 882 56.3 (15.6) 42.7 27.4 (4.28) NA 24 NA 5.7 Citrate Clauss  3.57 (0.80) 1.25 (0.22) 
ORCADES 882 53.6 (15.8) 45.2 27.7 (4.84) NA 6.8 NA 3.4 Citrate Clauss  3.48 (0.86) 1.22 (0.23) 

B58C 6085 45.2 (0.4) 49.7 27.4 (4.85) NA 23.5 NA 1.5 Citrate Clauss 2.95 (0.60) 1.06 (0.20) 
KORA F3 1523 52.1 (10.2) 49.3 27.2 (4.10) 0.7 18.1 NA 3.7 EDTA imm‐neph 2.89 (0.66) 1.03 (0.22) 
KORA F4 1788 53.9 (8.9) 48.9 27.7 (4.50) 2.1 20.1 NA 3.5 EDTA imm‐neph 2.67 (0.60) 0.96 (0.22) 

InCHIANTI  1196 68.4 (15.4) 44.4 27.2 (4.14) 15.5 18.8 NA 11.2 Citrate Clauss 3.51 (0.77) 1.23 (0.22) 
Twins UK 2049 49.3 (12.4) 4.7 25.6 (4.53) 1.1 NA NA NA Citrate Clauss 2.99 (0.78) 1.06 (0.24) 

HBCS 1401 61.4 (2.9) 40.2 27.4 (4.50) NA 23.9 NA 11.7 EDTA Clauss 3.23 (1.04) 1.12 (0.34) 
NTR 2490 48.0 (14.0) 37.6 25.5 (4.02) 2.4 20.3 6.3    3.8 Citrate Clauss 2.79 (0.66) 1.00(0.25) 

ARIC EA 9256 54.3 (5.7) 47.1 27.0 (4.80) 6.35 24.6 2.01 8.6 Citrate Clauss 2.97 (0.61) 1.07 (0.20) 
MESA 2527 62.7 (10.2) 47.7 27.7 (5.07) NA 11.4 NA 6.0 Citrate imm‐neph 3.35 (0.70) 1.19 (0.21) 

 
Imm-neph= immunonephelometric; imm-turb= immunoturbidimetric; *Functional PT-derived method (Rossi E, Mondonico P, Lombardi A, Preda L. Method for the 
determination of functional (clottable) fibrinogen by the new family of ACL coagulometers. Thromb Res. 1988;52:453-68). 
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Supplementary Table S2: Cohort characteristics for the participants in the meta-analysis performed in individuals of African-American- or Hispanic 
descent. 
 
  
Cohort name Counts Mean age, 

years (SD) 
Male, % Ancestry BMI, 

kg/m2 (SD) 
Arterial 

disease, % 
Current 

smokers, 
% 

Venous 
disease, 

% 

T2D, 
% 

Measurem. Assay Type Fibrinogen 
Mean (SD), 

g/l 

Ln 
Fibrinogen 
Mean (SD) 

ARIC 2609 53.2 (5.8) 36.8 African American 29.6 (6.0) 5.8 30.1 3.1 17.9 Citrate Clauss  3.19 (0.72) 1.14 (0.22) 
MESA 1677 62.2 (10.1) 46.0 African American 30.1 (5.9) NA 18.3 NA 17.1 Citrate Imm‐neph 3.60 (0.79) 1.25 (0.22) 
MESA 1447 61.4 (10.3) 48.4 Hispanic 29.5 (5.1) NA 13.4 NA 17.8 Citrate Imm‐neph 3.59 (0.75) 1.26 (0.20) 

GeneSTAR 1144 44.5 (11.5) 38 African American 31.6 (7.6) 6.5 32 0 14 Citrate Clauss 3.99 (1.3) 1.34 (0.31) 
WHI-SHARe 1087 62.3 (7.2) 0 African American 31.5 (6.3) 6.4 11.3 2.7 16 Citrate Clauss 3.25 (0.70) 1.18 (0.22) 

CARDIA 809 24.5 (3.8) 38.2 African American 25.5 (5.7) NA 29.2 NA 0.7 EDTA Imm‐neph 3.42(0.80) 1.20 (0.23) 
CHS 784 72.8 (5.5) 37.0 African American 28.5 (5.5) 18.2 16.0 5.4 24.6 Citrate Clauss 3.44 (0.75) 1.21 (0.21) 
CFS 313 41.4 (18.5) 40.3 African American 33.3 (9.9) NA 31 NA 24 Plasma Clauss  3.23 (0.82) 1.13 (0.27) 

 
Imm-neph= immunonephelometric; Measurem.= measurement; T2D=Type II Diabetes
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Supplementary Table S3: Genotyping details for the participants in the meta-analysis performed in European-descent individuals. 
    SNP exclusion criteria*      

  Platform Chip SNPs gen            Call rate            
MAF 

           
HWE p-
value 

Variants 
included 

for 
imputation 

Percent of 
variants 
included 

Imputation 
software 

Imputation 
software 
version 

Genome 
build 

Total # of 
SNPs 

PROCARDIS  Illlumina 1M,Human610‐Quad 
573,015 (1M) 

582,892 
(610) 

<0.95 <0.01 <1 x 10‐6 

498,717 
(1M) 

514,950 
(610) 

0.87 (1M) 
0.88 (610) MACH 1.0.16 36 2,543,888 

FHS Affymetrix 500K + 50K 
490,700 
(500K) 

48,195 (50K) 
≤0.97   <1 x 10‐6 

343,361 
(500K) 
34,841 
(50K) 

0.70 (500k) 
0.72 (50K) MACH 1.0.15 36.2 2,543,887 

WGHS Illumina HumanHap300 Duo “+” 339,596 <0.90 <0.01 <1 x 10‐6 328,963 0.97 MACH 1.0.16 36 2,608,508 

SardiNIA Affymetrix  10K+500K+1000K 

9,941 (10K) 
490,033 
(500K) 

893,634 
(1000K) 

<90% (10K/500K) 
and <95% (6.0) 

<0.05 
(10K and 

500K)  
<0.01 

(1000K) 

<1 x 10‐3 
(10K) and 
p <1 x 10‐

6  (500K 
and 

1000K) 

7,134 (10K) 
339,003 
(500K) 

727,541 
(1000K) 

Combined: 
731,209  

0.72 (10K) 
0.69 (500K) 

0.81 (1000K) 
MACH 1.0.10 36.3 2,325,980 

RS Illlumina Illumina Infinium II 
HumanHap550 530,683 <0.95 ≤0.01 <1.0x10‐5 491,875 0.93 MACH 1.0.15 36 2,586,725 

SHIP  Affymetrix  1000K 869,224       869,224 1 IMPUTE 0.5.0 36 2,748,910 
CARDIA Affymetrix 1000K 909,622 <0.95 ≤0.02 <1.0x10‐4 578,568 0.64 BEAGLE 3.2 36 2,276,435 

PROSPER/PHASE Illumina Human660W‐Quad 561,490  <0.97 no <1 x 10‐6 557,192 0.99 MACH 1.0.15 36.2 2,543,887 
CHS - EA Illumina 370 CNV 306,655 ≤0.97   <1.0x10‐5 291,322 0.95 BIMBAM 0.99 36 2,543,887 
LBC1936 Illumina Human610‐Quad 542,050 <0.95 <0.01 <0.001 535,709 0.99 MACH 1.0.16 36 2,543,887 
LBC1921 Illumina Human610‐Quad 542,050 <0.95 <0.01 <0.001 535,709 0.99 MACH 1.0.16 36 2,543,887 

MARTHA08 Illlumina Human610-Quad 567,589 <0.99 <0.01 <1 x 10‐5 494,721 0.87 MACH 1.0.16 35 2,557,252 
MARTHA10 Illlumina Human660W‐Quad 556,776 <0.99 <0.01 <1 x 10‐5 501,773 0.90 MACH 1.0.16 35 2,557,252 

CROATIA-Split Illumina HumanHap 370CNV‐
Quad 351,514 ≤0.98 ≤ 0.01 <1 x 10‐6 321,456   MACH 1.0.16 36 2,543,887 

CROATIA-Korcula Illlumina HumanHap 370CNV‐
duo/Quad 346,034 <0.98 <0.01 <1 x 10‐6 307,625    MACH 1.0.16 36 2,543,887 

CROATIA-Vis Illumina HumanHap 300v1 317,509 ≤0.98 ≤0.01 <1 x 10‐6 289,827   MACH 1.0.16 36 2,543,887 
ORCADES Illlumina HumanHap 300v2 351,454 <0.98 <0.01 <1 x 10‐6 285,491   MACH 1.0.16 36 2,543,887 

B58C Illumina 550K or Human610‐
Quad 532,203 <0.95 <0.01 <0.0001 482,570 0.93 MACH 1.0.16 35 2,557,252 

KORA F3 Affymetrix  500K 490,032 no no no 490,032 1 MACH 1.0.9 35;21 2,557,252 
KORA F4 Affymetrix 1000K 906,716 < 0.93 no no 651,596 0.72 MACH 1.0.15 36;22 2,543,887 

InCHIANTI Illlumina 550K 549,892 <0.99 ≤0.01 <1 x 10‐6 495,343 0.90 MACH 1.0.16 36 2,543,887 

TwinsUK Illumina 

HumanHap300, 
HumanHap610Q, 

1M‐Duo and 1.2MDuo 
1M 

NA ≤0.97, ≤0.99 
(0.01<MAF<0.05)  ≤0.01 <1 x 10‐6 874,733  NA IMPUTE 2 36 2,657,660 
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HBCS  Illumina modified 610k 509,947 none none none ‐‐‐ ‐‐‐ MACH ‐‐‐ 36 2,544,887 

NTR 
Perlegen, 

Affymetrix, 
Illumina 

660K (PA), 660K(I1), 
370K (I2)  

599,156 (PA) 
657,366 (I1) 
370,404 (I2) 

<0.95 ≤0.01 <0.00001 

427,099 
(PA) 

528,027 (I1) 
318,237 (I2) 

71% (PA) 
80%(I1) 
85%(I2) 

IMPUTE 1 36 2,538,588 

ARIC EA Affymetrix 1000K 841,820 <0.95 ≤0.01 <1.0x10‐5 669,450 0.795 MACH 1.0.16 36 2,543,887 
MESA Affymetrix  1000K  854,756 <0.95 ≤0.01 <1.0x10‐6 854,756  0.85 IMPUTE  2.1.0  36 2,545,579  

 
SNPs gen= single nucleotide polymorphisms genotyped.
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Supplementary Table S4: Genotyping details for the participants in the meta-analysis performed in African American and Hispanic-descent 
individuals. 
 

Cohort Genotyping Details SNP exclusion criteria* Imputation Details 

  Platform Chip SNPs gen            Call 
rate            MAF            HWE 

p-value 

Variants 
included for 
imputation 

Percent of 
variants 
included 

Imputation 
software 

Imputation 
software 
version 

Genome 
build 

Total # of 
SNPs 

ARIC AA Affymetrix 1000K 909,622 <0.95 <0.01 None† Not 
available‡ 

Not 
available‡ MACH 1.0.16 36 2,796,485 

MESA Affymetrix 1000K 841,820 <0.95 <0.01 <1e‐6 854,756 0.85 IMPUTE   2.1.0 36 ~2.5M 
GeneSTAR Illumina 1Mv1_C 1,043,165 <0.90   <1e‐8 687,132 0.659 MACH 1.0.16 36 2,507,621 

WHI Affymetrix 1000K 871,309 ≤0.97     854,981 70% (500k) 
72% (50K) MACH 1.0.16 36.2 2,426,484 

CARDIA Affymetrix 1000K 909,622 <0.95 <0.01 None† Not 
available‡ 

Not 
available‡ MACH 1.0.16 36 2,807,954 

CHS – AA Illumina HumanOmni1‐
Quad_v1 1,140,419 ≤0.97   <1.0x10‐5 963,248 0.95 BEAGLE 3,2.1 36 2,770,583 

CFS AA Affymetrix 1000K 909,622 <0.95 >0.01 None† Not 
available‡ 

Not 
available‡ MACH 1.0.16 36 2,547,353 

 
†Hwe: The Hardy‐Weinberg equilibrium (HWE) test was performed for all SNPs, but SNPs were not excluded based uniquely on this criterion given the 
admixed nature of the African American cohorts genotyped; ‡Not provided by CARe. 
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Supplementary Table S5. Candidate genes at newly discovered susceptibility loci for fibrinogen levels. 
 
The table lists genes of interest in the novel associated regions. For each associated region, the reported gene either contains the lead SNP 
or is in closest physical proximity with the lead SNP. 
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SNP Location Gene Function 

rs789678 10q21.3 JMJD1C Jumonji domain containing 1C encodes thyroid-hormone-receptor interactor 8, a hormone-dependent transcription factor that regulates 
expression of a variety of specific target genes64. This locus has been found associated with levels of the liver enzyme alkaline phosphatase 
(ALP) and plasma lipid concentration 65-67. In addition, it is also associated with mean platelet volume and epinephrine-induced platelet 
aggregation68, 69. The associated SNP is in intron 2 of the gene. 

rs1938492 1p31 LEPR Encodes the leptin receptor, an adipocyte-specific hormone that regulates body weight, and is involved in the regulation of fat metabolism, 
as well as in a novel hematopoietic pathway that is required for normal lymphopoiesis. Mutations in this gene have been associated with 
obesity and pituitary dysfunction. This locus has been associated with levels of the acute-phase proteins C-reactive protein (CRP) and 
serum amyloid A (A-SAA) 70, 71. Recently, genetic variability at the LEPR locus has been shown to influence also plasma levels of 
fibrinogen72. The associated SNP maps in an intergenic region about 14 kb upstream of LEPR, which is the closest gene. 

rs4817986 21q22.2 PSMG1 Encodes the proteasome assembly chaperone 1, involved in the maturation of mammalian 20S proteasomes73. This locus is found 
associated with two closely related inflammatory conditions, inflammatory bowel disease (IBD)74, and, although not conclusively, with 
ankylosing spondylitis75. In addition, this locus is also found associated with levels of the acute-phase protein CRP70. The associated SNP 
maps about 82 kb downstream of the gene, which is the closest gene in the region. 

rs7204230 16q12.2 CHD9 Encodes the chromatin-related mesenchymal modulator (CReMM), a member of the third subfamily of chromodomain helicase DNA-
binding proteins (CHD) which play a role in chromatin remodeling76. It is expressed by osteoprogenitors, where it mediates the 
transcriptional response to hormones that coordinate osteoblast function. Furthermore, it binds to nuclear receptors such as PPARalpha, 
CAR, ERalpha, and RXR and with transcription cofactors CBP, PRIP, and PBP. In particular, CHD9 acts as a transcription coactivator by 
stimulating PPARalpha-mediated transcription, which is in turn involved in proliferation of peroxisomes in liver, induction of PPARalpha 
target genes including those involved in fatty acid oxidation, and the eventual development of liver tumors77. The associated SNP is in 
intron 2 of the gene.  

rs10226084 7p21.1 SNX13 Encodes a PHOX domain- and RGS domain-containing protein that belongs to the sorting nexin (SNX) family and the regulator of G 
protein signaling (RGS) family78. The PHOX domain is a phosphoinositide binding domain, and the SNX family members are involved in 
intracellular trafficking. The RGS family members are regulatory molecules that act as GTPase activating proteins for G alpha subunits of 
heterotrimeric G proteins. Overexpression of this protein delayes lysosomal degradation of the epidermal growth factor receptor. Because 
of its bifunctional role, this protein may link heterotrimeric G protein signaling and vesicular trafficking. The associated SNP maps about 
17 kb upstream of  SNX13, which is the closest gene in the region. 

rs12915708 15q21.2 SPPL2A This gene is a member of the signal peptide peptidase-like protease (SPPL) family and encodes an endosomal membrane protein with a 
protease associated (PA) domain, which plays a role in innate and adaptive immunity. SPPL2A together with SPPL2B catalyses 
intramembrane cleavage of tumour necrosis factor alpha (TNFalpha), which in turn triggers expression of the pro-inflammatory cytokine 
interleukin-12 by activated human dendritic cells79. Furthermore, SPPL2A with ADAM10 is implicated in FasL processing and release of 
the FasL ICD, which has been shown to be important for retrograde FasL signaling80. The associated SNP is in intron 2 of the gene. 

rs7464572 8q24 PLEC1 Plectin is a member of a family of structurally and in part functionally related proteins, termed plakins, that are capable of interlinking 
different elements of the cytoskeleton. Plakins play crucial roles in maintaining cell and tissue integrity and orchestrating dynamic changes 
in cytoarchitecture and cell shape, but also serve as scaffolding platforms for the assembly, positioning, and regulation of signaling 
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complexes. It has been shown that, via effects on cytoskeletal organization, plectin deficiency might play an important role in the 
transformation of human liver cells81. In addition, RNA interference-mediated inhibition PLEC1 reduced IL-6 production by macrophages 
stimulated with LPS, suggesting a role for this gene in innate immunity82. Recently, this gene has been associated with HDL and total 
cholesterol levels83. The associated SNP is in intron 2 of the gene. 

rs1476698 2q37.3 FARP2 Encodes a Dbl family guanine nucleotide exchange factor (GEF) specific for Rac1. GEFs from the Dbl family integrate extracellular 
signaling with appropriate activation of Rho GTPases in specific subcellular regions. FARP2 plays a key role in the regulation of Rac1 and 
integrin β3 throughout podosome rearrangement in osteoclastogenesis84. Furthermore, it is a risk locus for chronic lymphocytic leukemia 
(CLL) and monoclonal B-cell lymphocytosis (MBL), a condition predisposing to CLL 85, 86. It is also a candidate gene for the high-density 
lipoprotein (HDL) cholesterol locus on mouse chromosome 1 and is associated with HDL cholesterol in humans87, 88. The associated SNP 
is in intron 1 of the gene. 

rs1019670 11q12.1 MS4A6A Encodes a member of the membrane-spanning 4A (MS4A) gene family, which display unique expression patterns among hematopoietic 
cells and nonlymphoid tissues. The genes in the MS4A cluster on chromosome 11 are characterized by similar intron/exon splice 
boundaries and common structural features, including transmembrane domains indicating that they are likely to be part of a family of cell 
surface proteins. MS46A has no known specific function and has been identified as a susceptibility locus for Alzheimer’s disease89. 
Furthermore, it is associated with levels of the coagulation factor VII, supporting a role in the regulation of fibrinogen90, 91. The associated 
SNP is in exon 6 of the gene and causes a non-synonymous aminoacid change (Thr/Ser) at position 185 of the protein. 

rs2286503 7p15.3 TOMM7/IL6 Encodes a small regulatory component of the translocase of the outer mitochondrial membrane (TOM), a general import pore complex that 
translocates preproteins into mitochondria. TOMM7 is a risk locus for type 2 diabetes in Mexican-Americans, although there is little 
literature suggesting roles for TOMM7 in diabetes92. In HapMap Europeans, LD extends from this region to include the susceptibility gene 
for type 2 diabetes IL-6. Interestingly, the pro-inflammatory cytokine IL-6 upregulates expression of tissue factor, a central player in the 
initiation of coagulation, supporting a role also in fibrinogen levels93. Furthermore, IL-6 is associated with CRP levels. Although the 
associated SNP maps in intron 3 of TOMM7, the best candidate in the region appears the IL-6 gene, located about 85 kb upstream. 

rs434943 14q22-q24 ACTN1 Encodes alpha (α) actinin, a ubiquitous cytoskeletal protein that belongs to the superfamily of filamentous actin (F-actin) crosslinking 
proteins, with multiple roles in different cell types. Four isoforms of α-actinin have been identified namely, the “muscles” α-actinin-2 and 
α-actinin-3 and the “non-muscles” α-actinin-1 and α-actinin-4, which are generally believed to represent key structural components of 
large-scale F-actin cohesion in cells required for cell shape and motility. The role of non-muscles α-actinin in the liver is unknown, 
however α-actinin is expressed on the membrane and cytosol of cells of the liver and it seems that it interacts with hepatitis C virus and is 
essential for the replication of the virus, suggesting that α-actinin might play a role in the pathogenesis of liver diseases. In addition, α-
actinin is as a target autoantigen in the pathogenesis of autoimmune diseases, particularly systemic lupus erythematosus and autoimmune 
hepatitis94. A role in the immune response is also supported by the co-localization of ACTN1 (A-1 ) with actin and SPA-1 at the 
immunological synapse in T cells95. Interestingly, tyrosine phosphorylation of non-muscle α-actinin is induced by platelet activation, 
which is associated with a decrease in the affinity of α-actinin for actin96. This could in turn affect the mechanical properties of the actin 
cytoskeleton and induce platelet spreading. The associated SNP maps in an intergenic region about 27 kb downstream of ACTN1, which is 
the closest gene. 

rs16844401 4p16 HGFAC Encodes the hepatocyte growth factor activator (HGF activator), a serine protease which converts single-chain HGF to the active two-
chain form. HGF activator is first synthesized as an inactive single-chain precursor, homologous to blood coagulation factor XII, that is 
activated to a heterodimeric form by endoproteolytic processing by thrombin. Thrombin-activated HGF activator then converts single-
chain HGF, which is homologous to the fibrinolysis factor plasminogen, to the active two chain form that functions as a growth factor for 
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parenchymal liver cells and may be involved in repairing the injured liver97. The associated SNP maps in exon 12 of HGFAC. 

rs12712127 2q12 IL1R1 Encodes a cytokine receptor for interleukin alpha (IL1A), interleukin beta (IL1B), and the interleukin 1 receptor antagonist (IL1RA). This 
gene along with IL1R2, IL1RL2, and IL1RL1 form a cytokine receptor gene cluster in chromosome 2q12. IL1R1, together with IL-1R2, 
the antagonist IL-1RA, and the accessory protein IL-1R AcP, is an important mediator of IL1 signaling and is involved in many cytokine 
induced immune and inflammatory responses, including coagulation and fibrinolysis, with an overall prothrombotic effect. However, 
previous investigation of common variations in IL1R1 was not associated with increased risk of venous thrombosis98. IL1RL1 
polymorphisms are associated with serum IL1RL1-a, blood eosinophils, asthma and myocardial infarction99, 100. The associated SNP maps 
in an intergenic region of the chromosome 2q12 receptor cluster, about 44 kb downstream of IL1R1, which is the closest gene. 

rs7968440 12q13.12 DIP2B Encodes a member of the disco-interacting protein homolog 2 protein family. The protein contains a binding site for the transcriptional 
regulator DNA methyltransferase 1 associated protein 1 as well as AMP-binding sites, suggesting that it may participate in DNA 
methylation. DIP2B is located near a folate-sensitive fragile site, FRA12A, linked to mental retardation and individuals with the fragile 
site show a CGG-repeat expansion in its promoter, which affects DIP2B transcription101, 102. Common variants in DIP2B also influence 
risk of developing colorectal cancer. The associated SNP is located in intron 36 of the gene. 

rs6010044 22q13.3 SHANK3 This gene is a member of the Shank gene family, which encodes multidomain scaffold proteins of the postsynaptic density that connect 
neurotransmitter receptors, ion channels, and other membrane proteins to the actin cytoskeleton and G-protein-coupled signaling 
pathways. Shank proteins also play a role in synapse formation and dendritic spine maturation. Mutations in this gene are a cause of 
autism spectrum disorder and of the neurological symptoms of 22q13.3 deletion syndrome103, 104. Furthermore, Shank3 is present in both 
EPEC- and S. typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation, suggesting that this 
molecule is a host synaptic proteins likely to play key roles in bacteria-host interactions105. The associated SNP maps in an intergenic 
region about 11 kb downstream of SHANK3, which is the closest gene. Gene-set enrichment analysis using MAGENTA prioritized as 
most plausible candidate in this region the CPT1B gene (see below).  

rs6010044 22q13.33 CPT1B Encodes a member of the carnitine/choline acetyltransferase family, which is the rate-controlling enzyme of the long-chain fatty acid beta-
oxidation pathway in muscle mitochondria. This enzyme is required for the net transport of long-chain fatty acyl-CoAs from the cytoplasm 
into the mitochondria. Multiple transcript variants encoding different isoforms have been found for this gene, and read-through transcripts 
are expressed from the upstream locus that include exons from this gene. Common nonsynonymous coding variants in CPT1B have been 
associated with ectopic skeletal muscle fat among middle-aged and older African ancestry men106. This gene takes part in adipocytokine 
signaling and is located about 90 kb downstream of the associated SNP. 
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Supplementary Table S6: Validation P-values in African-American and Hispanic cohorts for the 24 lead SNPs.  

  
    European  

African-
American    Hispanic    

SNP Band Position Closest gene 
A
1 

A
2 Freq Beta SE P Freq Beta SE P Freq Beta SE P 

rs1938492* 1p31.3 65890417 LEPR A C 0.62 0.008 0.001 5.28X10‐14 0.55 0.003 0.004 0.37 0.54 ‐0.009 0.007 0.19 
rs4129267 1q21.3 152692888 IL6R T C 0.39 ‐0.011 0.001 5.97X10‐27 0.14 ‐0.011 0.006 0.04 0.47 ‐0.031 0.007 2.10X10‐05 
rs10157379 1q44 245672222 NLRP3 T C 0.62 0.01 0.001 1.15X10‐19 0.60 0.003 0.004 0.52 0.59 0.007 0.007 0.34 
rs12712127 2q11.2 102093093 IL1R1/IL1R2 A G 0.41 0.006 0.001 2.72X10‐08 0.30 0.002 0.004 0.56 0.35 0.000 0.008 1.00 
rs6734238 2q13 113557501 IL1F10/IL1RN A G 0.58 ‐0.009 0.001 5.77X10‐19 0.56 ‐0.012 0.004 1.94X10‐03 0.66 ‐0.011 0.008 0.17 
rs715 2q34 211251300 CPS1 T C 0.68 0.009 0.001 1.98X10‐11 0.80 0.007 0.005 0.16 0.74 0.007 0.009 0.40 
rs1476698 2q37.3 241945122 FARP2 A G 0.65 0.007 0.001 2.24X10‐09 0.62 0.006 0.004 0.13 0.47 0.013 0.007 0.07 
rs1154988 3q22.3 137407881 MSL2/PCCB A T 0.78 ‐0.01 0.001 9.64X10‐17 0.70 ‐0.001 0.004 0.76 0.78 ‐0.018 0.009 0.04 
rs16844401 4p16.2 3419450 HGFAC/LRPAP1 A G 0.08 0.015 0.003 1.74X10‐08 0.03 0.015 0.013 0.23 0.1 0.017 0.017 0.32 
rs1800789 4q32.1 155702193 FGB A G 0.21 0.031 0.001 1.68X10‐127 0.10 0.032 0.006 4.02X10‐07 0.15 0.052 0.011 6.89X10‐07 
rs11242111 5q31.1 131783957 C5orf56/IRF1 A G 0.05 0.023 0.002 1.60X10‐21 0.37 ‐0.003 0.004 0.44 0.09 ‐0.001 0.012 0.92 
rs2106854 5q31.1 131797073 C5orf56/IRF1 T C 0.21 ‐0.019 0.001 1.72X10‐48 0.24 ‐0.009 0.004 0.04 0.21 ‐0.024 0.009 7.00X10‐03 
rs10226084 7p21.1 17964137 SNX13/PRPS1L1 T C 0.52 ‐0.007 0.001 5.05X10‐10 0.61 ‐0.004 0.004 0.36 0.49 ‐0.003 0.007 0.63 
rs2286503 7p15.3 22823131 TOMM7 T C 0.36 ‐0.006 0.001 6.88X10‐09 0.67 0.000 0.004 0.95 0.48 ‐0.002 0.007 0.76 
rs7464572 8q24.3 145093155 PLEC1 C G 0.6 ‐0.007 0.001 1.33X10‐09 0.88 ‐0.002 0.007 0.74 0.72 ‐0.015 0.008 0.06 
rs7896783 10q21.3 64832159 JMJD1C A G 0.48 ‐0.01 0.001 8.90X10‐22 0.32 ‐0.010 0.004 0.01 0.31 ‐0.009 0.008 0.25 
rs1019670 11q12.1 59697175 MS4A6A A T 0.36 ‐0.007 0.001 4.37X10‐09 0.10 ‐0.016 0.008 0.03 0.22 0.004 0.009 0.63 
rs7968440 12q13.13 49421008 DIP2B A G 0.64 0.006 0.001 2.74X10‐08 0.82 0.000 0.005 0.99 0.78 0.011 0.009 0.22 
rs434943 14q24.1 68383812 ACTN1 A G 0.31 0.007 0.001 1.08X10‐08 0.15 ‐0.009 0.006 0.14 0.28 0.013 0.009 0.17 
rs12915708 15q21.2 48835894 SPPL2A C G 0.3 ‐0.007 0.001 6.87X10‐10 0.10 ‐0.001 0.006 0.93 0.22 ‐0.013 0.009 0.15 
rs7204230 16q12.2 51749832 CHD9 T C 0.7 0.008 0.001 1.18X10‐10 0.67 0.012 0.004 3.13X10‐03 0.79 0.037 0.009 5.38X10‐05 
rs10512597 17q25.1 70211428 CD300LF T C 0.18 ‐0.008 0.001 9.92X10‐09 0.64 ‐0.006 0.004 0.19 0.44 ‐0.007 0.008 0.35 
rs4817986 21q22.2 39387382 PSMG1 T G 0.28 ‐0.008 0.001 2.46X10‐11 0.11 ‐0.004 0.008 0.58 0.24 ‐0.025 0.010 0.01 
rs6010044 22q13.33 49448804 SHANK3/ARSA A C 0.8 ‐0.008 0.001 3.41X10‐08 0.88 0.009 0.006 0.13 0.26 0.011 0.009 0.22 
European N=91,323 individuals; African‐American N=8,423 individuals, Hispanic N=1,447 individuals.  

*The perfect proxy rs10789192 was used in African American and Hispanics. 
Freq=frequency; SE= standard error 
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Supplementary Table S7: Position and association values of the 24 lead-SNPs in the European, Afican-American and Hispanic cohorts. Columns R to 
X and AD to AK show the values for the best associated SNP in African-American (a) and Hispanic (b)cohorts located within 200Kb of the “lead SNP” 
found in the European cohorts (the “proxy” SNPs). Columns AL to AN show the number of independent SNPs located within the 200Kb region based 
on the CEU and Yourba HapMaps and the corresponding adjusted p-value threshold of significance after correcting for multiple testing. Columns AO to 
AR show the LD values between the “lead-SNPs” and the “proxy-SNPs”. To set the significance threshold in this exploration effort, we applied 
Bonferroni correction and adjusted for independent SNPs in each region (pair-wise linkage disequilibrium (LD) measure, r2, values below 0.5).  
a) 
 

    
24 LEAD SNPs in EA 24 LEAD SNPs in AA 24 "Proxy" SNPs in AA LD between "LEAD" and "Proxy" SNPs 

SNP CHR POS GENE 
A
1 

A
2 

Freq 
A1 beta P-value  

Freq 
A1 beta P-value  

best SNP for 
AA POS 

A
1 

A
2 Freq 

beta in 
AA 

P-value 
in AA 

Distance 
(bp) 

LD based on 
HapMap 
CEU (R-sq) 

LD based on 
HapMap YRI 

rs1938492 1 65890417 PDE4B a c 0.62 0.008 5.28E‐14       rs1536467 65760750 a g 0.96 0.102 0.007 129,667 na  na 
rs4129267 1 152692888 IL6R t c 0.39 ‐0.011 5.97E‐27 0.14 ‐0.011 0.040 rs1194592 152591008 c g 0.82 ‐0.016 0.001 101,880 0.011 0.015 
rs10157379 1 245672222 NLRP3 t c 0.62 0.010 1.15E‐19 0.60 0.003 0.516 rs11801091 245474761 t c 0.93 0.027 0.002 197,461 1.000 0.020 
rs12712127 2 102093093 IL1R1 a g 0.41 0.006 2.72E‐08 0.3 0.002 0.556 rs17026606 102081970 a g 0.02 ‐0.048 0.005 11,123 1.000 0.004 
rs6734238 2 113557501 IL1RN a g 0.58 ‐0.009 5.77E‐19 0.56 ‐0.012 0.002 rs4251961 113590938 t c 0.82 ‐0.021 2.03E‐05 33,437 0.613 0.073 
rs715 2 211251300 CPS1 t c 0.68 0.009 1.98E‐11 0.8 0.007 0.162 rs7607205 211197348 t g 0.75 0.012 0.006 53,952 0.146 0.019 
rs1476698 2 241945122 FARP2 a g 0.65 0.006 2.24E‐09 0.62 0.006 0.129 rs7578199 241841521 t c 0.82 ‐0.015 0.002 103,601 0.165 0.019 
rs1154988 3 137407881 PCCB a t 0.78 ‐0.01 9.64E‐17 0.70 ‐0.001 0.763 rs1145101 137551976 t c 0.15 0.016 0.002 144,095 0.649 0.328 
rs16844401 4 3419450 HGFAC a g 0.08 0.015 1.74E‐08 0.033 0.015 0.232 rs13147370 3252607 c g 0.42 ‐0.009 0.030 166,843 0.032 0.000 
rs1800789 4 155702193 FGB a g 0.21 0.031 1.68E‐127 0.10 0.032 4.02E‐07 rs4463047 155714983 t c 0.87 0.041 4.63E‐10 12,790 0.001 0.014 
rs2106854 5 131797073 IRF1 t c 0.21 ‐0.019 1.72E‐48 0.24 ‐0.009 0.043 rs2706395 131824702 a t 0.69 0.023 6.98E‐08 27,629 0.924 0.214 
rs11242111 5 131783957 IRF1 a g 0.05 0.023 1.60E‐21 0.37 ‐0.003 0.443 rs2706395 131824702 a t 0.69 0.023 6.98E‐08 40,745 0.008 0.050 
rs2286503 7 22823131 TOMM7 t c 0.36 ‐0.006 6.88E‐09 0.68 ‐3E‐04 0.946 rs2069827 22731981 t g 0.02 0.036 0.012 91,150 0.031 ‐1.000 
rs10226084 7 17964137 PRPS1L1 t c 0.52 ‐0.007 5.05E‐10 0.61 ‐0.004 0.358 rs17138358 17886778 c g 0.54 ‐0.011 0.003 77,359 0.400 0.267 
rs7464572 8 145093155 PLEC1 c g 0.60 ‐0.007 1.33E‐09 0.88 ‐0.002 0.738 rs11136341 145115531 a g 0.47 ‐0.014 0.003 22,376 0.607 0.075 
rs7896783 10 64832159 JMJD1C a g 0.48 ‐0.01 8.90E‐22 0.32 ‐0.01 0.013 rs7896518 64774506 a g 0.67 0.011 0.007 57,653 0.841 1.000 
rs1019670 11 59697175 MS4A6A a t 0.36 ‐0.007 4.37E‐09 0.10 ‐0.016 0.033 rs2081547 59746006 t c 0.12 ‐0.015 0.009 48,831 0.591 0.390 
rs7968440 12 49421008 DIP2B a g 0.64 0.006 2.74E‐08 0.82 ‐1E‐04 0.987 rs1362965 49608261 t c 0.93 0.025 9.25E‐4 187,253 0.319 0.032 
rs434943 14 68383812 ACTN1 a g 0.31 0.007 1.08E‐08 0.15 ‐0.009 0.138 rs3809391 68330602 t c 0.04 0.036 0.002 53,210 0.008 0.006 
rs12915708 15 48835894 SPPL2A c g 0.30 ‐0.007 6.87E‐10 0.10 ‐6E‐04 0.925 rs8033085 48856352 t c 0.08 ‐0.019 0.011 20,458 0.135 0.108 
rs7204230 16 51749832 CHD9 t c 0.7 0.008 1.18E‐10 0.67 0.012 0.003 rs16952044 51757783 a g 0.68 0.014 4.04E‐4 7,951 1.000 1.000 
rs10512597 17 70211428 CD300LF t c 0.18 ‐0.008 9.92E‐09 0.64 ‐0.006 0.192 rs783240 70095693 a g 0.52 0.018 0.005 115,735 0.010 0.000 
rs4817986 21 39387382 PSMG1 t g 0.28 ‐0.008 2.46E‐11 0.11 ‐0.004 0.583 rs8130107 39347449 t c 0.51 ‐0.012 0.002 39,933 0.050 0.049 
rs6010044 22 49448804 SHANK3 a c 0.8 ‐0.008 3.41E‐08 0.88 0.009 0.134 rs5770957 49417151 t c 0.09 0.051 5.3E‐4 31,653 0.021  na 
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b) 

     
24 LEAD SNPs in EA 24 LEAD SNPs in Hispanics 24 "Proxy" SNPs in Hispanics 

 

SNP CHR POS GENE A1 A2 Freq beta P-value  A1 A2 Freq beta P-value  

best SNP 
for 
Hispanics Chr POS A1 A2 Freq 

beta in 
Hispa 

P value 
in Hispa 

rs1938492 1 65890417 PDE4B a c 0.623 0.0081 5.28E‐14 
     

rs4384209 1 66051713 G A 0.61 0.022 0.007 
rs4129267 1 152692888 IL6R t c 0.392 ‐0.011 5.97E‐27 T C 0.47 ‐0.031 2.101E‐05 rs8192284 1 152693594 C A 0.47 ‐0.032 1.9E‐05 
rs10157379 1 245672222 NLRP3 t c 0.621 0.0099 1.15E‐19 T C 0.59 0.007 0.343 rs12070953 1 245681009 T C 0.89 ‐0.043 0.005 
rs12712127 2 102093093 IL1R1 a g 0.409 0.0058 2.72E‐08 G A 0.65 0.000 0.999 rs3917325 2 102160339 T G 0.95 ‐0.049 0.002 
rs6734238 2 113557501 IL1RN a g 0.584 ‐0.009 5.77E‐19 G A 0.34 0.011 0.166 rs874898 2 113690667 G C 0.77 ‐0.026 0.003 
rs715 2 211251300 CPS1 t c 0.682 0.0087 1.98E‐11 T C 0.74 0.007 0.400 rs1588365 2 211087499 G A 0.64 ‐0.025 9.7E‐04 
rs1476698 2 241945122 FARP2 a g 0.647 0.0065 2.24E‐09 G A 0.53 ‐0.013 0.066 rs4675973 2 241845768 T C 0.47 ‐0.019 0.014 
rs1154988 3 137407881 PCCB a t 0.777 ‐0.01 9.64E‐17 T A 0.22 0.018 0.039 rs1154988 3 137407881 T A 0.22 0.018 0.039 
rs16844401 4 3419450 HGFAC a g 0.077 0.0149 1.74E‐08 G A 0.90 ‐0.017 0.323 rs16844280 4 3378822 T C 0.07 0.033 0.021 
rs1800789 4 155702193 FGB a g 0.21 0.0306 1.68E‐127 G A 0.85 ‐0.052 6.89E‐07 rs4508864 4 155700739 T C 0.13 0.063 4.77E‐07 
rs2106854 5 131797073 IRF1 t c 0.208 ‐0.019 1.72E‐48 T C 0.21 ‐0.024 0.007 rs2631362 5 131735192 G A 0.28 ‐0.027 5.71E‐04 
rs11242111 5 131783957 IRF1 a g 0.051 0.0232 1.60E‐21 G A 0.91 0.001 0.917 rs2631362 5 131735192 G A 0.28 ‐0.027 5.71E‐04 
rs2286503 7 22823131 TOMM7 t c 0.36 ‐0.006 6.88E‐09 T C 0.48 ‐0.002 0.757 rs1880241 7 22725994 G A 0.67 ‐0.020 0.008 
rs10226084 7 17964137 PRPS1L1 t c 0.523 ‐0.007 5.05E‐10 T C 0.49 ‐0.003 0.632 rs17345660 7 18151634 G A 0.98 ‐0.069 0.006 
rs7464572 8 145093155 PLEC1 c g 0.596 ‐0.007 1.33E‐09 G C 0.28 0.015 0.058 rs11786896 8 145090342 T C 0.05 0.063 0.010 
rs7896783 10 64832159 JMJD1C a g 0.484 ‐0.01 8.90E‐22 G A 0.69 0.009 0.247 rs11817169 10 65026315 G A 0.17 0.035 3.15E‐04 
rs1019670 11 59697175 MS4A6A a t 0.363 ‐0.007 4.37E‐09 T A 0.78 ‐0.004 0.634 rs17154445 11 59552878 T C 0.01 ‐0.095 0.003 
rs7968440 12 49421008 DIP2B a g 0.639 0.006 2.74E‐08 G A 0.22 ‐0.011 0.215 rs4132432 12 49276485 G C 0.15 0.018 0.054 
rs434943 14 68383812 ACTN1 a g 0.314 0.007 1.08E‐08 G A 0.72 ‐0.013 0.165 rs7141959 14 68427126 G C 0.53 0.020 0.018 
rs12915708 15 48835894 SPPL2A c g 0.304 ‐0.007 6.87E‐10 G C 0.78 0.013 0.151 rs8023464 15 48659366 C A 0.94 0.035 0.025 
rs7204230 16 51749832 CHD9 t c 0.7 0.0078 1.18E‐10 T C 0.79 0.037 5.378E‐05 rs8050349 16 51897377 T C 0.18 ‐0.042 2.63E‐05 
rs10512597 17 70211428 CD300LF t c 0.177 ‐0.008 9.92E‐09 T C 0.44 ‐0.007 0.350 rs492256 17 70115771 T A 0.53 ‐0.019 0.011 
rs4817986 21 39387382 PSMG1 t g 0.279 ‐0.008 2.46E‐11 T G 0.24 ‐0.025 0.011 rs8129630 21 39229095 G A 0.02 0.077 0.003 
rs6010044 22 49448804 SHANK3 a c 0.8 ‐0.008 3.41E‐08 C A 0.26 ‐0.011 0.215 rs6010065 22 49504883 G C 0.54 0.016 0.042 
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Supplementary Table S8: Results of pathway analyses using MAGENTA and GRAIL and expression quantitative trait locus (eQTL) analysis in 
human liver. 
 

SNP Band Closest gene P 
Additional 
evidence Candidate gene Pathway 

rs1938492 1p31.3 LEPR 5.28X10‐14 Grail/Magenta LEPR Adipocytokine signaling pathway 
    eQTL_liver LEPR (P=4.37x10‐10)  

rs4129267 1q21.3 IL6R 5.97X10‐27 Grail/Magenta IL6R Acute phase.R response signaling/JAK‐STAT cascade 
rs10157379 1q44 NLRP3 1.15X10‐19 Grail NLRP3  
rs12712127 2q11.2 IL1R1/IL1R2 2.72X10‐08 Grail/Magenta IL1R1 Acute phase response signaling 
rs6734238 2q13 IL1F10/IL1RN 5.77X10‐19 Grail/Magenta IL1RN/IL1F10,IL1F5,IL1F8,IL1RN interleukin‐1 receptor binding 

rs715 2q34 CPS1 1.98X10‐11    
rs1476698 2q37.3 FARP2 2.24X10‐09    
rs1154988 3q22.3 MSL2/PCCB 9.64X10‐17 eQTL_liver PCCB (P=1.44x10‐6) 

MSL2L1 (P=3.91x10‐14) 
NGFRAP1 (P=7.61x10‐12)  

rs16844401 4p16.2 HGFAC/LRPAP1 1.74X10‐08 Grail LRPAP1  
rs1800789 4q32.1 FGB 1.68X10‐127 Magenta FGA,FGB Acute phase  response signaling 

    eQTL_liver FGB (P=1.2x10‐8)  
rs2106854 5q31.1 C5orf56/IRF1 1.72X10‐48    

rs11242111 5q31.1 C5orf56/IRF1 1.60X10‐21    
rs2286503 7p15.3 TOMM7 6.88X10‐09 eQTL_liver TOMM7 (P=2.23x10‐5)  

rs10226084 7p21.1 SNX13/PRPS1L1 5.05X10‐10    
rs7464572 8q24.3 PLEC1 1.33X10‐09    
rs7896783 10q21.3 JMJD1C 8.90X10‐22    
rs1019670 11q12.1 MS4A6A 4.37X10‐09    
rs7968440 12q13.13 DIP2B 2.74X10‐08    
rs434943 14q24.1 ACTN1 1.08X10‐08 Magenta ACTN1 Systemic Lupus Erythematosus 

rs12915708 15q21.2 SPPL2A 6.87X10‐10    
rs7204230 16q12.2 CHD9 1.18X10‐10    

rs10512597 17q25.1 CD300LF 9.92X10‐09    
rs4817986 21q22.2 PSMG1 2.46X10‐11    
rs6010044 22q13.33 SHANK3/ARSA 3.41X10‐08 Magenta CPT1B Adipocytokine signaling pathway 
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Supplementary Table S9: Extended list of the lead candidate SNPs, including those obtained through the genome-wide association meta-analysis (the 
24 “lead-SNPs”) plus those candidate SNPs obtained through pathway analyses in GRAIL and MAGENTA. 
 

Category SNP Chr 

 
A
1 

A
2 Freq1 Effect StdErr P-value GRAIL.FDR GRAIL.GWAS MAGENTA.GENEs.PATHWAYs 

Genome‐wide Significant rs1938492 1 a c 0.62 0.008 0.001 5.28E‐14 ‐ 0.042000252@LEPR LEPR@KEGG‐KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

Genome‐wide Significant rs4129267 1 t c 0.39 ‐0.011 0.001 5.97E‐27 
   Genome‐wide Significant rs10157379 1 t c 0.62 0.010 0.001 1.15E‐19 ‐ 0.026496169@NLRP3 ‐ 

Genome‐wide Significant rs12712127 2 a g 0.41 0.006 0.001 2.72E‐08 ‐ 0.001451751@IL1R1 IL1R1@Ingenuity‐Acute.Phase.Response.Signaling 

Genome‐wide Significant rs6734238 2 a g 0.58 ‐0.009 0.001 5.77E‐19 ‐ 0.000351036@IL1RN 
IL1F10,IL1F5,IL1F8,IL1RN@GOTERM‐interleukin‐

1.receptor.binding,PANTHER_MOLECULAR_FUNCTION‐Interleukin 

Genome‐wide Significant rs715 2 t c 0.68 0.009 0.001 1.98E‐11 ‐ ‐ ‐ 

Genome‐wide Significant rs1476698 2 a g 0.65 0.007 0.001 2.24E‐09 ‐ ‐ ‐ 

Genome‐wide Significant rs1154988 3 a t 0.78 ‐0.010 0.001 9.64E‐17 ‐ ‐ ‐ 

Genome‐wide Significant rs16844401 4 a g 0.08 0.015 0.003 1.74E‐08 
   Genome‐wide Significant rs1800789 4 a g 0.21 0.031 0.001 1.68E‐127 ‐ ‐ FGA,FGB@Ingenuity‐Acute.Phase.Response.Signaling 

Genome‐wide Significant rs11242111 5 a g 0.05 0.023 0.002 1.60E‐21 
   Genome‐wide Significant rs2106854 5 t c 0.21 ‐0.019 0.001 1.72E‐48 
   Genome‐wide Significant rs10226084 7 t c 0.52 ‐0.007 0.001 5.05E‐10 ‐ ‐ ‐ 

Genome‐wide Significant rs2286503 7 t c 0.36 ‐0.006 0.001 6.88E‐09 
   Genome‐wide Significant rs7464572 8 c g 0.60 ‐0.007 0.001 1.33E‐09 ‐ ‐ ‐ 

Genome‐wide Significant rs7896783 10 a g 0.48 ‐0.010 0.001 8.90E‐22 ‐ ‐ ‐ 

Genome‐wide Significant rs1019670 11 a t 0.36 ‐0.007 0.001 4.37E‐09 ‐ ‐ ‐ 

Genome‐wide Significant rs7968440 12 a g 0.64 0.006 0.001 2.74E‐08 
   Genome‐wide Significant rs434943 14 a g 0.31 0.007 0.001 1.08E‐08 ‐ ‐ ACTN1@KEGG‐KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 

Genome‐wide Significant rs12915708 15 c g 0.30 ‐0.007 0.001 6.87E‐10 
   Genome‐wide Significant rs7204230 16 t c 0.70 0.008 0.001 1.18E‐10 ‐ ‐ ‐ 

Genome‐wide Significant rs10512597 17 t c 0.18 ‐0.008 0.001 9.92E‐09 ‐ ‐ ‐ 

Genome‐wide Significant rs4817986 21 t g 0.28 ‐0.008 0.001 2.46E‐11 ‐ ‐ ‐ 

Genome‐wide Significant rs6010044 22 a c 0.80 ‐0.008 0.001 3.41E‐08 ‐ ‐ CPT1B@KEGG‐KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

GRAIL‐FDR rs2272163 3 a c 0.38 ‐0.005 0.001 6.10E‐05 0.044313377@ROBO2 ‐ ‐ 

GRAIL‐FDR rs2161374 5 t c 0.45 ‐0.005 0.001 2.22E‐06 0.025228345@DUSP1 ‐ ‐ 

GRAIL‐FDR rs732839 8 a g 0.23 0.006 0.001 1.11E‐05 0.04285248@PPP1R3B ‐ ‐ 

GRAIL‐FDR rs10814489 9 a g 0.35 ‐0.005 0.001 7.40E‐06 0.045550713@PAX5 ‐ ‐ 

GRAIL‐FDR rs11186629 10 a t 0.70 0.005 0.001 3.08E‐05 0.002919608@PPP1R3C ‐ ‐ 

GRAIL‐FDR rs17101410 10 t c 0.09 ‐0.008 0.002 8.89E‐06 0.02878597@BRWD2 ‐ ‐ 
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GRAIL‐FDR rs224628 11 t c 0.84 ‐0.006 0.001 2.25E‐05 0.041547845@PAX6 ‐ ‐ 

GRAIL‐FDR/MAGENTA‐FDR rs7118744 11 a g 0.38 0.005 0.001 1.15E‐05 0.037380292@ETS1 ‐ ETS1@Ingenuity‐GM‐CSF.Signaling 

GRAIL‐FDR rs1871143 12 t g 0.22 0.006 0.001 1.23E‐06 0.009746531@GYS2 ‐ ‐ 

GRAIL‐FDR rs1887826 13 a g 0.53 ‐0.004 0.001 1.19E‐04 0.032901685@ATXN8OS ‐ ‐ 

GRAIL‐FDR rs3803522 15 a g 0.80 ‐0.005 0.001 2.89E‐05 0.030742241@MAP2K5 ‐ ‐ 

GRAIL‐FDR rs4334315 16 a t 0.70 ‐0.006 0.002 1.37E‐05 0.021271154@MAF ‐ ‐ 

GRAIL‐FDR rs11079035 17 a g 0.17 0.006 0.001 6.43E‐06 0.00416818@STAT5B ‐ ‐ 

GRAIL‐FDR/MAGENTA‐FDR rs3817294 17 a g 0.39 ‐0.006 0.001 7.73E‐07 0.03318157@SOCS3 ‐ 

SOCS3@Ingenuity‐IL‐10.Signaling,KEGG‐
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY,PANTHER_BIOLOGICA

L_PROCESS‐JAK‐STAT_cascade 

GRAIL‐FDR/MAGENTA‐FDR rs11080606 18 t c 0.70 0.006 0.001 6.40E‐07 0.047692543@PTPN2 ‐ PTPN2@PANTHER_BIOLOGICAL_PROCESS‐JAK‐STAT_cascade 

GRAIL‐FDR rs1460191 18 a c 0.18 0.006 0.001 3.11E‐05 0.005129877@DCC ‐ ‐ 

GRAIL‐FDR rs1800961 20 t c 0.03 ‐0.016 0.003 1.60E‐06 0.033484871@HNF4A ‐ ‐ 

GRAIL‐FDR rs5765575 22 t g 0.66 0.005 0.001 5.15E‐05 0.017445336@ATXN10 ‐ ‐ 

MAGENTA‐FDR rs2404715 1 t c 0.09 ‐0.007 0.002 1.61E‐04 ‐ ‐ PRKAA2@KEGG‐KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

MAGENTA‐FDR rs8192284 1 a c 0.61 0.011 0.001 6.75E‐27 ‐ 0.001503629@IL6R 

IL6R@Ingenuity‐
Acute.Phase.Response.Signaling,PANTHER_BIOLOGICAL_PROCESS‐

JAK‐STAT_cascade 

MAGENTA‐FDR rs10206961 2 t c 0.39 0.004 0.001 0.000102 ‐ ‐ 
VAMP8@Panther‐Thyrotropin‐

releasing_hormone_receptor_signaling_pathway 

MAGENTA‐FDR rs12053091 2 t c 0.74 0.006 0.001 2.15E‐06 ‐ ‐ IL1A,IL1B@GOTERM‐interleukin‐1.receptor.binding 

MAGENTA‐FDR rs11689250 2 a g 0.67 0.006 0.001 1.48E‐07 ‐ ‐ IL1F6@GOTERM‐interleukin‐1.receptor.binding 

MAGENTA‐FDR rs11235 3 t c 0.58 ‐0.004 0.001 7.26E‐05 ‐ ‐ ITIH3@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs1872111 3 a g 0.88 ‐0.008 0.002 6.94E‐07 ‐ ‐ H1FOO@PANTHER_MOLECULAR_FUNCTION‐Histone 

MAGENTA‐FDR rs2227401 4 t c 0.21 0.031 0.001 2.32E‐127 ‐ ‐ FGG@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs10070876 5 t c 0.91 0.009 0.002 5.04E‐05 ‐ ‐ C9@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs10078535 5 a g 0.97 ‐0.017 0.003 1.00E‐08 ‐ ‐ 

ACSL6,IL3@Ingenuity‐Fc.Epsilon.RI.Signaling,KEGG‐
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY,KEGG‐

KEGG_ASTHMA,PANTHER_BIOLOGICAL_PROCESS‐JAK‐STAT_cascade 

MAGENTA‐FDR rs3843502 5 a g 0.03 0.017 0.003 1.05E‐08 ‐ ‐ 
CSF2@Ingenuity‐Fc.Epsilon.RI.Signaling,Ingenuity‐GM‐

CSF.Signaling,PANTHER_BIOLOGICAL_PROCESS‐JAK‐STAT_cascade 

MAGENTA‐FDR rs4705952 5 a g 0.78 0.013 0.001 4.26E‐24 ‐ ‐ 

IL5@Ingenuity‐Fc.Epsilon.RI.Signaling,KEGG‐
KEGG_ASTHMA,PANTHER_BIOLOGICAL_PROCESS‐JAK‐

STAT_cascade,PANTHER_MOLECULAR_FUNCTION‐Interleukin 

MAGENTA‐FDR rs2244012 5 a g 0.79 0.011 0.001 1.07E‐16 ‐ ‐ 

IL13,IL4@Ingenuity‐Fc.Epsilon.RI.Signaling,KEGG‐
KEGG_ASTHMA,PANTHER_BIOLOGICAL_PROCESS‐JAK‐

STAT_cascade,PANTHER_MOLECULAR_FUNCTION‐Interleukin 

MAGENTA‐FDR rs1408268 6 a t 0.24 0.007 0.001 6.40E‐08 ‐ ‐ 

HIST1H2AA@KEGG‐
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS,PANTHER_MOLECULAR_F

UNCTION‐Histone 

MAGENTA‐FDR rs1572982 6 a g 0.46 0.005 0.001 6.16E‐06 ‐ ‐ 
HIST1H1A,HIST1H1C,HIST1H1E,HIST1H2AB,HIST1H2AC,HIST1H2BB,HIS
T1H2BC,HIST1H2BD,HIST1H2BE,HIST1H2BF,HIST1H3B,HIST1H4B,HIST
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1H4C@KEGG‐
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS,PANTHER_MOLECULAR_F

UNCTION‐Histone 

MAGENTA‐FDR rs1321196 6 t c 0.63 0.005 0.001 3.42E‐05 ‐ ‐ PLG@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs1880241 7 a g 0.51 0.006 0.001 1.08E‐07 ‐ ‐ 
IL6@Ingenuity‐Acute.Phase.Response.Signaling,Ingenuity‐IL‐

10.Signaling,PANTHER_BIOLOGICAL_PROCESS‐JAK‐STAT_cascade 

MAGENTA‐FDR rs6981930 8 t c 0.45 0.005 0.001 6.09E‐06 ‐ ‐ 
TRHR@Panther‐Thyrotropin‐

releasing_hormone_receptor_signaling_pathway 

MAGENTA‐FDR rs10857567 10 t c 0.99 ‐0.033 0.009 1.97E‐04 ‐ ‐ 
MAPK8@Ingenuity‐IL‐10.Signaling,KEGG‐

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

MAGENTA‐FDR rs4939312 11 t c 0.42 ‐0.006 0.001 2.48E‐07 ‐ ‐ MS4A2@Ingenuity‐Fc.Epsilon.RI.Signaling 

MAGENTA‐FDR rs3372 11 a g 0.36 0.005 0.001 1.76E‐05 ‐ ‐ RELA@KEGG‐KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 

MAGENTA‐FDR rs12801144 11 a g 0.89 ‐0.009 0.002 5.93E‐05 ‐ ‐ IL10RA@Ingenuity‐IL‐10.Signaling 

MAGENTA‐FDR rs11066301 12 a g 0.56 0.005 0.001 5.80E‐07 ‐ ‐ 

PTPN11@Ingenuity‐Acute.Phase.Response.Signaling,Ingenuity‐
Fc.Epsilon.RI.Signaling,Ingenuity‐GM‐CSF.Signaling,KEGG‐

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY,PANTHER_BIOLOGICA
L_PROCESS‐JAK‐STAT_cascade 

MAGENTA‐FDR rs1475938 14 a g 0.34 ‐0.005 0.001 5.91E‐06 ‐ ‐ SERPINA3@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs12438453 15 a g 0.86 ‐0.007 0.002 3.32E‐06 ‐ ‐ 
SNAP23@Panther‐Thyrotropin‐

releasing_hormone_receptor_signaling_pathway 

MAGENTA‐FDR rs11864453 16 t c 0.40 0.006 0.001 9.98E‐08 ‐ ‐ HPR@Ingenuity‐Acute.Phase.Response.Signaling 

MAGENTA‐FDR rs7503353 17 t g 0.53 ‐0.005 0.001 1.24E‐06 ‐ ‐ 
VAMP2@Panther‐Thyrotropin‐

releasing_hormone_receptor_signaling_pathway 

MAGENTA‐FDR rs1053023 17 t c 0.81 0.006 0.001 1.73E‐05 ‐ ‐ 

STAT3,STAT5A,STAT5B@Ingenuity‐
Acute.Phase.Response.Signaling,Ingenuity‐GM‐
CSF.Signaling,Ingenuity‐IL‐10.Signaling,KEGG‐

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY,PANTHER_BIOLOGICA
L_PROCESS‐JAK‐STAT_cascade 

MAGENTA‐FDR rs3745474 19 t c 0.19 0.007 0.002 1.58E‐06 ‐ ‐ CPT1C@KEGG‐KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 
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Supplementary Table S10: Predicted function of SNPs in the 250 kb window surrounding the fibrinogen genes according to Snp137 database (only 
SNPs included in the meta-analysis that had association p-values with fibrinogen plasma levels < 10-6 are included in this table). In addition, significant 
associations between SNPs located in the  same region and Fibrinogen transcripts are also included, to show functional effect on transcript level. Both 
missense mutations (rs6050 and rs4220) were predicted to be bening according to PolyPhen scores. Rs7659024 has been associated with venous 
thromboembolism107. 
 
 

SNP chrom position Function Tissue eSNP p-value Transcript 
rs2404478 4 155408038 unknown Liver (ASAP) 1,90E‐03 FGB 
rs871540 4 155409030 unknown Liver (ASAP) 1,90E‐03 FGB 

rs10019863 4 155427505 unknown Liver (ASAP) 3,39E‐03 FGG 
rs4508864 4 155481289 unknown Liver (Schadt) 1,20E‐08 FGB 

rs6050 4 155507590 missense 
   rs7659024 4 155520930 unknown Liver(Greenawalt) 2,17E‐16 FGG 

rs10517596 4 155627814 unknown Liver(UChicago) 8,08E‐03 FGA 
rs17031728 4 155412581 5PRIME_UTR 

   rs2227401 4 155486381 3PRIME_UTR 
   rs4220 4 155491759 missense Liver(Greenawalt) 1,38E‐20 FGB 
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Supplementary Table S11: Results of the associations between the lead-SNPs and different stroke phenotypes. These results are based on 790 
cardioembolic stroke cases, 844 large vessel disease ischaemic stroke cases and 580 small vessel disease ischaemic stroke cases. 
 

            CE     LAA     SVD     
SNP Chrom Position Allele1 Allele2 Freq1 OR SE P OR SE P OR SE P 

rs4817986 21 39387382 t g 0.27 1.11 0.06 0.10 1.06 0.06 0.33 0.92 0.07 0.26 
rs434943 14 68383812 a g 0.33 1.05 0.06 0.40 0.97 0.06 0.55 1.07 0.07 0.33 

rs1154988 3 137407881 a t 0.78 0.89 0.07 0.07 0.94 0.06 0.31 0.97 0.07 0.72 
rs7896783 10 64832159 a g 0.48 0.98 0.06 0.76 1.08 0.05 0.17 0.88 0.06 0.04 
rs7464572 8 145093155 c g 0.60 1.03 0.06 0.56 0.93 0.05 0.21 1.07 0.06 0.26 
rs2286503 7 22823131 t c 0.36 0.93 0.06 0.20 0.93 0.06 0.20 1.00 0.06 0.96 

rs16844401 4 3419450 a g 0.07 0.94 0.12 0.62 0.98 0.11 0.82 0.87 0.13 0.28 
rs7968440 12 49421008 a g 0.66 1.14 0.06 0.03 0.91 0.06 0.11 1.03 0.07 0.66 
rs1938492 1 65890417 a c 0.62 0.96 0.06 0.53 1.05 0.06 0.37 0.94 0.06 0.30 

rs715 2 211251300 t c 0.66 1.06 0.06 0.36 1.00 0.06 0.95 1.01 0.07 0.93 
rs6010044 22 49448804 a c 0.75 0.91 0.07 0.14 1.03 0.07 0.70 0.98 0.08 0.80 

rs11242111 5 131783957 a g 0.05 1.19 0.13 0.17 1.20 0.12 0.15 0.70 0.18 0.04 
rs12915708 15 48835894 c g 0.30 1.13 0.06 0.04 0.97 0.06 0.60 0.98 0.07 0.80 
rs12712127 2 102093093 a g 0.41 1.00 0.06 0.97 1.07 0.05 0.21 1.03 0.06 0.66 
rs6734238 2 113557501 a g 0.60 1.07 0.06 0.24 1.00 0.05 0.98 1.00 0.06 0.99 

rs10512597 17 70211428 t c 0.18 0.90 0.07 0.17 0.97 0.07 0.68 0.98 0.08 0.79 
rs1800789 4 155702193 a g 0.21 1.07 0.07 0.34 1.04 0.07 0.56 0.97 0.08 0.74 
rs1019670 11 59697175 a t 0.35 1.02 0.06 0.70 0.92 0.06 0.18 0.95 0.07 0.44 
rs2106854 5 131797073 t c 0.20 0.98 0.07 0.73 0.98 0.07 0.80 0.92 0.08 0.30 

rs10157379 1 245672222 t c 0.63 1.00 0.06 0.95 1.06 0.06 0.29 1.03 0.06 0.66 
rs7204230 16 51749832 t c 0.70 1.05 0.06 0.39 1.09 0.06 0.12 1.00 0.07 0.95 
rs4129267 1 152692888 t c 0.40 0.98 0.06 0.72 1.04 0.05 0.44 0.95 0.06 0.42 

rs10226084 7 17964137 t c 0.52 1.09 0.06 0.10 0.90 0.05 0.06 1.06 0.06 0.36 
rs1476698 2 241945122 a g 0.65 1.02 0.06 0.73 1.08 0.06 0.16 0.98 0.06 0.71 

Abbreviations: Chrom= chromosome; Freq1= frequency of allele1; OR= Odds ratio; SE= Standard error; CE= cardioembolic stroke; LAA= Large vessel disease ischaemic stroke; 
SVD= small vessel disease ischaemic stroke. 
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Supplementary Figure S1: analysis conditional on the 23 lead SNPs ( European samples). The main signal was located in the IRF1 locus about 
25 kb upstream of SLC22A5, indicating that the IRF1 locus harbors 2 independent signals located 13 kb apart (r2 =0.010 according to 1000 
Genomes Map Pilot 1) represented by rs11242111 and rs2106854. A significant signal was also found in FGA gene (rs2070016, P=3.9x10-8) 
which showed evidence of correlation with the lead SNP rs1800789 in FGB (r2 =0.364 according to 1000 Genomes Map Pilot 1); 

 

 

 

 

Supplementary Figure S2: Regional Plots for the 23 loci found in the discovery European meta-analysis (pdf attached). 

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs4129267 − European

0

5

10

15

20

25

30

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs4129267

●
● ● ● ● ●

●
●

● ●

● ● ● ●

●

● ● ●● ●
●

●

0.2

0.4

0.6

0.8

r2

IL6R

152.68 152.69 152.7 152.71
Position on chr1 (Mb)

Illu1M

rs4129267 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs11265618

●

●

●

● ● ●

● ●●

● ● ●
● ●

●

●
●● ●

●

●

● ●

●

0.2

0.4

0.6

0.8

r2

IL6R

152.68 152.69 152.7 152.71
Position on chr1 (Mb)

Illu1M

rs10157379 − European

0

5

10

15

20

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs10157379

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●●

●

●

●

●●●

●
●●

●

●

●●●●●●●
●
●

●

●
●●

●
●

●

●●
●
●

●

●

●

●

●●●●●

●

●●●●●

●

●●●

●

●

●

● ● ●

●
●

● ●

●

●

0.2

0.4

0.6

0.8

r2

NLRP3 OR2B11

245.66 245.67 245.68 245.69
Position on chr1 (Mb)

Illu1M

rs10157379 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs6673459

●

●
●

●
●

●

●
● ● ●

●

● ●●
●

●●

●

●● ● ●

●
●

●
●●

●
●
●
●● ●●●●●●

●●
●
●●●●●●

●●●●●

●

●
●
●●

●●●
●

●

●●

●

●
●●●
●●●●●

●
●
●●●

● ●

●
●●

●

●

0.2

0.4

0.6

0.8

r2

NLRP3 OR2B11

245.66 245.67 245.68 245.69
Position on chr1 (Mb)

Illu1M

rs1938492 − European

0

5

10

15

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1938492

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●●
●

●●

●
● ● ●●●

0.2

0.4

0.6

0.8

r2

LEPR

65.88 65.89 65.9 65.91
Position on chr1 (Mb)

Illu1M

rs1938492 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1805095

●
●
●

● ●●

●
●
●

●
●●● ●●

●
● ● ● ●

●● ●
●

●

LEPR

65.88 65.89 65.9 65.91
Position on chr1 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs12712127 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs12712127

●

● ●
●

●

●

●

●●● ●
●
●

●

●●●●
●

●

●●●●●
● ●

● ● ●

●

●

●

●

●●
● ●●

●

● ● ● ● ●

● ● ●

●

●

● ●

● ●
●
● ● ● ● ●●

●

●

● ●

●
●

0.2

0.4

0.6

0.8

r2

102.08 102.09 102.1 102.11
Position on chr2 (Mb)

Illu1M

rs12712127 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs17026606

●●
●
●●

●
●●
●

●●

●
●●●●

●

●●

●●

●

●●●

●

●

●

●
●
●

● ● ●●● ● ●
●

●

●
●

●
●

●

●

●
●

●
●●
●

●

●
●

●●
●
●
●●●

●●●●●●●

● ●
●

●
●

●

●
●
●

●

102.08 102.09 102.1 102.11
Position on chr2 (Mb)

Illu1M

rs6734238 − European

0

5

10

15

20

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs6734238

● ●
●
●

●

●

●
●

●
●

●
●●

●

●●

●

●

●
●
●

●●

●

●

●

●

●

● ●

●●

●

●

●

●
●●

●●

●

●

● ●

●

●

●●●●

●

●●

●

●
●

●

●

● ●

●

● ●●

●

●
●

●

●

●

●

● ●●●

● ● ● ●

●

●
● ●●●● ● ●

●

●
●●● ●● ● ● ●● ●●● ● ●●●

●

●

●

● ●●

●

0.2

0.4

0.6

0.8

r2

IL1F5 IL1F10

113.54 113.55 113.56 113.57
Position on chr2 (Mb)

Illu1M

rs6734238 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs4145013

●
●
●
●

●

●
●
●
●●
●

●●●
●●
●●

●

●
●
●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

● ●

●●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

● ●

● ●

●

●

●

●
●

●
● ●

●

●

●

●
●
● ● ● ●

●

●

●
●

●

●
●
●
●
●

●

●

●

0.2

0.4

0.6

0.8

r2

IL1F5 IL1F10

113.54 113.55 113.56 113.57
Position on chr2 (Mb)

Illu1M

rs715 − European

0

2

4

6

8

10

12

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs715

●●

●
●

●

●

●

●

●● ●
●●

● ● ●

●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●●

●

● ●

●
●●●

●

●

●

0.2

0.4

0.6

0.8

r2

CPS1

211.24 211.25 211.26 211.27
Position on chr2 (Mb)

Illu1M

rs715 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs13427306

●
● ●

●
● ● ●

● ● ●
●● ●●●

●
●
● ●

●
●

●
● ●●● ●

● ● ●●
● ●●

●● ●●●●●
●●●●●

●
●

●

●

0.2

0.4

0.6

0.8

r2

CPS1

211.24 211.25 211.26 211.27
Position on chr2 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs1476698 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1476698

● ●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

0.2

0.4

0.6

0.8

r2

SEPT2 FARP2

241.93 241.94 241.95 241.96
Position on chr2 (Mb)

Illu1M

rs1476698 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs12619647

●
●

● ●
●

●
● ●

●

● ●
●

●
●

●●
● ● ●

●

●

0.2

0.4

0.6

0.8

r2

SEPT2 FARP2

241.93 241.94 241.95 241.96
Position on chr2 (Mb)

Illu1M

rs4817986 − European

0

2

4

6

8

10

12

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs4817986

●●

●
● ●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

● ●

●

●

●

●

●●
●
●●

●

●

●

●

●
●

● ● ●

● ●●●

0.2

0.4

0.6

0.8

r2

39.37 39.38 39.39 39.4
Position on chr21 (Mb)

Illu1M

rs4817986 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs404074

●

●

●

● ●
●

●
●

● ●
●

●
●●

●●
●

●●
●
● ● ●●● ●●

●

● ●

●
●
●

●

●

●
●

●

●

●
●
●

● ●● ●●● ●●

●

0.2

0.4

0.6

0.8

r2

39.37 39.38 39.39 39.4
Position on chr21 (Mb)

Illu1M

rs6010044 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs6010044

●
●

● ●
●

●

●
● ● ●

●

●

●

● 0.2

0.4

0.6

0.8

r2

SHANK3

49.43 49.44 49.45 49.46
Position on chr22 (Mb)

Illu1M

rs6010044 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs8139895

● ● ● ●

●

●
● ●

●
●

●
●

●

●

●

SHANK3

49.43 49.44 49.45 49.46
Position on chr22 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs1019670 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1019670

● ● ● ●● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

0.2

0.4

0.6

0.8

r2

MS4A6A

59.68 59.69 59.7 59.71
Position on chr11 (Mb)

Illu1M

rs1019670 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs18345

● ●●
● ●

●●

●
●

●
●
●

●

●
●

●

● ● ●
●

●
●

●

●

●

●
●

●

●

●

●

0.2

0.4

0.6

0.8

r2

MS4A6A

59.68 59.69 59.7 59.71
Position on chr11 (Mb)

Illu1M

rs7968440 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs7968440

●●

●

●

●

●●
●

● ●●

●
●

●

●

●

● ●
0.2

0.4

0.6

0.8

r2

DIP2B

49.41 49.42 49.43 49.44
Position on chr12 (Mb)

Illu1M

rs7968440 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs3825401

●●
●

●● ●
●
●●

●●
●
●

●

●

●●

●●●
●

●
●

●
●
● ●

●

0.2

0.4

0.6

0.8

r2

DIP2B

49.41 49.42 49.43 49.44
Position on chr12 (Mb)

Illu1M

rs434943 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs434943

●

●

●

●

●

●

●

●

●

●
●
●

●
● ●●

●

●●●
●

●

●

●

● ●
●●
●● ●●●●●

●

●

●●
●

●

●●

● ●
●

0.2

0.4

0.6

0.8

r2

68.37 68.38 68.39 68.4
Position on chr14 (Mb)

Illu1M

rs434943 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs12586937

●

●

● ● ●
● ●●

● ● ●
●

●●

●

●
● ●

●

●
●

●

●

●

●
●●
●

●●●●

●

●●●●●●●
●●

●
●
●

●
●●

● ●

●

0.2

0.4

0.6

0.8

r2

68.37 68.38 68.39 68.4
Position on chr14 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs12915708 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs12915708

●●
●●

●

●
●

●

●

● ●

●

●

● ●

●●

●●

● ●

●● ●

●

●

0.2

0.4

0.6

0.8

r2

SPPL2A

48.82 48.83 48.84 48.85
Position on chr15 (Mb)

Illu1M

rs12915708 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

1070809

● ● ●
●● ● ●

●

●
●

●

● ●
●

●●● ●
●

●

●

●●
●
●

●
●

0.2

0.4

0.6

0.8

r2

SPPL2A

48.82 48.83 48.84 48.85
Position on chr15 (Mb)

Illu1M

rs7204230 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs7204230

● ● ● ●

●

●

●

●●

● ● ● ● ●
●

●

●

● ● ● ●
●●●● ● ●

●

0.2

0.4

0.6

0.8

r2

CHD9

51.73 51.74 51.75 51.76
Position on chr16 (Mb)

Illu1M

rs7204230 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs16952044

● ●

●

● ●

●
● ●
● ●

●

●

●
● ● ● ● ● ●

● ● ●

●●●●● ● ●

●

0.2

0.4

0.6

0.8

r2

CHD9

51.73 51.74 51.75 51.76
Position on chr16 (Mb)

Illu1M

rs10512597 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs10512597

● ●

● ●

●

●
●
●

●

●●

●
●

●

●

●

●

0.2

0.4

0.6

0.8

r2

RAB37

CD300LF

70.2 70.21 70.22 70.23
Position on chr17 (Mb)

Illu1M

rs10512597 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs5018105

●
● ●

●● ●

●
●

●
●

●

●

● ●

●
● ●●

● ●

0.2

0.4

0.6

0.8

r2

RAB37

CD300LF

70.2 70.21 70.22 70.23
Position on chr17 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs1154988 − European

0

5

10

15

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1154988

● ●

●

●

●
●

●

●

● ●●

0.2

0.4

0.6

0.8

r2

MSL2

137.39 137.4 137.41 137.42
Position on chr3 (Mb)

Illu1M

rs1154988 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs9873767

●
●

●●
●●

●

● ●
● ●

● ●

●

0.2

0.4

0.6

0.8

r2

MSL2

137.39 137.4 137.41 137.42
Position on chr3 (Mb)

Illu1M

rs1800789 − European

0

20

40

60

80

100

120

140

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1800789

●
● ●●●

● ● ●

●

●● ●
●

●
●

●

● ●
●●

●

●

●

●

●●

●

●

●

0.2

0.4

0.6

0.8

r2

PLRG1 FGB

155.69 155.7 155.71 155.72
Position on chr4 (Mb)

Illu1M

rs1800789 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs4463047

●

●

●

● ●
● ●

●

●

● ●

●

● ●
●
●

●

●

●

●

●

●
●

●

●

●

0.2

0.4

0.6

0.8

r2

PLRG1 FGB

155.69 155.7 155.71 155.72
Position on chr4 (Mb)

Illu1M

rs16844401 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs16844401

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

● ●

● ●

●
●

●

●

●

●

●
0.2

0.4

0.6

0.8

r2

RGS12 HGFAC DOK7

3.4 3.41 3.42 3.43
Position on chr4 (Mb)

Illu1M

rs16844401 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs2498323

●
●

●

●● ● ●
●● ●● ●

● ●●●

● ●
● ●

●
●
●●
●
●
●

●

● ●

●

●

●

●

● ● ●
●

●

●

0.2

0.4

0.6

0.8

r2

RGS12 HGFAC DOK7

3.4 3.41 3.42 3.43
Position on chr4 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs11242111 − European

0

10

20

30

40

50

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs2106854

●
●
●
●
●

●

●

●

● ●

●

●

●

●●●

●● ●●●

●
●

●

●
●

●

●

●

●

●

●

●

●●●
● ● ● ●

0.2

0.4

0.6

0.8

r2

C5orf56

131.77 131.78 131.79 131.8
Position on chr5 (Mb)

Illu1M

rs11242111 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1016988

● ●

●

● ●●

●

●
●●

●

●

●

●

●●

●

●
●

●

● ●● ●●●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●

0.2

0.4

0.6

0.8

r2

C5orf56

131.77 131.78 131.79 131.8
Position on chr5 (Mb)

Illu1M

rs2106854 − European

0

10

20

30

40

50

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs2106854

● ●

●

●

●

●●●

●● ●●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●● ●●●

●

●

●

● ●●

●

● ● ● ●●●
●
● ●

● ● ● ● ●●●

0.2

0.4

0.6

0.8

r2

C5orf56

131.78 131.79 131.8 131.81
Position on chr5 (Mb)

Illu1M

rs2106854 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1012793

● ●

●

● ●
●

●

●

●

●●

●

●
●

●

● ●● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●● ●●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

0.2

0.4

0.6

0.8

r2

C5orf56

131.78 131.79 131.8 131.81
Position on chr5 (Mb)

Illu1M

rs10226084 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs10226084

●●

●

●

●

●

●

●

●

●●
●
● ● ●●

●
●

●●●
● ●

● ●

● ●

●

●● ●

●
● ●●●● ●● ●●

●

0.2

0.4

0.6

0.8

r2

SNX13

17.95 17.96 17.97 17.98
Position on chr7 (Mb)

Illu1M

rs10226084 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs10499510

●

●

●

●
●

●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●●
●● ●

●

●

●

● ●●●●●
●
●
●●
●
●●

● ●
●●● ●

●

●

SNX13

17.95 17.96 17.97 17.98
Position on chr7 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


rs2286503 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs2286503

●●

●
●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●●●

● ●●●

●

0.2

0.4

0.6

0.8

r2

TOMM7

22.81 22.82 22.83 22.84
Position on chr7 (Mb)

Illu1M

rs2286503 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs1029738

●●
●

● ●

●

●
● ● ● ●

●

●

● ● ●
●

● ●● ●●●● ● ●●●● ●
●●

●

0.2

0.4

0.6

0.8

r2

TOMM7

22.81 22.82 22.83 22.84
Position on chr7 (Mb)

Illu1M

rs7464572 − European

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs7464572

●

●

●

● ● ● ● ● ● ● ●

●

0.2

0.4

0.6

0.8

r2

PLEC

MIR661

145.08 145.09 145.1 145.11
Position on chr8 (Mb)

Illu1M

rs7464572 − African

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

rs11777239

● ●
● ●

●

●
●

●● ● ●

●

● ● ● ●

●

0.2

0.4

0.6

0.8

r2

PLEC

MIR661

145.08 145.09 145.1 145.11
Position on chr8 (Mb)

Illu1M

 at Vrije on September 20, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


Supplementary Figure S3: Manhattan plot showing the results for the meta-analysis in (A) African American and (B)  Hispanic Samples. 
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Supplementary Figure S4: QQ-plots for the meta-analysis in (A) European, (B) African American, and (C) Hispanic Samples.  
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