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Results of international comparisons of students in studies such as PISA (Program for International Student Assess-
ment) and TIMSS (Trends in International Mathematics and Science Study) are often taken to indicate that mathe-
matical education in Dutch schools is not appropriate for mathematically talented students. However, there has
been no empirical study yet that investigated this hypothesis. If indeed, Dutch students with a genetic predispo-
sition for high mathematical ability are not nurtured to their full potential, their mathematics performance
should be more affected by environmental factors than that of children with a genetic predisposition for low
mathematical ability. In behaviour genetics such a situation is termed genotype-environment interaction: the rel-
ative importance of environmental influences differs depending on students' genotypic values. To investigate ge-
notype-environment interaction, we analyzed mathematics performance of 2110 Dutch twin pairs on a national
achievement test. In the analysis we corrected for error variance heterogeneity in the measurement of mathe-
matics performance through the application of an item response theory (IRT) measurement model. As hypothe-
sized, results indicated that environmental influences are relatively more important in explaining individual
differences in students with a genetic predisposition for high mathematical ability.
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1. Introduction

While some children find it easy to solve complex mathematical
equations, others are struggling to pass their math exams. Dutch
teachers usually focus on the latter group: the weakest (Dekker,
2014). Often criticized as a “culture of C-grades”, education in the Neth-
erlands has the reputation of being traditionally less focused on stu-
dents with high mathematics performance levels. In an ideal school
system, however, the talented child should be nurtured to its full poten-
tial as well. After all, the brightest students may be the ones who make
important contributions to science,find cures for diseases or invent new
technologies.

International comparisons such as the Program for International Stu-
dents Achievement (PISA) and the Trends in International Mathematics
and Science Study (TIMSS) show that, in the Netherlands, the average
mathematical performance level in primary education is relatively
high. This observation can, however, be attributed mainly to the high
performance in the left tail of the achievement distribution: theweakest
students are performing better than theweakest students from all other
countries participating in PISA and TIMMS. The variance of test scores is,
however, compared to other countries, very small: the performance
levels of lowest- and highest-scoring students are relatively close. In
urg, The Netherlands.
other words, whereas Netherlands' weakest students perform excep-
tionally well, the top students are outperformed by the brightest stu-
dents from Asian and other western countries (see e.g. Meelissen et
al., 2012). This appears to be a persistent phenomenon as similar pat-
terns have been found over the years for different age groups (see e.g.
Minne, Rensman, Vroomen, & Webbink, 2007). These findings are
often presented as underperformance in the high-ability students (see
e.g. van der Steeg, Vermeer, & Lanser, 2011) and interpreted as an indi-
cation thatmathematical education in Dutch schools is better tailored to
the weaker students than to the mathematically talented students.
However, one cannot draw conclusions on underlying processes based
on the test score distribution alone. There are alternative explanations
for the relatively poor performance of the top students in the Nether-
lands, for one that there might indeed be different underlying distribu-
tions of talent across countries.

In this article, the underperformance of Dutch mathematically tal-
ented students was investigated from a behaviour genetics perspective.
A child's genetic mathematical talent was operationalized as the geno-
typic value, a genetic concept representing the sum of the average ef-
fects of genes that influence mathematical achievement (Falconer &
MacKay, 1995). If the educationwere ideal for every child (with orwith-
out genetic mathematical talent), this would predict that individual dif-
ferences in scores are mainly explained by genetic differences rather
than environmental influences (see Shakeshaft et al., 2013 for a similar
argument). That is, differences in children's mathematics performance
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can be explained solely by their different genetic talents and not by ran-
dom environmental influences such as what friends or teachers they
have. This line of reasoning would also imply that, if indeed, in primary
education, mathematically talented children are not nurtured to their
full potential, their performance should bemore affected by random sit-
uational factors than the performance of average or weak students for
whom the educational program is more appropriate, that is, better tai-
lored to their personal needs. For example, talented students might be
at the mercy of random events like having a teacher that is interested
in their abilities or a neighbour that is willing and able to help with
the more challenging homework assignments. Such a situation induces
the presence of genotype-environment interaction: conditional on a
child's genotypic value for mathematical ability, environmental influ-
ences can bemore or less important (see e.g. Cameron, 1993), or put dif-
ferently, environmental factors createmore variance in test scores of the
talented than the less talented children.

One of the methods used in behaviour genetics to estimate the rela-
tive influence of genetic and environmental factors is the twin design.
Twin pairs are either identical (monozygotic, MZ) or non-identical (di-
zygotic, DZ). MZ twins (largely) share the same genomic sequence and
the same rearing environment, including prenatal environmental con-
ditions. DZ twins also share the same environment but on average
only share half of the segregating genes. By using the twin design, the
relative contributions of genetic and environmental variability can be
estimated, where the heritability is defined as the ratio of genetic vari-
ance divided by total variance in a measured trait (phenotypic
variance).

Although a considerable number of twin studies have studied the
heritability of mathematical ability (see e.g. Alarcon, Knopik & DeFries,
2000; de Zeeuw, de Geus, & Boomsma, 2015), to our knowledge, there
is only one twin study that compared the relative contributions of ge-
netic and environmental influences in mathematically high-scoring
children and children in the normal range. In a population-based sam-
ple of 10-year-old British twins, Petrill, Kovas, Hart, Thompson, and
Plomin (2009) defined mathematically high-scoring twins as those
who scored at or above the 85th percentile. In the top 15% of students,
the heritability estimate was similar to the one obtained across the nor-
mal range of ability. Similar resultswere reported for high cognitive per-
formance and high reading performance (e.g. Boada et al., 2002; Petrill
et al., 1998; Ronald, Spinath, & Plomin, 2002), traits that are correlated
with mathematical ability (e.g. Davis, Haworth, & Plomin, 2009).
These findings seem to argue against the presence of a genotype-envi-
ronment interaction, at least in the populations studied. If therewere in-
deed genotype-environment interaction, studies focusing on the high
extreme ofmathematical ability should reveal that environmental influ-
ences differ in importance compared to the normal range of ability.

Although the comparison of heritability across high and normal
performing twins provides a simple test for a different etiology of ex-
treme performance scores, it does not provide information on heritabil-
ity along the entire performance continuum (see also Boada et al.,
2002). In addition, an often arbitrary cutoff point has to be chosen.
Most importantly, comparing the heritability in two separate ranges of
ability can be misleading when one does not take into account differ-
ences in measurement reliability (van den Berg, Glas, & Boomsma,
2007).

Therefore, instead, here we estimate genotype-environment inter-
action continuously, letting the size of environmental variance compo-
nents vary as a function of the genotypic value (see below for details).
Thus, rather than studying subgroups, we take advantage of the contin-
uous nature of the scores on mathematical performance. In this ap-
proach, we also would like to correct for the increased measurement
error in the upper tail of the test score distribution.Whilemost achieve-
ment tests show little measurement error for average scores, scoring
can become very unreliable for high performing students due to the
small amount of information provided by only a few very difficult
items, a problem that finds its most extreme form in ceiling effects. In
other words: measurement error is not the same across the ability con-
tinuum (heterogeneity). The relative lack of reliability in the upper and
lower tails leads to lower correlations among sum scores (attenuation),
which leads to bias when estimating genetic and environmental vari-
ance components (see van den Berg et al., 2007) and furthermore can
lead to the finding of spurious genotype-environment interaction ef-
fects or missing them altogether (see Molenaar & Dolan, 2014;
Schwabe & van den Berg, 2014). The problem of heterogeneous mea-
surement error can be solved by, instead of focusing on observed test
scores, modelling latent variables, and using measurement models
(van den Berg et al., 2007). We model genotype-environment interac-
tion continuously, by applying a recently developed method
(Molenaar & Dolan, 2014; Schwabe & van den Berg, 2014) that corrects
formeasurement error through the application of an item response the-
ory (IRT) measurement model. By incorporating an IRT model into the
analysis, the results regarding genotype-environment interaction pre-
sented here are free of artefacts due to heterogeneous measurement
error across the performance continuum. The method was applied to
data from 2110 12-year-old Dutch twin pairs on the Eindtoets
Basisonderwijs test, a Dutch national educational achievement test that
assesses what a child has learned during primary education. If the pri-
mary educational system in the Netherlands really is better suited for
students without much genetic talent (i.e. low genotypic value) for
mathematics than for talented students (i.e. high genotypic value), re-
sults should showmore environmental variation in children genetically
predisposed towards highmathematical ability than for children genet-
ically predisposed towards low mathematical ability.

2. Method

2.1. Data

The sample of twins for this study comes from the Netherlands Twin
Register (NTR, Boomsma et al., 2002). Data on the Eindtoets
Basisonderwijs test of 12-year-old twins from birth cohorts 1998–2000
were analyzed to study genotype-environment interaction in mathe-
matical achievement on the Eindtoets Basisonderwijs test. Conducted
and analyzed by the testing company Cito, this test consists of 290mul-
tiple choice items in four different subjects (language, arithmetic/math-
ematics, study skills and world orientation [optional]). For this paper,
the 60 dichotomous item scores (coded as 0 = incorrect, 1 = correct)
of the mathematics subscale of this test were analyzed. The methods
used in this study required item data, whereas at the NTR only total
test scores were available. The NTR data on twins for whom signed in-
formed consent forms for database linking were available were there-
fore linked to item data available at Cito. This was done by an ICT
employee at Cito who was not involved in the study. Linking was
based on name, sex, birth year, name of the school, and total Cito
score, if available, for 7031 twins. The first step was to link the NTR
data to a BRIN code, a 6-digit number that is given to educational insti-
tutes by the Dutch ministry. Then 12 different queries with a different
combination of the BRIN code, birth year, sex, surname and initials of
a twinwere used to identify the itemdata associatedwith an individual.
1017 twins had more than one uniquematch and 2427 twins could not
bematched at all, reducing the dataset to 3587 twins consisting of 2149
families. To link twins with item scores to the NTR data of their co-twin,
a unique family ID was used. Excluding triplets (N = 63 individuals),
this led to a dataset of 4238 twins (2119 twin pairs). Twin pairswith un-
known zygosity (N pairs = 9) were excluded from the analysis, leading
to a total of 4220 twins, forming 581MZ pairs and 1529 DZ pairs. Of the
monozygotic twins, 282 pairsweremale and 299were female; of thedi-
zygotic twins, 360 pairs were male, 309 were female, and 860 were of
opposite sex. For 711 twins, item scores were unknown. Scores were
missing either because the child had not reached final grade yet (N
twins = 52), the child was attending special education (N twins =
34), a different test was used at the school the twin was attending (N
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twins= 13), the child (N twins=2) or thewhole school (N twins=1)
did not attend the test or the reason was unknown (N twins = 609).

The Eindtoets Basisonderwijs was administered using different test
versions. In each year a regular test (paper-based) and an anchor test
(paper-based) was used. The anchor test is an adapted version of the
regular test in which 20 items are replaced by anchor items that are
common between the years. This creates an internal anchor with
which the tests from different years can be linked. Thus, 40 of the 60
items were the same in the regular test version and the anchor test ver-
sion of the particular year (2010, 2011 & 2012) whereas 20 items were
unique in the regular and anchor test version of a particular year. The 20
unique items were the same every year in the anchor test version but
these unique items differed from year to year in the regular test version.
Furthermore, therewere three different digital test versions (computer-
based tests) of which two shared 45 items while the rest of the items
were unique. In our study the different combination of items from the
regular test, the anchor test and the digital test led to nine different
test versions.

These different versions may differ with respect to their overall dif-
ficulty and, as a result, the sum scores are not comparable across ver-
sions. To make them comparable, measures needed to be harmonized
such that data from twins assessed by a different test version could be
compared meaningfully. Instead of equating sum scores from different
versions tomake them comparable, we equated item parameters across
versions by an IRT model. To link the different regular and anchor test
versions, the psychometric group at Cito made a concurrent estimate
of all the item parameters in the twin data. Note that the data allowed
for a test linking design that is a combination of common item equating
and common person equating. That is, the regular test and the anchor
test item parameters were linked via common item blocks and the an-
chor item blocks and the digital tests were linked via common persons.
The resulting item difficulty and discrimination parameters for all items
were imputed in the measurement model which is described in further
detail below.

2.2. Genetic models

With twin data, we can fit different genetic models to the data. The
most commonly used model is the ACEmodel, which decomposes phe-
notypic variance, σP

2, into variance due to additive genetic influences
(denoted as σA

2), variance due to common-environmental influences
(denoted as σC

2), and variance due to unique-environmental influences
(denoted as σE

2). Common-environmental influences are influences
that lead to resemblance between twins and cannot be attributed to
their genetic resemblance. They are parameterized to beperfectly corre-
lated within a twin pair. Unique- or non-shared environmental influ-
ences are not shared within pairs and are parameterized to be
uncorrelated for members of a twin pair. It is also possible to fit an AE
model or an ADE model in which D represents dominance effects
(non-additive genetic variance). All models, with and without geno-
type-environment interaction, were fitted to find the genetic model
that fitted the data well, while, at the same time, being parsimonious.
All genetic models were fitted simultaneously with a measurement
model (IRT model). In the following, the modelling of genotype-envi-
ronment interaction (based on the ACE model) and the IRT model will
be discussed separately.

2.2.1. Genotype-environment interaction
In case of genotype-environment interaction, the amount of vari-

ance due to environmental influences varies systematically with geno-
typic value A, parametrized as a latent (e.g., unobserved) variable.
Thus, environmental variance components are larger at either higher
or lower levels of the genotypic value – in this application, this means
that environmental influences are more important either for children
with a genetic talent for mathematics or for children without such a
talent.
When considering genotype-environment interactions, we can dis-
tinguish between two different types of interaction effects: There can
be an interaction with unique-environmental influences (henceforth
referred to as AxE) and there can be an interaction with common-envi-
ronmental influences (henceforth referred to as AxC).

In case of AxE, we partition variance due to unique-environmental
influences into an intercept (estimating environmental variance when
A=0) and a part that is a function of A. Thismakes the unique-environ-
mental variance component different for each individual j with geno-
typic value Aj:

σ2
Ej ¼ exp β0 þ β1 Aj

� � ð1Þ

where β0 denotes the intercept (i.e., unique-environmental variance
when Aj=0) and β1 is a slope parameter that represents AxE. Likewise,
to model AxC, we portion variance due to common-environmental in-
fluences into an intercept (i.e., common-environmental variance when
A = 0) and a part that is a function of A:

σ2
Cj ¼ exp γ0 þ γ1 Aj

� � ð2Þ

where γ0 denotes the intercept and γ1 represents AxC.
Both interaction effects are modelled here as (log)linear effects,

meaning that environmental variance is larger at either higher or
lower levels of the genotypic value (i.e., larger differences among indi-
viduals with similar genotypic value). The sign of the slope determines
the direction of the interaction effect. The exponential function is used
to avoid negative variances (see e.g. SanChristobal-Gaudy, Elsen,
Bodin, & Chevalet, 1998).

2.3. Measurement model

An IRT approach uses properties of each itemas information to be in-
corporated into the scaling of individual test performance. The probabil-
ity of a correct answer of an individual j on a test item k is modelled
using both the latent trait θj (e.g., mathematical ability) and the itemdif-
ficulty, bk. The item difficulty represents the trait level associated with a
50% chance of endorsing an item. Furthermore, a discrimination param-
eter, ak, can be incorporated into the IRT model. The discrimination pa-
rameter indicates how rapidly the probability of giving a correct answer
changes with varying levels of the latent trait (e.g., factor loading in a
factor analysis). Latent trait value θj can be interpreted as the true theo-
retical performance level for individual j that is corrected for the difficul-
ty levels of the items that were in a student's test version (for further
reading see Embretson & Reise, 2009). Here the one parameter logistic
model (OPLM, Verhelst, Glas, & Verstralen, 1995) version of an IRT
model was used that is suitable for dichotomous data where item re-
sponses are scored as correct/false.

In the context of IRT, the test information curve can be calculated,
which represents the amount of psychometric information that a test
contains for all points along the continuum of latent traits, θj. Further-
more, the standard error of measurement can be calculated for all latent
traits.

2.4. Incorporating biometric and measurement models

Van den Berg et al. (2007) showed that, to take full advantage of the
IRT approach, the genetic model and the IRT model have to be fitted
concurrently – which we do here using Bayesian statistical modelling.
In a Bayesian analysis, statistical inference is based on the joint posterior
density of themodel parameters, which is proportional to the product of
a prior probability and the likelihood function of the data (for further
reading, see e.g. Box & Tiao, 1992). We use a Markov chain Monte
Carlo (MCMC) algorithm called Gibbs sampling (Gelfand & Smith,
1990; Geman & Geman, 1984) to obtain this joint posterior density.
For a detailed description of the specification of the ACE model in this



Fig. 2. Histogram of the raw sum scores (not corrected for different test versions).

Table 1
Model fit (DIC) for all biometric models.

Biometric model DIC

I. AE 204356
a) With AxE 204337

II. ACE 204357
a) With AxE 204338
b) With AxC 204344
c) With AxE + AxC 204334

III. ADE 204356
a) With GxE 204337

Note. DIC = deviance information criterion.
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context, the reader is referred to Schwabe and van den Berg (2014);
Molenaar and Dolan (2014); Schwabe, Jonker, and van den Berg
(2015) or Molenaar, Middeldorp, van Beijsterveldt, and Boomsma
(2015). In addition to the ACE model, an ADE model was fitted. The de-
tailed specification of this model is described in the online supplemen-
tary material.

2.4.1. Prior distributions
As a Bayesian approach was used, prior distributions had to be spec-

ified. We used a uniform prior distribution for all variance components
(σA

2 ,σD
2 ~U(0,100) and σE

2 ,σC
2~U(0,100). In the biometric models with

interaction effects, the prior for the intercepts and the slope parameters
was normal and relatively non-informative (β0 ,γ0~N(−1,2) and β1,
γ1 ~ N(0,10)). A normal prior distributionwas placed on the phenotypic
population mean (μ ~ N(0,10)).

2.5. Analysis

For the ACE model we considered either AxE or AxC interaction ef-
fects, or both, and similarly for the ADE model. To assess model fit, the
deviance information criterion (DIC, Spiegelhalter, Best, Carlin, & van
der Linde, 2002) was calculated for each model. The DIC is a measure
that estimates the amount of information that is lost when a given
model is used to represent the process that generates the data. It takes
account of both the goodness of fit and the complexity of a model.

For theMCMC estimation,we used the freely obtainableMCMC soft-
ware package JAGS (Plummer, 2003). For further data handling, the sta-
tistical programming language R was used (R Development Core Team,
2008). As an interface from R to JAGS, we used the rjags package
(Plummer, 2013).

After a burn-in phase of 12,000 iterations for each separate Markov
chain, the characterization of the posterior distribution was based on a
total of 75,000 iterations from five different Markov chains. The mean
Fig. 1. Test information curves (left) and standard errors (right) for all differ
and standard deviation of the posterior point estimates was calculated
for each parameter as was the 95% highest posterior density (HPD, see
e.g. Box & Tiao, 1992) interval, which can be interpreted as the Bayesian
analog of a confidence interval (CI). The influence of model parameters
can be regarded as significant when the respective HPD interval does
not contain zero. This does not hold for the variance components, as
these are bounded at zero. For all test versions, the test information
and standard error ofmeasurementwere calculated for a range of latent
trait θ values. Furthermore, the effect size, defined as the factor with
which the environmental variance component increases for an individ-
ual with an additive genetic effect of Ai = σa (for technical details see
Schwabe & van den Berg, 2014), was determined for both (AxE and
AxC) interaction parameters.

3. Results

Table 1 presents the DIC for all fitted biometric models. The ACE
model with AxE and AxC showed the lowest DIC andwas therefore cho-
sen as the preferred model.

Fig. 1 shows the test information curve and standard errors of mea-
surement for each different test version for a range of latent trait values
([−0.20; 0.90]). This range of values for latent traits was chosen based
on the 95% HPD interval of the θ values that occurred in the posterior
based on the ACE model with AxE and AxC. It can be seen that all test
ent test versions for a representative part of the latent trait continuum.



Fig. 3. 95% credibility region of the AxE interaction effect for the entire range of estimated
genotypic values.
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versions provide substantial information for the average and even low-
performing range of trait values, but that there is less information for
the very-high performing students. This is also reflected in the standard
errors of measurement. Although standard errors are generally low,
they are higher for high-performing students. The distribution of the
sum scores (see Fig. 2) shows that, although only 35 (b1%) students
got a perfect score of 60 correct items, only 828 students (20%) scored
above the mode of 52 correct item answers.

Based on the ACEmodel with AxE and AxC, the posterior means and
standard deviations of all parameters and narrow-sense heritability can
be found in Table 2. The 95% credibility region of the AxE interaction ef-
fect is displayed for the entire range of estimated genotypic values in
Fig. 3.

The results suggest that most of the phenotypic variance can be ex-
plained by genetic influences, resulting in a narrow-sense heritability h2

of 0.7286. Narrow-sense heritability is the proportion of the additive ge-
netic variance of the phenotypic variance and was defined here as

σ2
A

σ2
Aþ expðγ0Þþ expðβ0Þ . A substantial part of the phenotypic variance could

be explained by unique-environmental influences while common-envi-
ronmental influences were negligibly small. The results showed a posi-
tive AxE interaction effect such that individuals having high genotypic
values show more variance due to unique-environmental influences
than individuals with lower genotypic values. The 95% HPD interval
shows that this effect was significant. Furthermore, the results suggest
that there is a positive AxC effect such that individuals having high ge-
notypic values for mathematical ability show more variance due to
common-environmental influences than individuals with lower geno-
typic values. The 95% HPD interval however shows that this interaction
effect was not significant. Effect sizes of the interaction effects were 1.63
(AxE) and 1.85 (AxC).
4. Discussion

The results of international comparisons are often interpreted as an
indication that education in Dutch schools is more appropriate for the
weakest students than for the mathematically talented students. How-
ever, until now there has been no empirical study that tested this hy-
pothesis. From a behaviour genetics perspective, we can translate this
hypothesis into the presence of genotype-environment interaction: if
childrenwith a talent formathematics are not nurtured to their full (ge-
netic) potential, we expect their academic performance to show more
environmental variability, that is, achievement levels should depend
more on random chance in talented children than in less talented
children.

Genotype-environment interaction was investigated in Dutch stu-
dents on the continuous dimension of mathematical performance. As
hypothesized, we found significant genotype-environment interaction
(AxE): the unique environmental variance component was larger in
children with a genetic predisposition towards high mathematical
Table 2
Estimates of all parameters and narrow-sense heritability, based on the ACE model with
AxC and AxE interactions. See Section 2.2.1 for a detailed interpretation of the parameter
estimates.

Posterior mean (SD) HPD

σA
2 0.0552 (0.0035) [0.0480; 0.0617]

exp(γ0) 0.0054 (0.0024) [0.0012; 0.0099]
exp(β0) 0.0151 (0.0016) [0.0120; 0.0183]
β1 (AxE) 2.0837 (0.4939) [1.0886; 3.0344]
γ1(AxC) 2.6159 (1.3503) [−0.1358; 5.2189]
h2 0.7286 (0.0396) [0.6448; 0.7988]

Note. Total phenotypic variance, defined as σA
2+ exp(γ0)+ exp(β0), was 0.0757. HPD re-

fers to the 95% highest posterior density interval.
ability than in childrenwith a genetic predisposition towards lowmath-
ematical ability.

We have, however, to be cautious in drawing conclusions. The distri-
bution of the twin'smathematics sumscoreswasnegatively skewed. Al-
though only 1% obtained a perfect score of 60 correct items, a relatively
low percentage scored higher than the mode. Thus, there was a clear
ceiling effect, with relatively little information on individual differences
in performance levels on the high end of the scale. With such a limited
reliability in the right tail of the distribution, even correcting for attenu-
ation through the IRT model does not completely solve the problem of
lack of reliability. If the test does not discriminate well in the right tail
of the distribution, then the estimates of genotype-environment inter-
action effects are based foremost on the information on the rest of the
population. Therefore, to draw valid conclusions on children with ex-
treme high ability, the current study should at one time be replicated
using a mathematics achievement scale with less pronounced ceiling
(and floor) effects.

Recent years have seen a remarkable increase in attention for excel-
lence in the Netherlands. The government aims to encourage excellent
performance by offering talented students education tailored to their
individual needs (Dekker, 2014). Twin studies can be a valuable com-
plement to thefindings of educational research, because the twin design
makes it possible to correct for genetic influences when the effect of
specific environmental influences is investigated. The results of present
twin study add to our understanding on the issue, but drawing conclu-
sions for policymeasures requires further research. Themethod thatwe
used here to model genotype-environment interaction was parame-
trized such that both, genetic as well as environmental influences
weremodelled as latent (i.e., unmeasured) variables. Therefore, no con-
clusions can be drawn on the nature and importance of specific environ-
mental influences that are more important for students genetically
predisposed towards high mathematical ability than for students with
a genetic predisposition towards low or average mathematical ability.
Using a population of children where the most talented ones receive
tests with very difficult items, future research should focus on the
exact nature of the genotype-environment interaction, for example by
using the parametrization introduced by Purcell (2002) that regresses
measured environmental moderators directly on the genotypic value.
There is a broad range of influences that can contribute to differences
in twin pairs, ranging from prenatal differences to different perceptions
of the environment to subtle differences in brain structure. Future re-
search should first focus on variables that have proven to be important
for talented students, such as peer influences (Austin & Draper, 1981),
personality characteristics (Ackerman, 1997) and motivation
(Vallerand, 1994).



201I. Schwabe et al. / Learning and Individual Differences 54 (2017) 196–201
Acknowledgements

This study was funded by the Netherlands Scientific Organization
(NWO-PROO 411-12-623).

References

Ackerman, C. (1997). Identifying gifted adolescents using personality characteristics:
Dabrowski's overexcitabilities. Roeper Review, 19(4), 229–236.

Alarcon, M., Knopik, V., & DeFries, J. (2000). Covariation of mathematics achievement and
general cognitive ability in twins. Journal of School Psychology, 28, 63–77.

Austin, A., & Draper, D. (1981). Peer relationships of the academically gifted: A review. The
Gifted Child Quarterly, 25, 129–133.

Boada, R., Willcutt, E., Tunick, R., Chabildas, N., Olson, R., DeFries, J., & Pennington, B.
(2002). A twin study of the etiology of high reading ability. Reading and Writing, 15,
683–707.

Boomsma, D., Vink, J., Beijsterveldt, C., de Geus, E., Beem, A., Mulder, E., & van Baal, G.
(2002). Netherlands twin register: A focus on longitudinal research. Twin Research
and Human Genetics, 5, 401–406.

Box, G., & Tiao, G. (1992). Bayesian inference in statistical analysis.New York: JohnWiley &
Sons.

Cameron, N. D. (1993). Methodologies for estimation of genotype with environment in-
teraction. Livestock Production Science, 35(3–4), 237–249.

Davis, O., Haworth, C., & Plomin, R. (2009). Learning abilities and disabilities: Generalist
genes in early adolescence. Cognitive Neuropsychiatry, 14(4–5), 312–331.

de Zeeuw, E. L., de Geus, E. J. C., & Boomsma, D. I. (2015). Meta-analysis of twin studies
highlights the importance of genetic variation in primary school educational achieve-
ment. Trends in Neuroscience and Education, 4, 69–76.

Dekker, S. (2014). Plan van aanpak toptalenten 2014–2018 (Kamerbrief). Den Haag:
Ministerie van Onderwijs, Cultuur en Wetenschap.

Embretson, S., & Reise, S. (2009). Item response theory for psychologists. New Jersey: Psy-
chology Press.

Falconer, D. S., & MacKay, T. F. C. (1995). Introduction to quantitative genetics. Essex, UK:
Pearson Education Limited.

Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal den-
sities. Journal of the American Statistical Association, 85(410), 398–409.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6), 721–741.

Meelissen, M., Netten, A., Drent, M., Punter, R., Droop, M., & Verhoeven, L. (2012). Pirls-en
timss-2011. trends in leerprestaties in lezen, rekenen ennatuuronderwijs. Nijmegen &
Enschede, Netherlands: Radbout Universiteit & Universiteit Twente.

Minne, B., Rensman, M., Vroomen, B., & Webbink, D. (2007). Excellence for productivity?
Bijzondere publicatie 69. Den Haag, Netherlands: Centraal Planbureau.
Molenaar, D., & Dolan, C. (2014). Testing systematic genotype by environment interac-
tions using item level data. Behavior Genetics, 44(3), 212–231.

Molenaar, D., Middeldorp, C., van Beijsterveldt, T., & Boomsma, D. I. (2015). Analysis of be-
havioral and emotional problems in children highlights the role of genotype × envi-
ronment interaction. Child Development, 86(6), 1999–2016.

Petrill, S., Saudino, K., Cherny, S., Emde, R., Fulker, D., Hewitt, J., & Plomin, R. (1998). Ex-
ploring the genetic and environmental etiology of high general cognitive ability in
fourteen- to thirty-six month-old twins. Child Development, 69, 68–74.

Petrill, S., Kovas, Y., Hart, S., Thompson, L., & Plomin, R. (2009). The genetic and environ-
mental etiology of high math performance in 10-year-old twins. Behavior Genetics,
39(4), 371–379.

Plummer, M. (2003). Jags: A program for analysis of bayesian graphical models using gibbs
sampling.

Plummer, M. (2013). rjags: Bayesian graphical models using mcmc [Computer software
manual]. (Retrieved from http://CRAN.R-project.org/package=jags (R package ver-
sion 3 10)).

Purcell, S. (2002). Variance components models for gene-environment interaction in twin
analysis. Twin Research and Human Genetics, 5(6), 554–571.

R Development Core Team (2008). R: A language and environment for statistical computing
[computer software manual]. Vienna: Austria (Retrieved from http://www.R-project.
org (ISBN 3-900051-07-0)).

Ronald, A., Spinath, F., & Plomin, R. (2002). The etiology of high cognitive ability in early
childhood. High Ability Studies, 13, 103–114.

SanChristobal-Gaudy, M., Elsen, J., Bodin, L., & Chevalet, C. (1998). Prediciton of the re-
sponse to a selection for canalisation of a continous trait in animal breeding.
Genetics Selection Evolution, 30, 423–451.

Schwabe, I., & van den Berg, S. M. (2014). Assessing genotype by environment interaction
in case of heterogeneous measurement error. Behavior Genetics, 44(4), 394–406.

Schwabe, I., Jonker, W., & van den Berg, S. M. (2015). Genes, culture and conservatism – A
psychometric-genetic approach. Behavior Genetics. http://dx.doi.org/10.1007/s10519-
015 9768-9 (In press).

Shakeshaft, N., Trzaskowski, M., McMilan, A., Rimfeld, K., Krapohl, E., Haworth, C., &
Plomin, R. (2013). Strong genetic influence on a UK nationwide test of educational
achievement at the end of compulsory education at age 16. PloS One, 8(12).

Spiegelhalter, D., Best, N., Carlin, B., & van der Linde, A. (2002). Bayesian measures of
model complexity and fit. Journal of the Royal Statistical Society, 64, 583–639.

Vallerand, R. (1994). A comparison of the school intrinsic motivation and perceived com-
petence of gifted and regular students. The Gifted Child Quarterly, 38(4), 172–175.

van den Berg, S., Glas, C., & Boomsma, D. (2007). Variance decomposition using an irt
measurement model. Behavior Genetics, 37, 604–616.

van der Steeg, M., Vermeer, N., & Lanser, D. (2011). Nederlandse onderwijsprestaties in
perspectief. Den Haag: Centraal Planbureau.

Verhelst, N., Glas, C., & Verstralen, H. (1995). One-parameter logistic model oplm. CITO.

http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0005
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0005
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf5000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf5000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0010
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0010
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0015
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0015
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0025
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0025
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0030
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0030
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0035
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0035
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0040
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0040
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0045
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0045
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0045
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0050
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0050
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0055
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0055
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0060
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0060
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0065
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0065
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0070
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0070
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0070
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf6000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf6000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf6000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0075
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0075
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0080
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0080
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0085
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0085
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0085
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0090
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0090
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0090
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0095
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0095
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0095
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0105
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0105
http://CRAN.R-project.org/package=jags
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf7000
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf7000
http://www.R-project.org
http://www.R-project.org
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0120
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0120
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0125
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0125
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0125
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0130
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0130
http://dx.doi.org/10.1007/s10519-015 9768-9
http://dx.doi.org/10.1007/s10519-015 9768-9
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0140
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0140
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0145
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0145
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0150
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0150
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0155
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0155
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0160
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0160
http://refhub.elsevier.com/S1041-6080(17)30028-6/rf0165

	Increased environmental sensitivity in high mathematics performance
	1. Introduction
	2. Method
	2.1. Data
	2.2. Genetic models
	2.2.1. Genotype-environment interaction

	2.3. Measurement model
	2.4. Incorporating biometric and measurement models
	2.4.1. Prior distributions

	2.5. Analysis

	3. Results
	4. Discussion
	Acknowledgements
	References


