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Abstract

It has been hypothesized that the ratio of heart rate variability in the low- (LF) and high- (HF) frequency bands may

capture variation in cardiac sympathetic control. Here we tested the temporal stability of the LF/HF ratio in 24-h

ambulatory recordings and compared this ratio to the preejection period (PEP), an established measure of cardiac

sympathetic control. Good temporal stability was found across a period of 3.3 years (.46oro.78), but the LF/HF

ratio did not show the expected negative correlation to PEP, either between or within subjects. We conclude that the

evidence to support the LF/HF ratio as a potential marker of cardiac sympathetic control in epidemiology-scaled

research is currently insufficient.

Descriptors: LF/HF ratio, PEP, Sympathetic, Ambulatory monitoring

Because activity of the sympathetic nervous system (SNS) may

be paramount to the detrimental effects of stress on cardiovas-

cular health (Kamarck & Lovallo, 2003; Palatini & Jullius, 2004)

cardiovascular psychophysiologists need reliable and valid meth-

ods to measure SNS activity in humans. Ideally, such measures

should be noninvasive, unobtrusive, and cheap to allow ambu-

latory assessment in epidemiology-scaled samples. In response to

this need, Pagani and coworkers have suggested that spectral

power of the heart period time series in the lower frequencies

centered around 0.1 Hz (LF) divided by the power in the higher

frequencies centered around the respiratory frequency (HF) may

reliably capture changes in the ratio of sympathetic to vagus

nerve traffic to the heart (Malliani, Pagani, Lombardi, & Cerutti,

1991; Pagani et al., 1986, 1991, 1997). Because recording of the

heart period time series requires nothing more complicated than

a three-lead ECG recording, spectral-power-derived LF/HF

ratios can be obtained in ambulatory paradigms in huge numbers

of subjects at very modest costs.

Although its use has become widespread, the LF/HF ratio is

not without controversy (Eckberg, 1997). The strongest concern

about the validity of the LF/HF ratio comes from studies that

directly compare it against invasive measures of sympathetic

activity, like direct recording of action potentials from superficial

sympathetic nerves or assessment of cardiac norepinephrine

spillover by radioactive tracers.Most of these studies did not find

a correlation between the LF/HF ratio and these sympathetic

measures across a range of clinical contexts, as reviewed by

Grassi and Esler (1999).

In defence of the LF/HF power it must be noted that these

studies were often performed in nonecological physiological

contexts; for example, within-subject variance in sympathetic

activity was usually induced by infusion of nitroprusside or

phenylephrine (Pagani et al., 1997; Saul, Rea, Eckberg, Berger,

& Cohen, 1990). Secondly, they were mostly performed on small

sample sizes that required the correlations to be in the .60–.80

range to be considered ‘‘significant.’’ It is unlikely, however, that

LF/HF reflects cardiac sympathetic control that closely.

Whereas HF power relatively purely reflects cardiac vagal

control over the heart (Task Force of the European Society of

Cardiology and the North American Society of Pacing, 1996),

it is fully acknowledged that LF power is influenced by both

sympathetic and vagal activity. Hence, the LF/HF ratio will not

yield a perfect indicator of cardiac sympathetic control. Even so,

it may still retain sufficient explanatory and predictive power to

be useful in epidemiology-scaled research.

In this study, we recorded ambulatory LF and HF power in

64 subjects and reassessed these powers after an average of 3.3

years to establish temporal stability of the ambulatory LF/HF

ratio. We next compared the LF/HF ratio, both within and

between subjects, to an alternative measure of cardiac sympa-

thetic control, the preejection period (PEP), which can be

obtained by ambulatory recording of the thoracic impedance

cardiogram (Kupper, Willemsen, Boomsma, & de Geus,

2006; Riese et al., 2003). Changes in PEP reflect changes in
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b-adrenergic inotropic drive to the left ventricle, provided

subjects are compared in the same posture (Houtveen, Groot,

& de Geus, 2005; Sherwood et al., 1990). If the LF/HF ratio is

a valid measure of cardiac sympathetic control, it should show

a negative correlation to the PEP, such that longer PEPs are

associated with lower LF/HF ratios.

Methods

Participants

Participants were all registered with the Netherlands Twin

Register (NTR). They came from families that participated in

a genetic linkage study searching for genes influencing person-

ality and cardiovascular disease risk, which is described elsewhere

(Boomsma et al., 2000). Out of the 1,332 twins and siblings

who participated in the linkage study, 816 were also willing to

participate in cardiovascular ambulatory monitoring (Kupper

et al., 2006). To establish temporal stability, 65 volunteers

(20 male, 45 female) were re-recruited for a second ambulatory

recording day after an average of 3 years 4 months (minimum of

2 years 1 month and maximum of 4 years 8 months). These 65

subjects with two repeated test days form the basis of the current

study. At the first test day their ages ranged from 18 to 62 years

(mean5 30.7, SD5 9.7).

Procedure

A detailed description of the ambulatory monitoring procedure

has been provided elsewhere (Goedhart, Kupper, Willemsen,

Boomsma, & deGeus, 2006; Goedhart, van der Sluis, Houtveen,

Willemsen, & de Geus, 2007; Kupper et al., 2006). Briefly,

subjects were fitted with the Vrije Universiteit Ambulatory

Monitoring System that recorded the electrocardiogram (ECG)

and the impedance cardiogram (ICG) continuously during a

24-h period (daytime and sleep) through six disposable, pregelled

Ag/AgCl electrodes. During the daytime and evening, partici-

pants were regularly prompted to give a chronological account

of posture, physical activity, physical load, location, and social

situation during the last 30-min period. Using the activity diary

entries in combination with a visual display of an in-built vertical

accelerometer signal, the entire 24-h recording was divided into

fixed periods coded for posture (e.g., lying, sitting, standing),

ongoing activity (e.g., desk work, eating/drinking, meetings,

watching TV), physical activity (no, light, medium, and heavy),

location (e.g., work, home, outside), and social situation (e.g.,

alone, with colleagues, with friends). An average of 27 coded

periods was created per subject with a mean duration of 30 min

(minimum 5 min, maximum 60 min).

PEP and LF/HF Registration

Large-scale ensemble averaging of the ICG signals was per-

formed to obtain the mean PEP per coded period as outlined in

detail by Riese et al. (2003) and Kupper et al. (2006). From the

ECG and the dZ, we obtained the heart period time series and

respiration signal (Goedhart et al., 2007; Houtveen et al., 2005).

In keeping with PEP scoring, mean LF and HF powers were

computed across the entire coded period. We used a Wavelet

approach, which has some advantages over the more com-

mon Fourier approach as discussed elsewhere (Houtveen &

Molenaar, 2001). The LF power was computed as the variance

in the 0.0625–0.125-Hz window and HF power as the variance

in the 0.125–0.5-Hz window. From these, the LF/HF ratio was

computed as well as the LF power in normalized units (LFnu),

which is the LF power divided by the sum of the LF and HF

powers. Although it has been suggested that LFnu and LF/HF

ratio can be considered equivalent carriers of information (Burr,

2007), we present full data on absolute LF, LFnu, and LF/HF

ratio for completeness.

Results

Table 1 presents the untransformed means and standard devia-

tions for PEP and the heart rate variability measures separately

during sleep, awake sitting, and mild physical activity. Because

the LF/HF ratio and the LF, HF, and LFnu power distributions

were skewed, their natural logarithms were used in all further

analyses.

Table 1 also reports the temporal stability that was assessed by

intraclass correlation, computed separately for nighttime sleep,

sitting during the day, and mild physical activity (standing/

walking). Good temporal stability for LF,HF, andLFnu powers

and the LF/HF ratio was found over an average period of 3 years

4 months during sitting and sleep. Correcting HF power for

changes in respiration rate (residualized HF powerHFres) did

not further improve stability. Physical activity, which is inher-

ently less comparable across repeated test days, produced lower

estimates.

Table 2 show the within-subject correlations of PEP and the

heart rate variability measures during sitting activities across the
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Table 1. Means (SD) of PEP and Heart Rate Variability Measures and Temporal Stability across the Two Test Days (N5 64)

Condition PEP (ms) LF (ms2) HF (ms2) LF/HF LFnu

Sleep
Test day 1 105.39 (11.62) 1023.75 (804.09) 1080.64 (1039.62) 1.26 (.66) 51.41 (11.61)
Test day 2 107.53 (13.18) 975.72 (1025.26) 901.74 (1093.50) 1.43 (.79) 54.30 (11.52)
Temporal stability .71 .80 .79 .64 .72

Sitting
Test day 1 97.43 (12.42) 829.59 (556.60) 666.57 (723.62) 1.74 (.82) 59.39 (8.92)
Test day 2 97.11 (13.18) 764.68 (580.30) 592.72 (658.77) 1.76 (.75) 59.81 (8.69)
Temporal stability .80 .82 .79 .70 .70

Mild physical activity
Test day 1 98.58 (11.94) 689.29 (400.47) 578.83 (553.61) 1.69 (.78) 58.47 (10.41)
Test day 2 96.33 (13.36) 666.96 (412.77) 444.36 (346.64) 1.93 (.79) 61.58 (8.14)
Temporal stability .76 .62 .57 .53 .53

Note: Correlations significant at po.05 are in bold.



two 24-h measurements. The median within-subject correlation

between PEP and the LF/HF ratio was exactly zero. Only 3 out

of 64 subjects showed a significant correlation in the expected

(negative) direction. For absolute LF power, not a single subject

showed the expected significant negative correlation. Inspection

of each test day separately also failed to reveal significant LF/HF

to PEP correlations.

Median within-subject correlations between LF and HF

power were unanimously high (LF and HF, r5 .72). Correction

for within-subject changes in respiration barely influenced this

correlation (LF and HFres, r5 .71).

Table 3 shows the between-subject correlations separately

within each of the threemain ambulatory conditions for both test

days. Partial correlations were computed controlling for the

effect of sex and age. During sleep, none of the correlations be-

tween PEP and the heart rate variability measures were signifi-

cant. During sitting and physical activity on Day 2 a significant

correlation between PEP and the LF power was found, but the

direction was opposite to the expectation.

Between-subject correlation for LF andHF all exceed .79 in all

three conditions on both test days, indicating high overlap between

the two measures of heart rate variability. Again, partialling out

respiration rate barely affected the LF–HF correlation.

Discussion

The notion has been advanced that a single ratio, spectral power

of the heart period time series in the lower frequencies centered

around 0.1 Hz (LF) divided by the power in the higher frequen-

cies centred around the respiratory frequency (HF), may capture

differences in cardiac sympathetic control, even if imperfectly

(Malliani et al., 1991; Pagani et al., 1986, 1991, 1997). Here

we used prolonged ambulatory recordings on two test days to

establish temporal stability of the LF/HF ratio and to test

whether it was correlated within and between subjects with the

PEP, an established measure of cardiac sympathetic control.

Although good temporal stability was found across a period

of 3.3 years, the LF/HF ratio did not show the expected negative

correlation to PEP, either between or within subjects. The

most parsimonious conclusion from these results is that PEP and

LF/HF do not measure the same physiological phenomenon;

they appear to be ‘‘two sides of a different coin.’’ The important

question then becomes which of the twomeasures reflects cardiac

sympathetic control best. Studies using manipulations known to

increase cardiac sympathetic activity like mental stress and

exercise currently suggest that the PEP outperforms the LF/HF

ratio as an index of sympathetic control. Mental or emotional

stress increases the LF power in some studies (Langewitz &

Ruddel, 1989) but not in all (Hoshikawa & Yamamoto, 1997;

Tulen, Boomsma, & Veld, 1999), whereas these stressors system-

atically shorten the PEP (Berntson et al., 1994; deGeus, Kupper,

Boomsma, & Snieder, 2007; Houtveen et al., 2005; Sherwood

et al., 1990). Furthermore, cardiac sympathetic activation

induced by exercise sometimes evokes a decrease in LFnu power

rather than the expected increase (Ahmed, Kadish, Parker, &

Goldberger, 1994), whereas systematic and dose-dependent

shortening of the PEP is seen during exercise (Houtveen,

Rietveld, & de Geus, 2002; Smith et al., 1989). Finally, PEP

shows more specificity in response to autonomic blockade than

the LF/HF ratio. Acute b-adrenergic blockade does not give rise
to the expected reduction in LF power (Pagani et al., 1986) and

may even cause an increase in LF power (Jokkel, Bonyhay, &

Kollai, 1995) whereas cholinergic blockade by atropine causes a

substantial reduction or even elimination of LF fluctuations

(Akselrod et al., 1981; Jokkel et al., 1995). In contrast, acute
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Table 2. Within-Subject Correlations between PEP and HRV

Measures during the Posture Sitting

Parti-
cipant no. Age N

PEP-
LF

PEP-
HF

PEP-
HFres

PEP-
LF/HF

PEP-
LFnu

LF-
HF

LF-
HFres

1 18.0 26 .04 .03 .06 � .01 .00 .82 .80

2 18.9 40 � .07 � .51 � .53 .56 .52 .67 .60

3 18.9 26 � .20 .08 .03 � .15 � .24 .68 .68
4 20.2 23 .13 � .03 � .03 .14 .11 .42 .40
5 21.9 31 .36 .28 .25 .08 .07 .64 .60

6 23.0 30 .01 � .03 � .07 .05 .06 .09 .10
7 23.0 14 � .04 � .30 � .30 .36 .34 .66 .59
8 23.1 16 � .01 .41 .39 � .34 � .32 .57 .52
9 23.5 33 � .10 � .01 � .07 � .08 � .07 .37 .36

10 23.9 23 .61 .80 .80 � .78 � .77 .87 .87

11 24.0 27 .18 .04 � .05 .24 .26 .84 .80

12 24.6 32 .31 .30 .18 .07 .10 .63 .62

13 24.7 32 � .34 � .38 � .31 .09 .06 .83 .77

14 24.9 43 .26 .17 .30 .19 .19 .70 .59

15 25.2 17 .30 .32 .22 � .09 � .05 .83 .79

16 25.6 28 .13 .28 .32 � .33 � .33 .86 .85

17 26.6 21 .27 .10 .09 .25 .19 .87 .84

18 26.8 23 .17 � .01 .05 .30 .30 .81 .81

19 27.1 40 .06 � .30 � .43 .37 .36 .46 .43

20 27.5 36 .33 .12 .10 .22 .25 .62 .61

21 28.0 40 .29 .30 .27 .04 .08 .86 .85

22 28.5 27 .58 .47 .50 .06 .06 .55 .52

23 28.5 16 .31 .29 .25 � .08 � .04 .71 .72

24 28.6 29 .10 .18 .16 � .14 � .14 .51 .51

25 29.5 23 .61 .26 .28 .52 .67 .85 .86

26 30.0 29 � .13 .25 .27 � .39 � .39 .55 .51

27 30.7 23 .04 .52 .53 � .61 � .66 .67 .65

28 31.2 23 .11 .47 .52 � .51 � .46 .58 .55

29 32.7 25 � .12 .23 .26 � .47 � .49 .73 .74

30 32.9 25 .62 .55 .53 � .33 � .29 .92 .90

31 32.9 20 .27 .20 .22 .10 .08 .95 .94

32 35.3 21 .16 � .11 � .14 .33 .34 .73 .71

33 36.6 29 .14 .12 .12 .09 .08 .89 .87

34 40.3 21 .53 .24 .18 .23 .33 .76 .71

35 42.1 32 .08 .02 � .05 .06 .07 .70 .65

36 42.1 36 .44 .28 .27 � .02 .07 .70 .67

37 42.7 30 .17 .27 .27 � .28 � .26 .76 .73

38 44.0 26 .09 .20 .17 � .09 � .08 .31 .35
39 44.1 22 .02 � .26 � .14 .30 .28 .42 .40
40 47.3 28 .15 � .07 � .13 .29 .30 .71 .39
41 47.5 37 .44 .38 .40 � .18 � .22 .95 .94

42 48.3 26 � .06 .11 .16 � .23 � .27 .83 .82

43 48.4 23 .59 .72 .72 � .30 � .31 .95 .94

44 62.3 32 .05 .42 .37 � .44 � .45 .70 .69

45 19.5 30 .42 .43 .46 � .08 � .01 .49 .47

46 19.7 22 .15 .24 .23 � .19 � .13 .74 .73

47 20.5 30 .37 .36 .34 � .21 � .04 .34 .33
48 22.5 24 .38 .44 .44 � .18 � .19 .96 .96

49 24.7 33 .41 .45 .52 � .07 � .05 .61 .58

50 25.0 25 .08 .02 .04 .04 .10 .79 .78

51 25.1 46 .12 � .27 � .26 .46 .49 .69 .68

52 25.3 21 .62 .54 .51 � .22 � .16 .91 .89

53 25.4 30 .19 .16 .19 .09 .08 .89 .86

54 25.8 24 .01 � .06 .03 .08 .11 .87 .86

55 27.0 15 .05 � .07 � .08 .28 .32 .94 .94

56 27.8 37 .22 .05 .03 .16 .14 .43 .38
57 28.0 23 .37 .11 .13 .39 .41 .78 .77

58 28.5 19 .05 .38 .33 � .31 � .29 .35 .31
59 31.4 28 .07 .25 .20 � .32 � .24 .68 .61

60 33.0 27 .14 .41 .45 � .55 � .52 .84 .82

61 38.6 32 .02 .06 .01 � .06 � .05 .80 .78

62 45.6 28 � .03 .13 .21 � .26 � .22 .74 .73

63 47.1 25 .31 .35 .27 .06 .06 .74 .74

64 50.8 30 � .01 � .03 .09 .01 .03 .68 .65

Median 30.9 27 .15 .20 .19 .00 .05 .72 .71

Note: Bold signifies that the correlation is significant at the .01 level.



b-receptor blockade always prolongs PEP (Cacioppo et al., 1994;

Sherwood et al., 1990; Winzer et al., 1999) whereas atropine

leaves it unchanged (Cacioppo et al., 1994).

In conclusion, we find that in ambulatory data the PEP

and the LF/HF ratio are uncorrelated, either within or be-

tween subjects. The predictive power of both LF and HF power

for cardiovascular disease is beyond question (Dekker et al.,

2000; Tsuji et al., 1996), as is the usefulness of ambulatory

recording of these two aspects of heart rate variability. How-

ever, the evidence to support ambulatory LF/HF ratio as

a potential marker of cardiac sympathetic nerve control may be

insufficient.
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