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Objective: We studied whether blood metabolomic measures in people with type 2 diabetes (T2D)
are associated with insufficient glycemic control and whether this association is influenced dif-
ferentially by various diabetes drugs. We then tested whether the same metabolomic profiles were
associated with the initiation of insulin therapy.

Methods: A total of 162 metabolomic measures were analyzed using a nuclear magnetic resonance-
based method in people with T2D from four cohort studies (n = 2641) and one replication cohort (n =
395). Linear and logistic regression analyses with adjustment for potential confounders, followed by
meta-analyses, were performed to analyze associations with hemoglobin A1c levels, six glucose-
lowering drug categories, and insulin initiation during a 7-year follow-up period (n = 698).

Results: After Bonferroni correction, 26 measures were associated with insufficient glycemic
control (HbA1c .53 mmol/mol). The strongest association was with glutamine (OR, 0.66; 95% CI,
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0.61 to 0.73; P = 7.63 10219). In addition, comparedwith treatment-naive patients, 31metabolomic
measures were associated with glucose-lowering drug use (representing various metabolite
categories; P # 3.1 3 1024 for all). In drug-stratified analyses, associations with insufficient
glycemic control were only mildly affected by different glucose-lowering drugs. Five of the 26
metabolomic measures (apolipoprotein A1 and medium high-density lipoprotein subclasses) were
also associated with insulin initiation during follow-up in both discovery and replication. The
strongest association was observed for medium high-density lipoprotein cholesteryl ester (OR, 0.54;
95% CI, 0.42 to 0.71; P = 4.5 3 1026).

Conclusion: Bloodmetabolomicmeasures were associatedwith present and future glycemic control
and might thus provide relevant cues to identify those at increased risk of treatment failure. (J Clin
Endocrinol Metab 103: 4569–4579, 2018)

Type 2 diabetes (T2D) is a very heterogeneous disease,
which is also reflected in the heterogeneity in response

to glucose-lowering treatment. Previously, we showed
distinct trajectories of glucose control in people with
T2D, with most achieving good glycemic control (1).
People with T2D who are not treated optimally have an
increased risk of developing diabetes-related complica-
tions (1, 2). As such, interest has been increasing to
discover the factors associated with a poor treatment
response to facilitate personalized therapeutics.

Recent technologic advances have allowed for the si-
multaneous detection of a wide range of metabolites in
biological samples to acquire information on multiple
pathways relevant for a person’s metabolic state (3). The
rapid developments in technology to determine a blood
metabolomic profile combined with highly standardized,
reproducible, and affordable measurements could facili-
tate the introduction of metabolomics in daily clinical
practice with the aim of advancing the personalization and
effectiveness of the treatment of T2D.

Blood metabolomic measures such as branched
chain amino acids (BCAAs), a-hydroxybutyrate, 2-
aminoadipic acid, various lipids, and other metabolites
have been associated with the risk of T2D (4–6).
Changes in the blood metabolomic profile might reflect
early changes in the disease process of T2D but might
also influence diabetes progression. As such, metab-
olomics could be a useful tool in the early identification
and stratification of those at increased risk of T2D
and to acquire knowledge about the disease etiology
and progression (4). Although previous findings have
shown that metabolomic profiles provide information in
addition to the well-known clinical risk factors in the
prediction of the development of T2D (7), only a few
studies have investigated their utility in the assessment of
treatment response and disease progression. These
studies mostly investigated which metabolites respond to
the initiation of glucose-lowering drugs (8, 9); however,
they were often limited to only a single drug and small
patient cohorts.

In search of better markers of a successful treatment
response, we used the metabolomic data from four in-
dependent T2D cohorts from the Netherlands. The
metabolomicmeasures investigated belong to several classes,
including amino acids, glycolysis measures, ketone bodies
and fatty acids, and the lipid concentrations and composi-
tions of 14 lipoprotein subclasses. We assessed the cross-
sectional and glucose-lowering drug-stratified associations of
these metabolomic measures with glycemic control. Three
cohorts provided data to examine the prospective associa-
tion of metabolomic measures with diabetes progression.

Materials and Methods

T2D cohorts
Data from patients with T2D (n = 2641) from four different

cohorts from the Netherlands were used; the Hoorn Diabetes
Care System cohort study (DCS; n = 995) (10), the Maastricht
study (n = 848) (11), the Cohort on Diabetes and Atherosclerosis
Maastricht (CODAM; n = 134) (12), and the Netherlands Epi-
demiology ofObesity study (NEO; n = 664) (13). Prospective data
from follow-up visits were available from two studies (DCS and
CODAM; n = 698) and from an independent replication study,
the Rotterdam study (n = 395) (14). All studies were conducted in
accordance with the Declaration of Helsinki and approved by the
relevant local medical ethics committees. All participants have
provided written informed consent before entering the study.
Detailed cohort descriptions and study characteristics are de-
scribed in the subsequent paragraphs (Table 1; Supplemental
Tables 1–5).

DCS cohort study
The DCS provides routine diabetes care to patients living in the

West-Friesland region (10). Patients visit the DCS research center
annually, during which blood samples are taken with the patient
in the fasting state for routine biochemistry tests. The patients
also receive a full medical examination, advice about their health
and treatment, and education about their disease during their
annual visits to the DCS research center. In addition, patients
are invited to join our research and biobanking studies
(n = $5000). From the DCS biobank, we included a random
cross-sectional sample for which a baseline plasma sample
and yearly follow-up data were available (n = 750). For case-
control analyses, this sample was supplemented with sub-
jects selected for the inability to reach the glycemic target
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[hemoglobin A1c (HbA1c) .53 mmol/mol] and/or experi-
encing diabetic complications (n = 245). For the prospective
study, we used data from 596 patients from the random
sample who were not taking insulin at the time of blood
sampling for metabolomic data and for whom follow-up data
were available. The follow-up time was 7 years (interquartile
range, 6 to 7). HbA1c determination was performed using
the turbidimetric inhibition immunoassay for hemolyzed
whole EDTA blood samples (Cobas c501; Roche Diagnostics,
Mannheim, Germany).

CODAM study
The CODAM study was started in 1999. The baseline mea-

surements of the CODAM (n = 574) were obtained from 1999 to
2002 (12). The CODAM is a prospective, observational cohort.
The general aim of the CODAM is to investigate the effects of
glucose metabolism, lipids, lifestyle, and genetics on the devel-
opment of T2D and its cardiovascular complications, with a focus
on etiological relationships. For the present study, we included all
subjects with T2D for whom a baseline plasma sample andHbA1c
level were available (n = 134). For the prospective studies, we used
data from 102 patients who were not using insulin at the time of
blood sampling for metabolomic data and for whom follow-up
data were available. The average follow-up time was 7 years
(interquartile range, 6.9 to 7.1) (15). HbA1c was measured using
ion-exchange HPLC.

The Maastricht study
The Maastricht study is an extensive phenotyping study that

focuses on the etiology of T2D, its classic complications (e.g., car-
diovascular disease, nephropathy, neuropathy, and retinopathy), and
its emerging comorbidities. The study represents a population-based
cohort of 10,000 individuals that is enriched with participants with
T2D participants. A detailed description of the study design has been
reported by Schram et al. (11). For the present study, we included all

subjects with T2D for whom a baseline plasma sample was available
at the time of metabolite quantification (n = 848). One subject for
whom detailed medication data were not available was excluded
from the analyses involving medication data. HbA1c was measured
using ion-exchange HPLC.

The NEO study
The NEO study was designed for extensive phenotyping to

investigate pathways that lead to obesity-related diseases (13).
The NEO study is a population-based, prospective cohort study
that includes 6671 individuals aged 45 to 65 years, with an
oversampling of individuals who are overweight or have obe-
sity. For those with T2D at baseline, plasma samples were
measured in the present study (n = 664). HbA1c was measured
using HPLC boronate affinity chromatography.

The Rotterdam study
The Rotterdam study is a prospective population-based cohort

study in Ommoord, a district of Rotterdam, Netherlands. The
design of the Rotterdam study has been described in more detail
previously (14). In brief, in 1989, all residents within the well-
defined study area who were aged $55 years were invited to
participate in the study. Of these residents, 78% (7983 of 10,275)
agreed. The first examination was performed from 1990 to 1993.
Subsequently, the follow-up examinations were conducted every
3 to 5 years. The present metabolomic study used plasma samples
and baseline data collected during the third visit (1997 to 1999).
The follow-up data were from the fourth visit (2002 to 2004). For
the present study, we included 395 subjects with T2D who were
not using insulin at the third study visit.

Glucose-lowering drug use
We defined six different treatment groups: (1) glucose-lowering

drug treatment naive; (2) metformin monotherapy; (3) sulfonylurea
monotherapy; (4)metformin and sulfonylurea combined; (5) insulin

Table 1. Baseline Clinical Characteristics of the Study Samples

Characteristic

DCS

Maastricht
(n = 848)

CODAM
(n = 134)

NEO
(n = 664)

Random Sample
(n = 750)

Selected Sample
(n = 245)

Age, y 62.7 6 10.2 63.5 6 10.9 62.8 6 7.6 61.1 6 6.3 57.8 6 5.4
Male sex 527 (57) 145 (59) 580 (68) 90 (67) 370 (58)
BMI, kg/m2 30.7 6 5.5 30.3 6 5.4 29.9 6 4.9 30.0 6 4.3 33.0 6 5.3
HbA1c, mmol/mol 46 (43–53) 53 (47–62) 50 (45–56) 50 (43–57) 48 (42–54)
HbA1c, % 6.4 (6.1–7.0) 7.0 (6.4–7.8) 6.7 (6.3–7.3) 6.7 (6.1–7.4) 6.2 (5.8–6.9)
HbA1c .53 mmol/mol 158 (21) 120 (49) 275 (32) 47 (35) 153 (23)
Diabetes duration, y 6.3 6 4.7 7.6 6 4.8 7.3 6 6.8 3.2 6 5.2 4.0 6 5.1
Diabetes duration ,1 y, n 36 (5) 8 (3) 134 (17) 77 (58) 277 (42)
Age at onset, y 56.9 6 10.1 56.4 6 10.6 55.6 6 9.1 57.9 6 7.1 52.0 6 7.0
Statin use 524 (70) 162 (66) 627 (74) 31 (23) 344 (52)
Other lipid-lowering drug use 22 (3) 10 (4) 54 (6) 3 (2) 4 (1)
No medication 91 (12) 9 (4) 189 (22) 70 (52) 322 (48)
Metformin 275 (37) 40 (16) 264 (31) 7 (5) 153 (23)
Metformin + sulfonylurea 142 (19) 56 (23) 136 (16) 16 (12) 76 (11)
Sulfonylurea 50 (7) 19 (8) 20 (2) 28 (21) 17 (3)
Insulin 154 (21) 109 (45) 175 (21) 11 (8) 77 (12)
Other 38 (5) 12 (5) 63 (7) 2 (2) 19 (3)

Date are presented as mean 6 SD, median (interquartile range), or n (%).

The DCS sample consisted of a random sample of 750 and a total sample in which 245 subjects with diabetic complications and/or unable to reach the
clinical target of HbA1c where added to the random sample to increase power in case-control analyses.
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therapy, with or without oral glucose-lowering drugs; and (6) use of
oral glucose-lowering medication other than metformin and/or
sulfonylurea. The other category consisted mainly of thiazolidine-
diones, with or without metformin and/or sulfonylurea. The clinical
characteristics, medication use, and number of subjects per stratum
per cohort are provided in Supplemental Tables 1–3.

Metabolomic measurements
Fasted EDTA plasma samples were analyzed in a single

experimental setup on a high-throughput nuclear magnetic
resonance platform as described previously (available at: www.
nightingalehealth.com) (16, 17). In total, 162 metabolomic
measures and/or derived composite scores (n = 12) were assessed,
which represent a broadmolecular signature of systemicmetabolism.
This includedmetabolites such amino acids, glycolytic intermediates,
fatty acids and ketone bodies, and 141 other metabolomic measures
such as mono-unsaturated and polyunsaturated fatty acids, glycer-
ides, proteins, lipid concentrations, and compositions of 14 lipo-
protein subclasses (Supplemental Table 6). A heatmap showing the
correlation structure of themetabolomicmeasures in theDCS cohort
is provided in Supplemental Fig. 1. These metabolomic measures
were all in absolute molar concentration units.

Statistical analysis
Metabolomic measures in the different study samples were

normalized using z-scaling after natural logarithmic trans-
formation of the raw levels [ln(measure+1)], as suggested by
the manufacturer and to facilitate cross-cohort comparisons.
The HbA1c levels were logarithmically transformed before the
analyses in each of the cohorts.

In each of the cohorts, linear and logistic per-measure regression
models with adjustment for potential confounders (based on the
reported data)were used to study continuous and binary outcomes,
respectively. Only complete cases were used. Details are described
for each of the main analyses. Bonferroni correction was applied to
all analyses to account for multiple testing (162 tests; a #3.1 3
1024). We chose to use the Bonferroni correction based on the
number of metabolic measures tested but not to correct for the
number of tests performed. Because of the high correlation between
metabolites (;40 independent signals), this equates for the stratified
analyses (n = 5) to an almost similar cutoff (53 40 = 200 tests; P#
2.5 3 1024 vs 3.1 3 1024). For the other endpoints (glycemic
control and insulin initiation), for which we performed fewer tests,
such a cutoff would have been too strict. Therefore, for uniformity
and readability of our report, we chose to use one significance
threshold throughout according to the number of metabolomic
measures (P # 3.1 3 1024). SPSS, version 23.0 (IBM Corp.,
Armonk, NY), and R, version 3.4.0 (R Foundation, Vienna,
Austria), were used for data analysis. Random effect meta-analyses
were used to combine the results of the different study samples using
the R package meta (Meta, version 4.3-2; R Foundation) (18).

Association between metabolomic measures
and HbA1c

The associations between metabolomic measures (main in-
dependent variables) and HbA1c levels (outcome) at the time of
blood sampling were examined using linear regression models
(ntotal = 2641). Logistic regression was used to analyze the associ-
ations of metabolomic measures with insufficient glycemic control,
defined as an HbA1c.53 mmol/mol (7%) at the time of the blood
sampling. Two models were used. Model 1 included as covariates
age, sex, statin use (yes vs no), and the use of other lipid-lowering

medication (yes vs no). In model 2, we additionally adjusted for
bodymass index (BMI), the use of oral glucose-loweringmedication
(yes vs no), insulin use (yes vs no), and duration of diabetes at the
time of blood sampling. Based on previous evidence, we examined
the influence of the six different treatment regimens on the asso-
ciation between metabolomic measures and HbA1c in drug-
stratified analyses. To examine differences between those without
medication and other treatment groups, interaction analyses were
performed (treatment group*metabolite). Sensitivity analyses were
performed by excluding subjects with,1 year of diabetes and those
only treated with a diet and in analyses stratified by sex.

Associations between glucose-lowering drug use
and metabolomic measures

In a cross-sectional design, we applied linear regression an-
alyses to examine the association between different types of
glucose-lowering medication (main independent variable) and
metabolomic measures (outcomes). Separate analyses for each
treatment group with the treatment-naive group as the reference
were used for each cohort separately. Analyses were restricted to the
DCS, Maastricht study, and NEO cohorts because the numbers per
stratum were too small in the CODAM cohort. Age, sex, statin use
(yes vs no), and the use of other lipid-lowering medication were
added as covariates (model 1). In model 2, we additionally adjusted
for BMI, durationof diabetes,HbA1c, fasting glucose, and estimated
glomerular filtration rate (eGFR) at the time of the blood sampling.
eGFR was estimated using the CKD-EPI (Chronic Kidney Disease
Epidemiology Collaboration) equation (19).

Association between metabolomic measures and
initiation of insulin therapy

The metabolomic measures that were identified as cross-
sectionally associated with HbA1c .53 mmol/mol in the previous
analyses were included in the present analyses. The association be-
tween these baseline metabolomic measures (main independent
variables) and the initiation of insulin therapy during the follow-up
period (outcome) were examined with logistic regression in the
prospective cohorts. For these analyses, we only included those who
were not using insulin at the time of blood sampling (n = 698). The
baseline values of age, sex, BMI, statin use, other lipid-lowering drug
use (model 1) anddiabetes duration, sulfonylureause,metforminuse,
other diabetes medication use, HbA1c, and fasting glucose (model 2)
were included as covariates. For replication in the Rotterdam study,
we used a slightly different model that included age, sex, BMI, lipid-
lowering medication use, oral glucose-lowering medication use, and
fasting glucose, because not all covariates were available.

Because it is known that for various reasons, people who
should use insulin to treat prolonged elevated HbA1c levels will
not be using this drug, we performed sensitivity analyses in the
largest prospective cohort, the DCS. Propensity scores for insulin
use at baseline were calculated using graded boosting as imple-
mented in the gbm package in R, version 2.1.3 (R Foundation)
(20). Sex, age, BMI, diabetes duration, biobank year, HbA1c,
fasting glucose, total cholesterol, high-density lipoprotein (HDL)
and low-density lipoprotein (LDL) cholesterol, cholesterol ratio,
triglycerides, and eGFR were used as variables.

Results

The cohort characteristics are listed in Table 1 and
Supplemental Tables 1–5. Differences between cohorts in
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diabetes duration and glucose-lowering medication use
were accounted for using random effects meta-analyses.
A schematic overview of the study and its main results is
shown in Fig. 1.

Association between metabolomic measures
and HbA1c

Using a linear regression model that include age, sex,
and the use of statins or other lipid-lowering medication
as covariates, we found substantial associations between
metabolomic measures and HbA1c levels in all four cohorts.
In the meta-analyses, 81 measures were significantly asso-
ciated with the HbA1c levels after multiple testing correction
(model 1; Supplemental Table 7). The most statistically
significant association was observed with the Fischer ratio
[BCAA/aromatic amino acids; b = 0.05 6 0.00 (SE); P =
4.6 3 10242]. After further adjustment for BMI, glucose-
lowering drug use, insulin use, and diabetes duration, 75
measures were statically significant associated (all P# 3.13

1024 67% overlap; model 2; Supplemental Table 7).
We next tested in a logistic regression model whether

the metabolomic measures were also associated with the
inability to achieve the glycemic target of an HbA1c
#53 mmol/mol. A total of 26 measures (8 metabolites and
18 others) belonging to various metabolomic classes were
significantly associated. The most statistically significant
association was found for glutamine (OR, 0.66; 95% CI,
0.61 to 0.73; P = 7.6 3 10219; Table 2; Supplemental
Table 8). Most of these 26 were also significant in the same
linear regressionmodel (21 of 26 allP# 3.13 1024) but not
always in the extended model 2 (15 of 26).

In a sensitivity analysis, the exclusion of those with
a,1-year duration of diabetes and those with diabetes only
treated with a diet did not materially affect the results. This
suggests that the observed associations were not driven by

those with newly discovered or mild or screen-detected
diabetes. We also did not observe major differences be-
tween men and women (data not shown).

We also tested whether the use of different glucose-
lowering drugs affected the observed associations. Thus,
we first evaluated whether the different treatment regimens
were associated with the metabolomic measures in those
patients on treatment compared with those who did not use
any type of glucose-lowering drug. The results of the meta-
analyses for the model adjusted for age, sex, BMI, statin use,
and other lipid-lowering medications (5 metabolites; 21
others significant, all P # 3.1 3 1024) are shown in Sup-
plemental Table 9. With addition of diabetes duration,
HbA1c, fasting glucose, and eGFR into the model, 31
measures (3 metabolites; 28 others all P # 3.1 3 1024)
remained significantly different in one or more of the treat-
ment groups compared with those who did not use any type
of glucose-lowering drug (Table 3; Supplemental Table 10).
The metabolomic measures represent various categories,
including amino acids, phospholipids, apolipoproteins
(Apos), cholesterols, and various lipoprotein subclasses.
The strongest association was observed for ApoA1 and
metformin plus sulfonylurea dual therapy [b = 20.148 6
0.026 (SE); P = 1.7 3 1028].

In the treatment group-stratifiedmeta-analyses for the 26
measures identified in the logistic regression model for in-
sufficient glycemic control, we found only modest evidence
for an effect of medication on these associations (Supple-
mental Table 11). Only those in the small sulfonylurea
monotherapy or “other” groups sometimes showed
aberrant responses. However, in the interaction analyses
of treatment group*metabolite, no statistically signifi-
cant associations were found (P $ 8.5 3 1023 for all;
data not shown). Altogether, these results imply that, in
general, the major glucose-lowering drugs had little effect

on the observed associations between
metabolomic measures and HbA1c.

Association between metabolomic
measures and initiation of
insulin therapy

Diabetes progression was defined as
the initiation of insulin therapy during
follow-up. Because the exact starting
date of insulin therapy was not al-
ways known, we used logistic regres-
sion models for the prospective studies.
However, Cox regression analysis in the
DCS cohort showedhighly similar results
(data not shown). In a meta-analysis of
the two cohorts with prospective data,
we tested whether the 26 metabolomic
measures we had identified were also

Figure 1. Schematic overview of the study design and main results. S, supplemental; Y/N,
yes vs no.
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associated with the initiation of insulin therapy during the
7-year follow-up period (n = 698; 123 cases). Of the 26
metabolomic measures, 11 were significantly associated
with insulin initiation (model 1; Table 4) compared with 15
of the remaining 136 metabolites (P for enrichment = 3.83

1024). The most statistically significant association was
again with ApoA1 (OR, 0.52; 95% CI, 0.40 to 0.67; P =
7.97 3 1027). Further adjustment for age, sex, BMI, statin
use, other lipid-lowering drug use, diabetes duration, sul-
fonylurea use,metformin use, other diabetesmedication use,
HbA1c, and fasting glucose reduced the number of signif-
icant associations to six (all P # 3.1 3 1024 model 2;
Table 4). The most statistically significant association was
with medium HDL cholesteryl ester (OR, 0.54; 95% CI,
0.42 to 0.71; P = 4.5 3 1026). Independent replication
(Rotterdam study, 40 cases and 355 controls; 5 years of

follow-up) showed that five of these also showed direc-
tionally consistent evidence for a nominal association
(P# 0.05) in the smaller replication study (Supplemental
Table 12).

It is known that for various reasons, people who should
use insulin because of prolonged elevated HbA1c levels are
not using this drug; therefore, we performed some sensi-
tivity analyses in the DCS study. We first calculated the
propensity scores for using insulin at baseline based on the
baseline characteristics of the participants either using or
not using insulin. Adding these propensity scores to the
regression models did not largely affect the results. Next,
we reclassified as persons initiating insulin 11 who had
elevated HbA1c levels on at least two of the yearly follow-
up visits (HbA1c .64 mmol/mol). The results of this
analysis did not materially affect our results nor did the

Table 2. Metabolomic Measures Significantly Associated With Insufficient Glycemic Control (HbA1c
>53 mmol/mol)

Measure

Model 1 Model 2

OR 95% CI P Value OR 95% CI P Value

Metabolite
Gln 0.66 0.61–0.73 7.58 3 10219 0.66 0.57–0.76 1.51 3 1028

Ile 1.41 1.26–1.57 1.06 3 1029 1.40 1.22–1.60 1.63 3 1026

Leu 1.44 1.31–1.59 3.51 3 10213 1.46 1.23–1.74 1.32 3 1025

Val 1.46 1.33–1.60 2.74 3 10215 1.40 1.26–1.56 5.21 3 10210

BCAA 1.51 1.37–1.67 4.41 3 10217 1.48 1.32–1.65 3.84 3 10212

Fischer ratio 1.59 1.39–1.81 3.53 3 10212 1.49 1.25–1.79 1.61 3 1025

3-hydroxybutyrate 1.19 1.10–1.30 3.61 3 1025 1.11 0.99–1.24 6.16 3 1022

Lactate 1.26 1.14–1.40 1.20 3 1025 1.27 1.16–1.40 5.41 3 1027

Other metabolomic measures
UnsatDeg 0.80 0.73–0.87 8.08 3 1027 0.81 0.74–0.90 5.51 3 1025

FAw3-FA 0.83 0.76–0.91 6.22 3 1025 0.90 0.81–0.99 3.68 3 1022

PUFA-FA 0.83 0.77–0.91 3.45 3 1025 0.82 0.73–0.93 2.18 3 1023

SFA-FA 1.23 1.10–1.36 2.08 3 1024 1.19 1.04–1.36 1.40 3 1022

LDL-TG 1.26 1.15–1.38 4.61 3 1027 1.33 1.20–1.48 3.05 3 1028

ApoA1 0.80 0.71–0.90 1.54 3 1024 0.96 0.84–1.09 4.82 3 1021

XS-VLDL-TG 1.26 1.13–1.40 2.47 3 1025 1.31 1.15–1.48 4.17 3 1025

IDL-TG 1.27 1.16–1.38 1.57 3 1027 1.32 1.19–1.46 6.47 3 1028

L-LDL-TG 1.25 1.14–1.38 4.46 3 1026 1.33 1.20–1.47 7.79 3 1028

M-LDL-TG 1.21 1.11 –1.33 2.33 3 1025 1.29 1.16–1.42 1.25 3 1026

S-LDL-TG 1.19 1.09–1.30 6.95 3 1025 1.26 1.14–1.40 3.31 3 1026

XL-HDL-FC 0.81 0.73–0.90 1.01 3 1024 0.89 0.80–0.99 4.00 3 1022

M-HDL-P 0.83 0.75–0.91 8.86 3 1025 0.96 0.83–1.12 6.36 3 1021

M-HDL-L 0.82 0.75–0.90 3.49 3 1025 0.96 0.82–1.12 5.81 3 1021

M-HDL-C 0.79 0.70–0.89 6.70 3 1025 0.90 0.77–1.06 2.17 3 1021

M-HDL-CE 0.78 0.70–0.88 5.05 3 1025 0.89 0.77–1.04) 1.57 3 1021

M-HDL-FC 0.80 0.72–0.90 2.19 3 1024 0.94 0.78–1.13 4.99 3 1021

S-HDL-TG 1.27 1.15–1.40 4.47 3 1026 1.26 1.12–1.42 1.17 3 1024

ORs and 95% CIs computed from fixed effect meta-analyses of the logistic regression analyses for insufficient glycemic control of DCS, Maastricht,
CODAM, and NEO data.

Model 1 was adjusted for age, sex, statin use, and other lipid-lowering medication use. Model 2 was adjusted for age, sex, statin use, other lipid-lowering
medication use, BMI, diabetes duration, oral hyperglycemic agent use, and insulin use.

Full data for all metabolomic measures are provided in Supplemental Table 8.

Abbreviations: FAw3-FA, ratio of v-3 fatty acids to total fatty acids; IDL-TG, triglycerides in intermediate-density lipoprotein; L-LDL-TG, triglycerides in
large LDL; LDL-TG, triglycerides in LDL; M-HDL-C, total cholesterol in medium HDL; M-HDL-CE, cholesterol esters in medium HDL; M-HDL-FC, free
cholesterol in medium HDL; S-HDL-TG, triglycerides in small HDL; M-LDL-L, total lipids in medium LDL; M-LDL-TG, triglycerides in medium LDL; PUFA-FA,
ratio of polyunsaturated fatty acids to total fatty acids; S-LDL-TG, triglycerides in small LDL; SFA-FA, ratio of saturated fatty acids to total fatty acids;
UnsatDeg, estimated degree of unsaturation; XS-VLDL-TG, triglycerides in very small VLDL.
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exclusion of these persons from our analysis (data not
shown).

Discussion

The present study had severalmain findings (Fig. 1). First, in
cross-sectional analyses, we showed that 26 measures were
associated with insufficient glycemic control and were
largely independent of the effects of glucose-lowering
medications. Second, we identified 31 measures that dif-
fered between individuals treated with different glucose-
lowering drugs. Finally, we showed in prospective analyses
that 5 of the 26 measures associated with insufficient

glycemic control were also associated with insulin initiation
during follow-up.

Metabolomic measures and glycemic control
Increased levels of BCAAs, as observed in our study,were

previously shown to be associated with insulin resistance
and the risk of prevalent and incident diabetes (4, 21). We
have now shown that this association extends to glycemic
control in people with T2D. Glutamine, ranked first in our
analyses, is known to be associated with insulin sensitivity
and reduced diabetes risk, in line with our observed inverse
correlation (6, 22, 23). Furthermore, we found positive
associations with several markers of fatty acid composition

Table 3. Metabolomic Measures Significantly Associated With Glucose-Lowering Medication Use

Variable Metformin (n = 732) SU (n = 106) Metf + SU (n = 410) Insulin (n = 515) Other (n = 132)

Metabolite
Ala 0.241 6 0.048a 20.013 6 0.050 0.142 6 0.058 0.039 6 0.046 0.073 6 0.078
Val 0.182 6 0.043a 20.018 6 0.042 0.193 6 0.083 0.065 6 0.043 20.018 6 0.034
BCAA 0.181 6 0.047a 20.006 6 0.042 0.216 6 0.085 0.049 6 0.053 20.012 6 0.033

Other metabolomic
measure

SFA 20.149 6 0.099 0.023 6 0.052 20.051 6 0.029 20.165 6 0.044a 20.023 6 0.047
HDL-D 20.101 6 0.042 20.110 6 0.048 20.127 6 0.026a 20.174 6 0.096 20.040 6 0.028
PC 20.199 6 0.065 20.093 6 0.048 20.107 6 0.028a 20.425 6 0.183 20.035 6 0.033
TC 20.164 6 0.065 20.058 6 0.048 20.106 6 0.028a 20.332 6 0.136 20.011 6 0.031
ApoA1 20.154 6 0.048 20.157 6 0.047 20.148 6 0.026a 20.400 6 0.161 20.060 6 0.028
HDL-C 20.076 6 0.042 20.154 6 0.048 20.108 6 0.026a 20.233 6 0.121 20.050 6 0.028
HDL2-C 20.070 6 0.043 20.149 6 0.049 20.106 6 0.026a 20.184 6 0.088 20.051 6 0.028
Serum-C 20.160 6 0.042a 20.074 6 0.041 20.103 6 0.024a 20.347 6 0.161 20.029 6 0.037
Free-C 20.175 6 0.051 20.050 6 0.043 20.094 6 0.024a 20.287 6 0.135 20.022 6 0.029
Est-C 20.151 6 0.041a 20.081 6 0.041 20.104 6 0.024a 20.358 6 0.168 20.028 6 0.038
IDL-L 20.142 6 0.039a 20.043 6 0.041 20.073 6 0.024 20.242 6 0.131 20.003 6 0.028
XL-HDL-P 20.094 6 0.043 20.102 6 0.051 20.119 6 0.027a 20.143 6 0.107 20.048 6 0.029
XL-HDL-L 20.090 6 0.043 20.109 6 0.049 20.118 6 0.026a 20.146 6 0.108 20.046 6 0.028
XL-HDL-PL 20.095 6 0.043 20.073 6 0.051 20.116 6 0.027a 20.130 6 0.100 20.044 6 0.030
XL-HDL-C 20.071 6 0.043 20.132 6 0.048 20.108 6 0.027a 20.131 6 0.102 20.046 6 0.028
XL-HDL-FC 20.078 6 0.044 20.113 6 0.050 20.116 6 0.027a 20.142 6 0.106 20.048 6 0.029
L-HDL-P 20.084 6 0.044 20.113 6 0.051 20.122 6 0.027a 20.200 6 0.120 20.046 6 0.030
L-HDL-L 20.084 6 0.044 20.120 6 0.049 20.124 6 0.026a 20.210 6 0.128 20.044 6 0.029
L-HDL-PL 20.090 6 0.044 20.119 6 0.049 20.124 6 0.026a 20.228 6 0.129 20.046 6 0.029
L-HDL-C 20.070 6 0.044 20.113 6 0.050 20.117 6 0.027a 20.168 6 0.116 20.044 6 0.029
L-HDL-CE 20.067 6 0.044 20.113 6 0.050 20.116 6 0.027a 20.163 6 0.114 20.044 6 0.029
L-HDL-FC 20.078 6 0.045 20.110 6 0.051 20.118 6 0.027a 20.176 6 0.115 20.045 6 0.030
L-HDL-TG 20.169 6 0.044a 20.085 6 0.054 20.135 6 0.028a 20.346 6 0.193 20.021 6 0.031
M-HDL-P 20.123 6 0.062 20.163 6 0.049 20.106 6 0.027a 20.346 6 0.122 20.052 6 0.034
M-HDL-L 20.118 6 0.061 20.172 6 0.050 20.106 6 0.026a 20.342 6 0.121 20.049 6 0.031
M-HDL-C 20.096 6 0.053 20.184 6 0.049a 20.108 6 0.027a 20.314 6 0.118 20.048 6 0.028
M-HDL-CE 20.089 (0.051) 20.184 6 0.049a 20.103 6 0.027a 20.297 6 0.108 20.048 6 0.028
M-HDL-FC 20.114 6 0.057 20.171 6 0.049 20.119 6 0.027a 20.356 6 0.148 20.048 6 0.029

Data are presented asb6 SE from randomeffect meta-analyses of DCS,Maastricht, and NEO data of metabolomicmeasures againstmedication usewith
adjustment for age, sex, BMI, statin use, other lipid-lowering medication, diabetes duration, HbA1c, fasting glucose, and eGFR. Treatment-naive patients
were used as a reference (n = 611) in separate analyses for each treatment group.

Abbreviations: Est-C, esterified cholesterol; Free-C, free cholesterol; HDL-C, HDL cholesterol; HDL2-C, HDL2 cholesterol; HDL-D, mean diameter for HDL
particles; IDL-C, intermediate-density lipoprotein cholesterol; Metf, metformin; L-HDL-C, total cholesterol in large HDL; L-HDL-CE, cholesterol esters in
large HDL; L-HDL-FC, free cholesterol in large HDL; L-HDL-P, concentration of large HDL particles; L-HDL-PL, phospholipids in large HDL; L-HDL-TG,
triglycerides in large HDL; M-HDL-C, total cholesterol in medium HDL; M-HDL-CE, cholesterol esters in medium HDL; M-HDL-FC, free cholesterol in
medium HDL; M-HDL-L, total lipids in medium HDL; M-HDL-P, concentration of medium HDL particles; PC, phosphatidylcholine; Serum-C, serum
cholesterol; SFA, saturated fatty acids; SU, sulfonylurea; TC, total cholesterol; XL-HDL-C, total cholesterol in very large HDL; XL-HDL-FC, free cholesterol in
very large HDL; XL-HDL-L, total lipids in very large HDL; XL-HDL-P, concentration of very large HDL particles; XL-HDL-PL, phospholipids in very large HDL.
aBonferroni statistically significant associations (P # 3.1 3 1024).
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and saturation and, respectively, positive and negative as-
sociations with concentrations of various very-low-density
lipoprotein (VLDL), LDL, and HDL subclasses. Previous
studies have shown that these measures are associated with
various degrees of glucose tolerance, insulin resistance, and/
or diabetes risk (24–27). In general, our data suggest that
metabolomic measures that were previously shown to be
associated with T2D risk are also associated with worse
glycemic control.

Most of the associations with insufficient glycemic
control were only marginally influenced by the different
diabetes drugs in the stratified analysis. For example, in
all treatment groups, insufficient glycemic control was
positively associated with the Fischer ratio and most
BCAAs. However, in the sulfonylurea group, no asso-
ciation or even an inverse association was found
(Supplemental Fig. 2). For most of the fatty acids and

lipoprotein subclasses, we noted similar findings in the
sulfonylurea treatment group, with the associations less
pronounced or the reverse of that observed for the other
treatment groups. It seems that those in the “other”
group, in general, showed stronger, but directionally
consistent, associations. However, owing to the small
numbers in both groups, the differences were not sta-
tistically significant and thus require further study.
Metabolites such as glutamine and lactate showed much
more similar associations in all treatment groups,
suggesting a more generalized association of these
metabolites with glycemic control. The differences in the
associations observed in the various treatment groups
were not explained by the differences in glycemic
control, obesity, or diabetes duration. It is therefore
reasonable to assume that they were related to differ-
ences in the working mechanism of these drugs targeting

Table 4. Metabolomic Measures Significantly Associated With Insulin Initiation During Follow-Up

Measure

Model 1 Model 2

OR 95% CI P Value OR 95% CI P Value

Metabolites
Gln 0.86 0.70–1.07 1.73 3 1021 1.14 0.68–1.90 6.30 3 1021

Ile 1.58 1.22–2.04 5.71 3 1024 1.25 0.76–2.06 3.72 3 1021

Leu 1.54 1.23–1.93 1.77 3 1024 1.22 0.94–1.58 1.26 3 1021

Val 1.63 1.31–2.03 1.21 3 1025 1.20 0.75–1.94 4.50 3 1021

BCAA 1.72 1.37–2.17 3.86 3 1026 1.25 0.74–2.12 4.10 3 1021

Fischer ratio 1.79 1.42–2.26 1.15 3 1026 1.40 1.08–1.81 1.22 3 1022

3-hydroxybutyrate 1.03 0.84–1.26 7.59 3 1021 0.81 0.61–1.08 1.45 3 1021

Lactate 1.40 1.16–1.70 5.63 3 1024 1.06 0.66–1.69 8.10 3 1021

Other metabolomic measures
UnsatDeg 0.73 0.58–0.92 7.04 3 1023 0.78 0.61–0.98 3.45 3 1022

FAw3-FA 0.74 0.52–1.05 9.39 3 1022 0.58 0.21–1.63 3.01 3 1021

PUFA-FA 0.84 0.56–1.27 4.17 3 1021 0.88 0.70–1.11 2.69 3 1021

SFA-FA 1.22 0.99–1.50 5.78 3 1022 1.10 0.88–1.37 4.15 3 1021

LDL-TG 1.01 0.59–1.70 9.82 3 1021 1.03 0.82–1.30 7.90 3 1021

ApoA1 0.52 0.40–0.67 7.97 3 1027 0.53a 0.39–0.70 1.31 3 1025

XS-VLDL-TG 1.18 0.73–1.90 5.02 3 1021 1.25 1.02–1.53 3.47 3 1022

IDL-TG 1.12 0.67–1.90 6.65 3 1021 1.21 0.97–1.50 8.95 3 1022

L-LDL-TG 1.01 0.60–1.70 9.58 3 1021 1.05 0.84–1.33 6.68 3 1021

M-LDL-TG 0.95 0.56–1.62 8.62 3 1021 0.98 0.78–1.23 8.53 3 1021

S-LDL-TG 1.06 0.62–1.81 8.32 3 1021 1.12 0.91–1.38 3.02 3 1021

XL-HDL-FC 0.59 0.46–0.75 1.86 3 1025 0.64 0.49–0.83 6.55 3 1024

M-HDL-P 0.56 0.44–0.72 5.06 3 1026 0.54a 0.41–0.72 1.52 3 1025

M-HDL-L 0.57 0.44–0.72 4.46 3 1026 0.55a 0.42–0.72 1.62 3 1025

M-HDL-C 0.56 0.44–0.70 1.24 3 1026 0.54a 0.41–0.70 4.67 3 1026

M-HDL-CE 0.56 0.44–0.71 1.30 3 1026 0.54a 0.42–0.71 4.46 3 1026

M-HDL-FC 0.55 0.43–0.70 2.62 3 1026 0.53 0.40–0.70 1.01 3 1025

S-HDL-TG 1.40 1.00–1.95 5.20 3 1022 1.37 1.10–1.69 4.21 3 1023

ORs and 95%CIs computed from fixed effect meta-analyses of the logistic regression analyses for insulin initiation in DCS and CODAM prospective data.

Model 1 was adjusted for age, sex, statin use, and other lipid-lowering medication use. Model 2 was adjusted for age, sex, statin use, other lipid-lowering
medication use, BMI, diabetes duration, sulfonylurea use, metformin use, other diabetes medication use, HbA1c, and fasting glucose. Threshold for
Bonferroni statistically significant associations (P , 3.1 3 1024).

Abbreviations: FAw3-FA, ratio of v-3 fatty acids to total fatty acids; IDL-TG, triglycerides in intermediate-density lipoprotein; L-LDL-TG, triglycerides in
large LDL; LDL-TG, triglycerides in LDL; M-HDL-C, total cholesterol in medium HDL; M-HDL-CE, cholesterol esters in medium HDL; M-HDL-FC, free
cholesterol in medium HDL; M-HDL-P, concentration of medium HDL particles; S-HDL-TG, triglycerides in small HDL; M-LDL-L, total lipids in medium LDL;
M-LDL-TG, triglycerides in medium LDL; PUFA-FA, ratio of polyunsaturated fatty acids to total fatty acids; S-LDL-TG, triglycerides in small LDL; SFA-FA,
ratio of saturated fatty acids to total fatty acids; UnsatDeg, estimated degree of unsaturation; XS-VLDL-TG, triglycerides in very small VLDL.
aP , 0.05 in the replication study (Supplemental Table 12).
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either predominantly b-cell function or insulin action.
Further studies are needed to investigate this in detail.

Diabetes treatment and metabolomic measures
To the best of our knowledge, we are the first to show

the association of the different types of glucose-lowering
drugs with the various metabolites and/or metabolomic
measures in a large series of patients with T2D treated
according to routine clinical care. Our results suggest that
the observed differences were not strongly driven by dif-
ferences in glycemic control or disease duration between
groups. In general, it seemed that the direction and size of
the effects were comparable between treatment groups,
although not always reaching the formal levels of signif-
icance, which was likely due to the small numbers of
patients in some subgroups. For example, it was previously
shown that, among others, the phospholipid content of
very large HDL was lowered by metformin treatment (8,
28). Our data suggest this was not specific for metformin
but rather universal for most or all glucose-lowering drugs
(Supplemental Fig. 3). Furthermore, individuals in most
treatment groups, except for the “other” glucose-lowering
drug group, had lower levels of HDL subclasses compared
with those without glucose-lowering treatment (Supple-
mental Fig. 3). Because thiazolidinedioneswere included in
this “other” group, this might relate to known HDL
cholesterol increasing the effects of these drugs (29).

In addition to the generic effects of glucose-lowering
drugs, we observed drug-specific associations. For instance,
we show that compared to treatment naive patients, ala-
nine levels are most strongly increased in metformin
monotherapy or dual therapy with sulfonylurea groups.
Confirming previous studies on metformin therapy (8, 30).
BCAAs (Val, Leu, and Ile) and the Fischer ratio (BCAA/
aromatic amino acid ratio) were increased in those treated
with metformin. However, like alanine, these were not
increased or were much less increased in those treated with
sulfonylurea or other glucose-lowering drugs. This might
be related to differences in the working mechanisms of
these drugs.

Metabolomic measures and initiation of
insulin therapy

For patients not able to achieve good glycemic control
with oral glucose-lowering drugs, the initiation of insulin
therapy is often the final treatment option. Patients with
T2Dwho require insulin therapy have often been treated for
years with oral glucose-lowering drugs without achieving
sufficient glycemic control. This leads to an unwanted and
prolonged exposure to high glucose levels and an increased
risk of developing diabetes-related complications (2). Early
indicators of treatment failure and rapid progression to-
ward insulin therapy are thus urgently needed. We found

that a subset of the metabolomic measures that were cross-
sectionally associated with insufficient glycemic control
were also associated with progression toward the re-
quirement for insulin therapy during follow-up.

The BCAAs, although shown to be causally related to
development of T2D (21), were not associated with the
progression to insulin use. Also, other metabolites as-
sociated with insufficient glycemic control in our study
were not associated with incident insulin use. Our data
showed that high levels of ApoA1 and medium HDL
subclasses were associated with an almost twofold re-
duced risk of incident insulin use. These findings have
refined the results of previous studies that identified low
HDL cholesterol as a risk factor for the initiation of
insulin therapy (31) and the progression of glycemia in
those with T2D (32). Insulin resistance impairs VLDL
metabolism by (1) reducing the lipoprotein lipase-
mediated generation of VLDL remnants and (2) simul-
taneously increasing the flux of adipose tissue derived
fatty acids to the liver. Both processes lead to increased
production of VLDL. The increased abundance of VLDL
drives cholesteryl ester transfer protein–mediated trans-
fer of cholesteryl ester from HDL to VLDL, leading to a
reduction in HDL levels. Increased plasma VLDL and
decreased HDL are characteristic of the so-called diabetic
dyslipidemia [reviewed by Goldberg (33)]. Diabetic
dyslipidemia represents a more advanced stage of insulin
resistance and might thus identify those individuals
more likely to progress toward insulin use. Alternatively,
ApoA1 and HDL have also been suggested to modulate
pancreatic b-cell function via incretin-like effects (34).
Further detailed studies are needed to clarify this in detail.

The strengths of the present study were the use of large
numbers of patients, incorporation of at least three in-
dependent cohorts in all main analyses, use of a targeted
metabolomics platform already approved for clinical
care, and use of stringent corrections for multiple hy-
pothesis testing to reduce the chance of false-positive
findings. One study limitation was the use of cross-
sectional metabolomics data. Given our study design,
we could not investigate the within-subject effects on
the metabolomic measures after initiation of glucose-
lowering treatment in treatment-naive individuals. An-
other limitation was the relatively small number of
subjects in some of the treatment groups and the pro-
spective studies, limiting the power to detect more modest
associations. The use of logistic regression models for the
prospective studies was a limitation; however, Cox re-
gression analysis in the DCS cohort showed highly
similar results. In addition, although we were able to
show that several metabolomic measures were associated
with incident insulin use, further studies using, for in-
stance, lasso regression are warranted to find the best
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combination of clinical and metabolomic predictors for
the initiation of insulin therapy. However, this was
beyond the scope of the present study. Finally, the
metabolomics platform we used targets a relatively small
and correlated number of metabolomic measures and is
thus not representative of the whole metabolome. Be-
cause of the known correlation structure between the
measures, the signals are not all independent but, rather,
provide detailed information on the underlying biology.
Further detailed metabolomic and lipidomic studies using
specialized platforms to allow for more comprehen-
sive and detailed analyses are needed to elucidate the
underlying biology.

In conclusion, to the best of our knowledge, ours is the
first study to show that blood metabolomic measures are
associated with glycemic control. We also found that al-
though the blood metabolome shows differences between
patients taking different types of glucose-lowering medi-
cation, the glucose-lowering medication did not materially
affect the associations with glycemic control. Finally, we
found that the baseline levels of the metabolomic measures
that were associated with insufficient glycemic control
were also prospectively associated with the initiation of
insulin therapy. Thus, metabolomic profiles might be
useful for the identification of those at increased risk of
treatment failure with noninsulin therapies.
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22. Stancáková A, Civelek M, Saleem NK, Soininen P, Kangas AJ,
Cederberg H, Paananen J, Pihlajamäki J, Bonnycastle LL, Morken
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